1
|
Yuasa HJ. Metazoan tryptophan indole-lyase: Are they still active? Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110801. [PMID: 36228898 DOI: 10.1016/j.cbpb.2022.110801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Tryptophan indole-lyase (TIL), also known as tryptophanase, is a pyridoxal-5'-phosphate dependent bacterial enzyme that catalyzes the reversible hydrolytic cleavage of l-tryptophan (l-Trp) to indole and ammonium pyruvate. TIL is also found in some metazoans, and they may have been acquired by horizontal gene transfer. In this study, two metazoans, Nematostella vectensis (starlet sea anemone) and Bradysia coprophila (fungus gnat) TILs were bacterially expressed and characterized. The kcat values of metazoan TILs were low, < 1/200 of the kcat of Escherichia coli TIL. By contrast, metazoan TILs showed lower Km values than the TILs of common bacteria, indicating that their affinity for l-Trp is higher than that of bacterial TILs. Analysis of a series of chimeric enzymes based on B. coprophila and bacterial TILs revealed that the low Km value of B. coprophila TIL is not accidental due to the substitution of a single residue, but is due to the cooperative effect of multiple residues. This suggests that high affinity for l-Trp was positively selected during the molecular evolution of metazoan TIL. This is the first report that metazoan TILs have low but obvious activity.
Collapse
Affiliation(s)
- Hajime Julie Yuasa
- Laboratory of Biochemistry, Department of Chemistry and Biotechnology, Faculty of Science and Technology, National University Corporation Kochi University, Kochi 780-8520, Japan.
| |
Collapse
|
2
|
HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell 2022; 185:2975-2987.e10. [PMID: 35853453 PMCID: PMC9357157 DOI: 10.1016/j.cell.2022.06.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022]
Abstract
Horizontal gene transfer (HGT) is an important evolutionary force shaping prokaryotic and eukaryotic genomes. HGT-acquired genes have been sporadically reported in insects, a lineage containing >50% of animals. We systematically examined HGT in 218 high-quality genomes of diverse insects and found that they acquired 1,410 genes exhibiting diverse functions, including many not previously reported, via 741 distinct transfers from non-metazoan donors. Lepidopterans had the highest average number of HGT-acquired genes. HGT-acquired genes containing introns exhibited substantially higher expression levels than genes lacking introns, suggesting that intron gains were likely involved in HGT adaptation. Lastly, we used the CRISPR-Cas9 system to edit the prevalent unreported gene LOC105383139, which was transferred into the last common ancestor of moths and butterflies. In diamondback moths, males lacking LOC105383139 courted females significantly less. We conclude that HGT has been a major contributor to insect adaptation.
Collapse
|
3
|
Huo SM, Zhang YY, Song ZR, Xiong XH, Hong XY. The potential pigmentation-related genes in spider mites revealed by comparative transcriptomes of the red form of Tetranychus urticae. INSECT MOLECULAR BIOLOGY 2021; 30:580-593. [PMID: 34309936 DOI: 10.1111/imb.12727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/27/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Colouration in spider mites is due to the presence of carotenoids with diverse colours, including yellows, oranges and reds. Tetranychus urticae has two main colour forms, red and green. Although a ketolase has been implicated in determining the colour, the underlying genetic basis of body colour divergence between the two forms has remained unclear. Based on a combination of comparative transcriptomes and RNA interference, we found that a gene encoding a cytochrome P450 enzyme of the CYP4 clan (CYP389B1) had remarkably high expression in adult females of the red T. urticae, as well as in hybrids obtained by crossing the red and green forms. Down-regulation of this gene by RNA interference resulted in decreased accumulation of red pigment. Up-regulation of the expressions of a scavenger receptor gene (SCARB1) and a mitochondrial glycine transporter (SLC25A38) also strongly contributed to red colour development in adult females. Suppressing the mRNA levels of these genes also resulted in reduced accumulation of red pigment in the three other spider mites with red body colour. Our results provide evidence that the body colour divergence between the two forms is caused by different expressions of pigmentation-related genes, and point to a possible role of a novel cytochrome P450 gene (CYP389B1) in regulating red-orange body colour. These findings expand the number of candidate cytochrome P450 genes involved in endogenous pigmentation and will help to understand their roles in determining colour patterns in mites and other species.
