1
|
Lavrinenko IA, Vashanov GA, Hernández Cáceres JL, Nechipurenko YD. Mathematical models describing oxygen binding by hemoglobin. Biophys Rev 2023; 15:1269-1278. [PMID: 37974982 PMCID: PMC10643423 DOI: 10.1007/s12551-023-01110-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 11/19/2023] Open
Abstract
Despite the fact that the investigation of the structural and functional properties of hemoglobin dates back more than 150 years, the topic has not lost its relevance today. The most important component of these studies is the development of mathematical models that formalize and generalize the mechanisms determining the cooperative binding of ligands based on data on the structural and functional state of the protein. In this work, we review the mathematical relationships describing oxygen binding by hemoglobin, ranging from the classical Hüfner, Hill, and Adair equations to the Szabo-Karplus and tertiary two-state mathematical models based on the Monod-Wyman-Changeux and Koshland-Némethy-Filmer concepts. The generality of the considered equations as mathematical functions, bearing in their basis a power dependence, is demonstrated. The problems and possible solutions related to approximation of experimental data by the oxygenation equations with correlated fitting parameters are noted. Attention is paid to empirical equations, extended versions of the Hill equation, where the coefficient of cooperation is modulated by Gauss and Lorentz distributions as functions of partial oxygen pressure.
Collapse
Affiliation(s)
- Igor A. Lavrinenko
- Department of Human and Animal Physiology, Voronezh State University, Voronezh, 394018 Russia
| | - Gennady A. Vashanov
- Department of Human and Animal Physiology, Voronezh State University, Voronezh, 394018 Russia
| | | | - Yury D. Nechipurenko
- Laboratory of DNA-Protein Interactions, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991 Russia
- Laboratory of Molecular and Cellular Biophysics, Sevastopol State University, Sevastopol, 299053 Russia
| |
Collapse
|
2
|
Kabata H, Aramaki H, Shimamoto N. Single-molecule evidence for a chemical ratchet in binding between the cam repressor and its operator. NANOSCALE 2022; 14:13315-13323. [PMID: 36065798 DOI: 10.1039/d2nr03454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The affinity for regulator-operator binding on DNA sometimes depends on the length of the DNA harboring the operator, which is known as the antenna effect. One-dimensional diffusion along DNA has been suggested to be the cause, but this may contradict the binding affinity independent of the reaction pathways, which is derived from the detailed balance of the reaction at equilibrium. Recently, the chemical ratchet was proposed to solve this contradiction by suggesting a stationary state containing microscopic non-equilibrium. In a single-molecule observation, P. putida CamR molecules associate with their operator via one-dimensional diffusion along the DNA, while they mostly dissociated from the operator without the diffusion. Consistently, the observed overall association rate was dependent on the DNA length, while the overall dissociation rate was not, leading to an antenna effect. E. coli RNA polymerase did not show this behavior, and thus it is a specific property of a protein. The bipartite interaction domains containing the helix-turn-helix motif are speculated to be one of the possible causes. The biological significance of the chemical ratchet and a model for its microscopic mechanism are also discussed.
Collapse
Affiliation(s)
- Hiroyuki Kabata
- National Institute of Genetics, and Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| | - Hironori Aramaki
- Department of Molecular and Life Science, Faculty of Pharmacy, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Nobuo Shimamoto
- National Institute of Genetics, and Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
3
|
Lavrinenko IA, Vashanov GA, Hernández Cáceres JL, Buchelnikov AS, Nechipurenko YD. A New Model of Hemoglobin Oxygenation. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1214. [PMID: 36141103 PMCID: PMC9498255 DOI: 10.3390/e24091214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
The study of hemoglobin oxygenation, starting from the classical works of Hill, has laid the foundation for molecular biophysics. The cooperative nature of oxygen binding to hemoglobin has been variously described in different models. In the Adair model, which better fits the experimental data, the constants of oxygen binding at various stages differ. However, the physical meaning of the parameters in this model remains unclear. In this work, we applied Hill's approach, extending its interpretation; we obtained a good agreement between the theory and the experiment. The equation in which the Hill coefficient is modulated by the Lorentz distribution for oxygen partial pressure approximates the experimental data better than not only the classical Hill equation, but also the Adair equation.