Collapse
Affiliation(s)
- S-M Huo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Y-Y Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Z-R Song
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-H Xiong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Marszalek-Grabska M, Walczak K, Gawel K, Wicha-Komsta K, Wnorowska S, Wnorowski A, Turski WA. Kynurenine emerges from the shadows – Current knowledge on its fate and function. Pharmacol Ther 2021; 225:107845. [DOI: 10.1016/j.pharmthera.2021.107845] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
|
5
|
G‐Santoyo I, González‐Tokman D, Tapia‐Rodríguez M, Córdoba‐Aguilar A. What doesn't kill you makes you stronger: Detoxification ability as a mechanism of honesty in a sexually selected signal. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Isaac G‐Santoyo
- Neuroecology Lab Facultad de Psicología Universidad Nacional Autónoma de MéxicoCiudad Universitaria Ciudad de México México
| | | | - Miguel Tapia‐Rodríguez
- Unidad de MicroscopíaInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad Universitaria Ciudad de México México
| | - Alex Córdoba‐Aguilar
- Instituto de Ecología Universidad Nacional Autónoma de MéxicoCiudad Universitaria Ciudad de México México
| |
Collapse
|
6
|
Wu M, Wang P, Gao M, Shen D, Zhao Q. Transcriptome analysis of the eggs of the silkworm pale red egg (rep-1) mutant at 36 hours after oviposition. PLoS One 2020; 15:e0237242. [PMID: 32764803 PMCID: PMC7413551 DOI: 10.1371/journal.pone.0237242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/22/2020] [Indexed: 12/04/2022] Open
Abstract
The egg stage is one of the most critical periods in the life history of silkworms, during which physiological processes such as sex determination, tissue organ formation and differentiation, diapause and pigmentation occur. In addition, egg color gradually emerges around 36h after oviposition. The red egg mutant rep-1, which was recently discovered in the C1(H) wild-type, C1(H) exhibits a brown egg color. In this study, the transcriptome of the eggs was analyzed 36h after oviposition. Between the rep-1 mutant and the C1(H) wild-type, 800 differentially expressed genes (DEGs) were identified, including 325 up-regulated genes and 475 down-regulated genes. These DEGs were mainly involved in biological processes (metabolic process, cellular process, biological regulation and regulation of biological process and localization), cellular components (membrane, membrane part, cell, cell part and organelle) and molecular functions (binding, catalytic activity, transporter activity, structural molecule activity and molecular transducer activity). The pathway enrichment of these DEGs was performed based on the KEGG database, and the results indicated that these DEGs were mainly involved in pathways in the following categories: metabolic pathways, longevity-regulating pathway-multiple species, protein processing in endoplasmic reticulum, peroxisome, carbon metabolism and purine metabolism. Further analysis showed that a large number of silkworm growth- and development-related genes and ommochrome synthesis- and metabolism-related genes were differentially expressed, most of which were up-regulated in the mutant. Our research findings provide new experimental evidence for research on ommochrome pigmentation and lay the foundation for further research on the mechanism of the rep-1 mutant.
Collapse
Affiliation(s)
- Meina Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Pingyang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi, Nanning, China
| | - Mengjie Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Dongxu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
- * E-mail:
| |
Collapse
|
7
|
Genetic heterogeneity of white markings in Quarter Horses. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Figon F, Casas J. Ommochromes in invertebrates: biochemistry and cell biology. Biol Rev Camb Philos Soc 2019; 94:156-183. [PMID: 29989284 DOI: 10.1111/brv.12441] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023]
Abstract
Ommochromes are widely occurring coloured molecules of invertebrates, arising from tryptophan catabolism through the so-called Tryptophan → Ommochrome pathway. They are mainly known to mediate compound eye vision, as well as reversible and irreversible colour patterning. Ommochromes might also be involved in cell homeostasis by detoxifying free tryptophan and buffering oxidative stress. These biological functions are directly linked to their unique chromophore, the phenoxazine/phenothiazine system. The most recent reviews on ommochrome biochemistry were published more than 30 years ago, since when new results on the enzymes of the ommochrome pathway, on ommochrome photochemistry as well as on their antiradical capacities have been obtained. Ommochromasomes are the organelles where ommochromes are synthesised and stored. Hence, they play an important role in mediating ommochrome functions. Ommochromasomes are part of the lysosome-related organelles (LROs) family, which includes other pigmented organelles such as vertebrate melanosomes. Ommochromasomes are unique because they are the only LRO for which a recycling process during reversible colour change has been described. Herein, we provide an update on ommochrome biochemistry, photoreactivity and antiradical capacities to explain their diversity and behaviour both in vivo and in vitro. We also highlight new biochemical techniques, such as quantum chemistry, metabolomics and crystallography, which could lead to major advances in their chemical and functional characterisation. We then focus on ommochromasome structure and formation by drawing parallels with the well-characterised melanosomes of vertebrates. The biochemical, genetic, cellular and microscopic tools that have been applied to melanosomes should provide important information on the ommochromasome life cycle. We propose LRO-based models for ommochromasome biogenesis and recycling that could be tested in the future. Using the context of insect compound eyes, we finally emphasise the importance of an integrated approach in understanding the biological functions of ommochromes.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| |
Collapse
|
9
|
Sugiura M, Yuasa HJ, Harumoto T. Novel Specificity of IDO Enzyme Involved in the Biosynthesis of Mating Pheromone in the Ciliate Blepharisma stoltei. Protist 2017; 168:686-696. [DOI: 10.1016/j.protis.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/24/2017] [Accepted: 09/09/2017] [Indexed: 01/12/2023]
|
10
|
Gao K, Deng XY, Shang MK, Qin GX, Hou CX, Guo XJ. iTRAQ-based quantitative proteomic analysis of midgut in silkworm infected with Bombyx mori cytoplasmic polyhedrosis virus. J Proteomics 2017; 152:300-311. [DOI: 10.1016/j.jprot.2016.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 12/17/2022]
|
11
|
Sun L, Cao J, Liu Y, Wang J, Guo P, Wang Z. Gene Cloning and Expression of Cellulase of Bacillus amyloliquefaciens Isolated from the Cecum of Goose. Anim Biotechnol 2016; 28:74-82. [DOI: 10.1080/10495398.2016.1205594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Linghong Sun
- Center for Developmental Biology, School of Life Science, Anhui Agriculture University, Hefei, Anhui, Republic of China
| | - Jiangyan Cao
- Center for Developmental Biology, School of Life Science, Anhui Agriculture University, Hefei, Anhui, Republic of China
| | - Ying Liu
- Center for Developmental Biology, School of Life Science, Anhui Agriculture University, Hefei, Anhui, Republic of China
| | - Junjie Wang
- Center for Developmental Biology, School of Life Science, Anhui Agriculture University, Hefei, Anhui, Republic of China
| | - Panpan Guo
- Center for Developmental Biology, School of Life Science, Anhui Agriculture University, Hefei, Anhui, Republic of China
| | - Zaigui Wang
- Center for Developmental Biology, School of Life Science, Anhui Agriculture University, Hefei, Anhui, Republic of China
| |
Collapse
|
12
|
Wybouw N, Pauchet Y, Heckel DG, Van Leeuwen T. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory. Genome Biol Evol 2016; 8:1785-801. [PMID: 27307274 PMCID: PMC4943190 DOI: 10.1093/gbe/evw119] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 01/07/2023] Open
Abstract
Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants.
Collapse
Affiliation(s)
- Nicky Wybouw
- Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Thomas Van Leeuwen
- Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
13
|
Li W, Gong M, Shu R, Li X, Gao J, Meng Y. Molecular and enzymatic characterization of two enzymes BmPCD and BmDHPR involving in the regeneration pathway of tetrahydrobiopterin from the silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2015; 186:20-7. [PMID: 25899859 DOI: 10.1016/j.cbpb.2015.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/30/2015] [Accepted: 04/12/2015] [Indexed: 01/22/2023]
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor of aromatic amino acid hydroxylases and nitric oxide synthase so that BH4 plays a key role in many biological processes. BH4 deficiency is associated with numerous metabolic syndromes and neuropsychological disorders. BH4 concentration in mammals is maintained through a de novo synthesis pathway and a regeneration pathway. Previous studies showed that the de novo pathway of BH4 is similar between insects and mammals. However, knowledge about the regeneration pathway of BH4 (RPB) is very limited in insects. Several mutants in the silkworm Bombyx mori have been approved to be associated with BH4 deficiency, which are good models to research on the RPB in insects. In this study, homologous genes encoding two enzymes, pterin-4a-carbinolamine dehydratase (PCD) and dihydropteridine reductase (DHPR) involving in RPB have been cloned and identified from B. mori. Enzymatic activity of DHPR was found in the fat body of wild type silkworm larvae. Together with the transcription profiles, it was indicated that BmPcd and BmDhpr might normally act in the RPB of B. mori and the expression of BmDhpr was activated in the brain and sexual glands while BmPcd was expressed in a wider special pattern when the de novo pathway of BH4 was lacked in lemon. Biochemical analyses showed that the recombinant BmDHPR exhibited high enzymatic activity and more suitable parameters to the coenzyme of NADH in vitro. The results in this report give new information about the RPB in B. mori and help in better understanding insect BH4 biosynthetic networks.
Collapse
Affiliation(s)
- Wentian Li
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Meixia Gong
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Rui Shu
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Xin Li
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Junshan Gao
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| |
Collapse
|
14
|
Abstract
The thermoprotective mechanisms of insects remain largely unknown. We reported the Bombyx mori contractile (cot) behavioral mutant with thermo-sensitive seizures phenotype. At elevated temperatures, the cot mutant exhibit seizures associated with strong contractions, rolling, vomiting, and a temporary lack of movement. We narrowed a region containing cot to ~268 kb by positional cloning and identified the mutant gene as Bmsei which encoded a potassium channel protein. Bmsei was present in both the cell membrane and cytoplasm in wild-type ganglia but faint in cot. Furthermore, Bmsei was markedly decreased upon high temperature treatment in cot mutant. With the RNAi method and injecting potassium channel blockers, the wild type silkworm was induced the cot phenotype. These results demonstrated that Bmsei was responsible for the cot mutant phenotype and played an important role in thermoprotection in silkworm. Meanwhile, comparative proteomic approach was used to investigate the proteomic differences. The results showed that the protein of Hsp-1 and Tn1 were significantly decreased and increased on protein level in cot mutant after thermo-stimulus, respectively. Our data provide insights into the mechanism of thermoprotection in insect. As cot phenotype closely resembles human epilepsy, cot might be a potential model for the mechanism of epilepsy in future.
Collapse
|
15
|
Yuasa HJ, Ball HJ. Efficient tryptophan-catabolizing activity is consistently conserved through evolution of TDO enzymes, but not IDO enzymes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:128-40. [DOI: 10.1002/jez.b.22608] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Hajime J. Yuasa
- Laboratory of Biochemistry; Department of Applied Science; Faculty of Science; National University Corporation Kochi University; Kochi Japan
| | - Helen J. Ball
- Molecular Immunopathology Unit; Discipline of Pathology; School of Medical Sciences; and Bosch Institute; University of Sydney; NSW Australia
| |
Collapse
|
16
|
Hu YG, Shen YH, Zhang Z, Shi GQ. Melanin and urate act to prevent ultraviolet damage in the integument of the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 83:41-55. [PMID: 23575996 DOI: 10.1002/arch.21096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The phenomenon that epidermal cells under the white stripes rather than black stripes contain many uric acid granules was found in larvae of several Lepidopteran species. However, the biological mechanism of this phenomenon is still unknown. In the present study, we take advantage of several silkworm (Bombyx mori) body color mutant strains to investigate the deposition patterns and biological mechanism of urate and melanin in the integuments of these mutant larvae. By imaging with transmission electron microscope, we found that there were some melanin granules in the larval cuticle in black body color mutant plain Black (p(B) ), but not in background strain plain (p) with white larval body color. In contrast, the larval epidermal cell of background strain had much more urate granules than that of black one. Furthermore, the uric acid content under the black stripes was significantly lower than that under the white stripes in a single individual of mottled stripe (p(S) ) with black and white stripes in each segment. Ultraviolet A (UVA) exposure experiments showed that the distinct oily (od) mutant individuals with translucent larval integument were more sensitive to the UVA damage than black body color mutant and background strain without any pigmentation in the larval cuticle. This is likely due to the absence of melanin granules and few urate granules in the integument of od mutant. Thus, both the deposited melanin granules in the cuticle and the abundant urate granules in the epidermis cells constitute effective barriers for the silkworm to resist UVA-induced damage.
Collapse
Affiliation(s)
- Yong-Gang Hu
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | | | | | | |
Collapse
|
17
|
Sun BF, Xiao JH, He SM, Liu L, Murphy RW, Huang DW. Multiple ancient horizontal gene transfers and duplications in lepidopteran species. INSECT MOLECULAR BIOLOGY 2013; 22:72-87. [PMID: 23211014 DOI: 10.1111/imb.12004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Eukaryotic horizontal gene transfer (HGT) events are increasingly being discovered yet few reports have summarized multiple occurrences in a wide range of species. We systematically investigated HGT events in the order Lepidoptera by employing a series of filters. Bombyx mori, Danaus plexippus and Heliconius melpomene had 13, 12 and 12 HGTs, respectively, from bacteria and fungi. These HGTs contributed a total of 64 predicted genes: 22 to B. mori, 22 to D. plexippus and 20 to H. melpomene. Several new genes were generated by post-transfer duplications. Post-transfer duplication of a suite of functional HGTs has rarely been reported in higher organisms. The distributional patterns of paralogues for certain genes differed in the three species, indicating potential independent duplication or loss events. All of these HGTs had homologues expressed in some other lepidopterans, indicating ancient transfer events. Most HGTs were involved in the metabolism of sugar and amino acids. These HGTs appeared to have experienced amelioration, purifying selection and accelerated evolution to adapt to the background genome of the recipient. The discovery of ancient, massive HGTs and duplications in lepidopterans and their adaptive evolution provides further insights into the evolutionary significance of the events from donors to multicellular host recipients.
Collapse
Affiliation(s)
- B F Sun
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
18
|
Wang W, Gao J, Wang J, Liu C, Meng Y. Cloning, expression and enzymatic properties analysis of dihydrofolate reductase gene from the silkworm, Bombyx mori. Mol Biol Rep 2012; 39:10285-91. [PMID: 23065260 DOI: 10.1007/s11033-012-1905-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/30/2012] [Indexed: 10/27/2022]
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for aromatic acid hydroxylases, which control the levels of monoamine neurotransmitters. BH4 deficiency has been associated with many neuropsychological disorders. Dihydrofolate reductase (DHFR) can catalyze 7,8-dihydrobiopterin to 5,6,7,8-tetrahydrobiopterin (BH4) in the salvage pathway of BH4 synthesis from sepiapterin (SP), a major pigment component contained in the integument of silkworm Bombyx mori mutant lemon (lem) in high concentration. In this study, we report the cloning of DHFR gene from the silkworm B. mori (BmDhfr) and identification of enzymatic properties of BmDHFR. BmDhfr is located on scaffold Bm_199 with a predicted gene model BGIBMGA013340, which encodes a 185-aa polypeptide with a predicted molecular mass of about 21 kDa. Biochemical analyses showed that the recombinant BmDHFR protein exhibited high enzymatic activity and suitable parameters to substrate. Together with our previous studies on SP reductase of B. mori (BmSPR) and the lem mutant, it may be an effective way to industrially extract SP from the lem silkworms in large scale to produce BH4 in vitro by co-expressing BmSPR and BmDHFR and using the extracted SP as a substrate in the future.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | | | | | | | | |
Collapse
|
19
|
Ito K, Kidokoro K, Katsuma S, Shimada T, Yamamoto K, Mita K, Kadono-Okuda K. Positional cloning of a gene responsible for the cts mutation of the silkworm, Bombyx mori. Genome 2012; 55:493-504. [DOI: 10.1139/g2012-033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The larval head cuticle and anal plates of the silkworm mutant cheek and tail spot (cts) have chocolate-colored spots, unlike the entirely white appearance of the wild-type (WT) strain. We report the identification and characterization of the gene responsible for the cts mutation. Positional cloning revealed a cts candidate on chromosome 16, designated BmMFS, based on the high similarity of the deduced amino acid sequence between the candidate gene from the WT strain and the major facilitator superfamily (MFS) protein. BmMFS likely encodes a membrane protein with 11 putative transmembrane domains, while the putative structure deduced from the cts-type allele possesses only 10-pass transmembrane domains owing to a deletion in its coding region. Quantitative RT–PCR analysis showed that BmMFS mRNA was strongly expressed in the integument of the head and tail, where the cts phenotype is observed; expression markedly increased at the molting and newly ecdysed stages. These results indicate that the novel BmMFS gene is cts and the membrane structure of its protein accounts for the cts phenotype. These expression profiles and the cts phenotype are quite similar to those of melanin-related genes, such as Bmyellow-e and Bm-iAANAT, suggesting that BmMFS is involved in the melanin synthesis pathway.
Collapse
Affiliation(s)
- Katsuhiko Ito
- Insect Genome Research Unit, Agrogenonmics Research Center, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Kurako Kidokoro
- Insect Genome Research Unit, Agrogenonmics Research Center, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kimiko Yamamoto
- Insect Genome Research Unit, Agrogenonmics Research Center, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Kazuei Mita
- Insect Genome Research Unit, Agrogenonmics Research Center, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiko Kadono-Okuda
- Insect Genome Research Unit, Agrogenonmics Research Center, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
20
|
Li ZW, Shen YH, Xiang ZH, Zhang Z. Pathogen-origin horizontally transferred genes contribute to the evolution of Lepidopteran insects. BMC Evol Biol 2011; 11:356. [PMID: 22151541 PMCID: PMC3252269 DOI: 10.1186/1471-2148-11-356] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 12/12/2011] [Indexed: 12/31/2022] Open
Abstract
Background Horizontal gene transfer (HGT), a source of genetic variation, is generally considered to facilitate hosts' adaptability to environments. However, convincing evidence supporting the significant contribution of the transferred genes to the evolution of metazoan recipients is rare. Results In this study, based on sequence data accumulated to date, we used a unified method consisting of similarity search and phylogenetic analysis to detect horizontally transferred genes (HTGs) between prokaryotes and five insect species including Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Tribolium castaneum and Apis mellifera. Unexpectedly, the candidate HTGs were not detected in D. melanogaster, An. gambiae and T. castaneum, and 79 genes in Ap. mellifera sieved by the same method were considered as contamination based on other information. Consequently, 14 types of 22 HTGs were detected only in the silkworm. Additionally, 13 types of the detected silkworm HTGs share homologous sequences in species of other Lepidopteran superfamilies, suggesting that the majority of these HTGs were derived from ancient transfer events before the radiation of Ditrysia clade. On the basis of phylogenetic topologies and BLAST search results, donor bacteria of these genes were inferred, respectively. At least half of the predicted donor organisms may be entomopathogenic bacteria. The predicted biochemical functions of these genes include four categories: glycosyl hydrolase family, oxidoreductase family, amino acid metabolism, and others. Conclusions The products of HTGs detected in this study may take part in comprehensive physiological metabolism. These genes potentially contributed to functional innovation and adaptability of Lepidopteran hosts in their ancient lineages associated with the diversification of angiosperms. Importantly, our results imply that pathogens may be advantageous to the subsistence and prosperity of hosts through effective HGT events at a large evolutionary scale.
Collapse
Affiliation(s)
- Zi-Wen Li
- The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | | | | | | |
Collapse
|
21
|
Zhu B, Lou MM, Xie GL, Zhang GQ, Zhou XP, Li B, Jin GL. Horizontal gene transfer in silkworm, Bombyx mori. BMC Genomics 2011; 12:248. [PMID: 21595916 PMCID: PMC3116507 DOI: 10.1186/1471-2164-12-248] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The domesticated silkworm, Bombyx mori, is the model insect for the order Lepidoptera, has economically important values, and has gained some representative behavioral characteristics compared to its wild ancestor. The genome of B. mori has been fully sequenced while function analysis of BmChi-h and BmSuc1 genes revealed that horizontal gene transfer (HGT) maybe bestow a clear selective advantage to B. mori. However, the role of HGT in the evolutionary history of B. mori is largely unexplored. In this study, we compare the whole genome of B. mori with those of 382 prokaryotic and eukaryotic species to investigate the potential HGTs. RESULTS Ten candidate HGT events were defined in B. mori by comprehensive sequence analysis using Maximum Likelihood and Bayesian method combining with EST checking. Phylogenetic analysis of the candidate HGT genes suggested that one HGT was plant-to- B. mori transfer while nine were bacteria-to- B. mori transfer. Furthermore, functional analysis based on expression, coexpression and related literature searching revealed that several HGT candidate genes have added important characters, such as resistance to pathogen, to B. mori. CONCLUSIONS Results from this study clearly demonstrated that HGTs play an important role in the evolution of B. mori although the number of HGT events in B. mori is in general smaller than those of microbes and other insects. In particular, interdomain HGTs in B. mori may give rise to functional, persistent, and possibly evolutionarily significant new genes.
Collapse
Affiliation(s)
- Bo Zhu
- State Key Laboratory of Rice Biology and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhan S, Guo Q, Li M, Li M, Li J, Miao X, Huang Y. Disruption of an N-acetyltransferase gene in the silkworm reveals a novel role in pigmentation. Development 2010; 137:4083-90. [DOI: 10.1242/dev.053678] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pigmentation of insects has served as an excellent model for the study of morphological trait evolution and developmental biology. The melanism (mln) mutant of the silkworm Bombyx mori is notable for its strong black coloration, phenotypic differences between larval and adult stages, and its widespread use in strain selection. Here, we report the genetic and molecular bases for the formation of the mln morphological trait. Fine mapping revealed that an arylalkylamine N-acetyltransferase (AANAT) gene co-segregates with the black coloration patterns. Coding sequence variations and expression profiles of AANAT are also associated with the melanic phenotypes. A 126 bp deletion in the mln genome causes two alternatively spliced transcripts with premature terminations. An enzymatic assay demonstrated the absolute loss of AANAT activity in the mutant proteins. We also performed RNA interference of AANAT in wild-type pupae and observed a significant proportion of adults with ectopic black coloration. These findings indicate that functional deletion of this AANAT gene accounts for the mln mutation in silkworm. AANAT is also involved in a parallel melanin synthesis pathway in which ebony plays a role, whereas no pigmentation defect has been reported in the Drosophila model or in other insects to date. To the best of our knowledge, the mln mutation is the first characterized mutant phenotype of insects with AANAT, and this result contributes to our understanding of dopamine metabolism and melanin pattern polymorphisms.
Collapse
Affiliation(s)
- Shuai Zhan
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- The Graduate School, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiuhong Guo
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Minghui Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Muwang Li
- Sericultural Research Institute, Chinese Academy of Agriculture Sciences, Zhenjiang, 212018, China
| | - Jianyong Li
- Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Xuexia Miao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongping Huang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
23
|
Urano K, Daimon T, Banno Y, Mita K, Terada T, Shimizu K, Katsuma S, Shimada T. Molecular defect of isovaleryl-CoA dehydrogenase in the skunk mutant of silkworm, Bombyx mori. FEBS J 2010; 277:4452-63. [PMID: 21040472 DOI: 10.1111/j.1742-4658.2010.07832.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The isovaleric acid-emanating silkworm mutant skunk (sku) was first studied over 30 years ago because of its unusual odour and prepupal lethality. Here, we report the identification and characterization of the gene responsible for the sku mutant. Because of its specific features and symptoms similar to human isovaleryl-CoA dehydrogenase (IVD) deficiency, also known as isovaleric acidaemia, IVD dysfunction in silkworms was predicted to be responsible for the phenotype of the sku mutant. Linkage analysis revealed that the silkworm IVD gene (BmIVD) was closely linked to the odorous phenotype as expected, and a single amino acid substitution (G376V) was found in BmIVD of the sku mutant. To investigate the effect of the G376V substitution on BmIVD function, wild-type and sku-type recombinants were constructed with a baculovirus expression system and the subsequent enzyme activity of sku-type BmIVD was shown to be significantly reduced compared with that of wild-type BmIVD. Molecular modelling suggested that this reduction in the enzyme activity may be due to negative effects of G376V mutation on FAD-binding or on monomer-monomer interactions. These observations strongly suggest that BmIVD is responsible for the sku locus and that the molecular defect in BmIVD causes the characteristic smell and prepupal lethality of the sku mutant. To our knowledge, this is, aside from humans, the first characterization of IVD deficiency in metazoa. Considering that IVD acts in the third step of leucine degradation and the sku mutant accumulates branched-chain amino acids in haemolymph, this mutant may be useful in the investigation of unique branched-chain amino acid catabolism in insects.
Collapse
Affiliation(s)
- Kei Urano
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Dai FY, Qiao L, Tong XL, Cao C, Chen P, Chen J, Lu C, Xiang ZH. Mutations of an arylalkylamine-N-acetyltransferase, Bm-iAANAT, are responsible for silkworm melanism mutant. J Biol Chem 2010; 285:19553-60. [PMID: 20332088 DOI: 10.1074/jbc.m109.096743] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coloration is one of the most variable characters in animals and provides rich material for studying the developmental genetic basis of pigment patterns. In the silkworm, more than 100 gene mutation systems are related to aberrant color patterns. The melanism (mln) is a rare body color mutant that exhibits an easily distinguishable phenotype in both larval and adult silkworms. By positional cloning, we identified the candidate gene of the mln locus, Bm-iAANAT, whose homologous gene (Dat) converts dopamine into N-acetyldopamine, a precursor for N-acetyldopamine sclerotin in Drosophila. In the mln mutant, two types of abnormal Bm-iAANAT transcripts were identified, whose expression levels are markedly lower than the wild type (WT). Moreover, dopamine content was approximately twice as high in the sclerified tissues (head, thoracic legs, and anal plate) of the mutant as in WT, resulting in phenotypic differences between the two. Quantitative reverse transcription PCR analyses showed that other genes involved in the melanin metabolism pathway were regulated by the aberrant Bm-iAANAT activity in mln mutant in different ways and degrees. We therefore propose that greater accumulation of dopamine results from the functional deficiency of Bm-iAANAT in the mutant, causing a darker pattern in the sclerified regions than in the WT. In summary, our results indicate that Bm-iAANAT is responsible for the color pattern of the silkworm mutant, mln. To our knowledge, this is the first report showing a role for arylalkylamine-N-acetyltransferases in color pattern mutation in Lepidoptera.
Collapse
Affiliation(s)
- Fang-yin Dai
- College of Biotechnology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Futahashi R, Banno Y, Fujiwara H. Caterpillar color patterns are determined by a two-phase melanin gene prepatterning process: new evidence from tan and laccase2. Evol Dev 2010; 12:157-67. [PMID: 20433456 DOI: 10.1111/j.1525-142x.2010.00401.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryo Futahashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | | | | |
Collapse
|
26
|
Ito K, Katsuma S, Yamamoto K, Kadono-Okuda K, Mita K, Shimada T. Yellow-e determines the color pattern of larval head and tail spots of the silkworm Bombyx mori. J Biol Chem 2009; 285:5624-9. [PMID: 19996320 DOI: 10.1074/jbc.m109.035741] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yellow proteins form a large family in insects. In Drosophila melanogaster, there are 14 yellow genes in the genome. Previous studies have shown that the yellow gene is necessary for normal pigmentation; however, the roles of other yellow genes in body coloration are not known. Here, we provide the first evidence that yellow-e is required for normal body color pattern in insect larvae. In two mutant strains, bts and its allele bts2, of the silkworm Bombyx mori, the larval head cuticle and anal plates are reddish brown instead of the white color found in the wild type. Positional cloning revealed that deletions in the Bombyx homolog of the Drosophila yellow-e gene (Bmyellow-e) were responsible for the bts/bts2 phenotype. Bmyellow-e mRNA was strongly expressed in the trachea, testis, and integument, and expression markedly increased at the molting stages. This profile is quite similar to that of Bmyellow, a regulator of neonatal body color and body markings in Bombyx. Quantitative reverse transcription-PCR analysis showed that Bmyellow-e mRNA was heavily expressed in the integument of the head and tail in which the bts phenotype is observed. The present results suggest that Yellow-e plays a crucial role in the pigmentation process of lepidopteran larvae.
Collapse
Affiliation(s)
- Katsuhiko Ito
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Initial characterization of a recombinant kynureninase from Trypanosoma cruzi identified from an EST database. Gene 2009; 448:1-6. [DOI: 10.1016/j.gene.2009.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 11/29/2022]
|