Collapse
Affiliation(s)
- Igor A. Lavrinenko
- Department of Human and Animal Physiology, Voronezh State University, Universitetskaya Sq. 1, 394018 Voronezh, Russia
| | - Gennady A. Vashanov
- Department of Human and Animal Physiology, Voronezh State University, Universitetskaya Sq. 1, 394018 Voronezh, Russia
| | | | - Anatoly S. Buchelnikov
- Laboratory of Molecular and Cellular Biophysics, Sevastopol State University, Universitetskaya Str. 33, 299053 Sevastopol, Russia
| | - Yury D. Nechipurenko
- Laboratory of DNA-Protein Interactions, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| |
Collapse
|
4
|
Lavrinenko IA, Vashanov GA, Nechipurenko YD. New Mathematical Model to Describe Hemoglobin Oxygenation. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922030125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Lavrinenko IA, Vashanov GA, Buchelnikov AS, Nechipurenko YD. Cooperative Oxygen Binding with Hemoglobin as a General Model in Molecular Biophysics. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922030113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Skinner SP, Follmer AH, Ubbink M, Poulos TL, Houwing-Duistermaat JJ, Paci E. Partial Opening of Cytochrome P450cam (CYP101A1) Is Driven by Allostery and Putidaredoxin Binding. Biochemistry 2021; 60:2932-2942. [PMID: 34519197 PMCID: PMC8959389 DOI: 10.1021/acs.biochem.1c00406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytochrome P450cam (CYP101A1) catalyzes the regio- and stereo-specific 5-exo-hydroxylation of camphor via a multistep catalytic cycle that involves two-electron transfer steps, with an absolute requirement that the second electron be donated by the ferrodoxin, putidaredoxin (Pdx). Whether P450cam, once camphor has bound to the active site and the substrate entry channel has closed, opens up upon Pdx binding, during the second electron transfer step, or it remains closed is still a matter of debate. A potential allosteric site for camphor binding has been identified and postulated to play a role in the binding of Pdx. Here, we have revisited paramagnetic NMR spectroscopy data and determined a heterogeneous ensemble of structures that explains the data, provides a complete representation of the P450cam/Pdx complex in solution, and reconciles alternative hypotheses. The allosteric camphor binding site is always present, and the conformational changes induced by camphor binding to this site facilitates Pdx binding. We also determined that the state to which Pdx binds comprises an ensemble of structures that have features of both the open and closed state. These results demonstrate that there is a finely balanced interaction between allosteric camphor binding and the binding of Pdx at high camphor concentrations.
Collapse
Affiliation(s)
- Simon P Skinner
- School of Molecular and Cell Biology and Astbury Centre, University of Leeds, Leeds LS2 9JT, U.K
| | - Alec H Follmer
- Department of Chemistry, University of California, Irvine, California 92697-3900, United States
| | - Marcellus Ubbink
- Leiden University, Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Thomas L Poulos
- Department of Chemistry, University of California, Irvine, California 92697-3900, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3900, United States
| | | | - Emanuele Paci
- School of Molecular and Cell Biology and Astbury Centre, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
7
|
Malico AA, Calzini MA, Gayen AK, Williams GJ. Synthetic biology, combinatorial biosynthesis, and chemo‑enzymatic synthesis of isoprenoids. J Ind Microbiol Biotechnol 2020; 47:675-702. [PMID: 32880770 PMCID: PMC7666032 DOI: 10.1007/s10295-020-02306-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Isoprenoids are a large class of natural products with myriad applications as bioactive and commercial compounds. Their diverse structures are derived from the biosynthetic assembly and tailoring of their scaffolds, ultimately constructed from two C5 hemiterpene building blocks. The modular logic of these platforms can be harnessed to improve titers of valuable isoprenoids in diverse hosts and to produce new-to-nature compounds. Often, this process is facilitated by the substrate or product promiscuity of the component enzymes, which can be leveraged to produce novel isoprenoids. To complement rational enhancements and even re-programming of isoprenoid biosynthesis, high-throughput approaches that rely on searching through large enzymatic libraries are being developed. This review summarizes recent advances and strategies related to isoprenoid synthetic biology, combinatorial biosynthesis, and chemo-enzymatic synthesis, focusing on the past 5 years. Emerging applications of cell-free biosynthesis and high-throughput tools are included that culminate in a discussion of the future outlook and perspective of isoprenoid biosynthetic engineering.
Collapse
Affiliation(s)
| | - Miles A Calzini
- Department of Chemistry, NC State University, Raleigh, NC, 27695, USA
| | - Anuran K Gayen
- Department of Chemistry, NC State University, Raleigh, NC, 27695, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC, 27695, USA.
- Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
8
|
Follmer AH, Mahomed M, Goodin DB, Poulos TL. Substrate-Dependent Allosteric Regulation in Cytochrome P450cam (CYP101A1). J Am Chem Soc 2018; 140:16222-16228. [DOI: 10.1021/jacs.8b09441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alec H. Follmer
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, California 92697-3900, United States
| | - Mavish Mahomed
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - David B. Goodin
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Thomas L. Poulos
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
9
|
Serebryany E, Folta-Stogniew E, Liu J, Yan ECY. Homodimerization enhances both sensitivity and dynamic range of the ligand-binding domain of type 1 metabotropic glutamate receptor. FEBS Lett 2016; 590:4308-4317. [PMID: 27800613 PMCID: PMC5154874 DOI: 10.1002/1873-3468.12473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/01/2016] [Accepted: 10/19/2016] [Indexed: 12/04/2023]
Abstract
Cooperativity in ligand binding is a key emergent property of protein oligomers. Positive cooperativity (higher affinity for subsequent binding events than for initial binding) is frequent. However, the symmetrically homodimeric ligand-binding domain (LBD) of metabotropic glutamate receptor type 1 exhibits negative cooperativity. To investigate its origin and functional significance, we measured the response to glutamate in vitro of wild-type and C140S LBD as a function of the extent of dimerization. Our results indicate that homodimerization enhances the affinity of the first, but not the second, binding site, relative to the monomer, giving the dimeric receptor both greater sensitivity and a broader dynamic range.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ewa Folta-Stogniew
- W. M. Keck Foundation Biotechnology Resource Laboratory, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Jian Liu
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
10
|
Affiliation(s)
- A. Subha Mahadevi
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| | - G. Narahari Sastry
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| |
Collapse
|
11
|
Development of a Tightly Controlled Off Switch for Saccharomyces cerevisiae Regulated by Camphor, a Low-Cost Natural Product. G3-GENES GENOMES GENETICS 2015. [PMID: 26206350 PMCID: PMC4592980 DOI: 10.1534/g3.114.012765] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Here we describe the engineering of a distant homolog of the Tet repressor, CamR, isolated from Pseudomonas putida, that is regulated by camphor, a very inexpensive small molecule (at micromolar concentrations) for use in Saccharomyces cerevisiae. The repressor was engineered by expression from a constitutive yeast promoter, fusion to a viral activator protein cassette, and codon optimization. A suitable promoter responsive to the CamR fusion protein was engineered by embedding a P. putida operator binding sequence within an upstream activating sequence (UAS)-less CYC1 promoter from S. cerevisiae. The switch, named the Camphor-Off switch, activates expression of a reporter gene in camphor-free media and represses it with micromolar concentrations of camphor.
Collapse
|
12
|
Rodgers TL, Townsend PD, Burnell D, Jones ML, Richards SA, McLeish TCB, Pohl E, Wilson MR, Cann MJ. Modulation of global low-frequency motions underlies allosteric regulation: demonstration in CRP/FNR family transcription factors. PLoS Biol 2013; 11:e1001651. [PMID: 24058293 PMCID: PMC3769225 DOI: 10.1371/journal.pbio.1001651] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022] Open
Abstract
Allostery in bacterial transcription factors arises from changes in global low-frequency protein dynamics. Amino acids that regulate low-frequency dynamics are identified and seen to be evolutionarily conserved. Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distinct site. There is growing evidence that allosteric cooperativity can be communicated by modulation of protein dynamics without conformational change. The mechanisms, however, for communicating dynamic fluctuations between sites are debated. We provide a foundational theory for how allostery can occur as a function of low-frequency dynamics without a change in structure. We have generated coarse-grained models that describe the protein backbone motions of the CRP/FNR family transcription factors, CAP of Escherichia coli and GlxR of Corynebacterium glutamicum. The latter we demonstrate as a new exemplar for allostery without conformation change. We observe that binding the first molecule of cAMP ligand is correlated with modulation of the global normal modes and negative cooperativity for binding the second cAMP ligand without a change in mean structure. The theory makes key experimental predictions that are tested through an analysis of variant proteins by structural biology and isothermal calorimetry. Quantifying allostery as a free energy landscape revealed a protein “design space” that identified the inter- and intramolecular regulatory parameters that frame CRP/FNR family allostery. Furthermore, through analyzing CAP variants from diverse species, we demonstrate an evolutionary selection pressure to conserve residues crucial for allosteric control. This finding provides a link between the position of CRP/FNR transcription factors within the allosteric free energy landscapes and evolutionary selection pressures. Our study therefore reveals significant features of the mechanistic basis for allostery. Changes in low-frequency dynamics correlate with allosteric effects on ligand binding without the requirement for a defined spatial pathway. In addition to evolving suitable three-dimensional structures, CRP/FNR family transcription factors have been selected to occupy a dynamic space that fine-tunes biological activity and thus establishes the means to engineer allosteric mechanisms driven by low-frequency dynamics. Allostery is a process by which a molecule binding to one site of a protein alters the activity of the protein at another site. Allostery is typically thought to occur through a change in protein structure, but there is now clear evidence that the dynamic properties of a protein can also regulate allostery without a change in overall conformation. Here we examine two members of a large family of bacterial transcription factors and provide a mechanism to describe the allosteric binding of their activating ligands. We demonstrate, in these systems, that allostery arises as a natural consequence of changes in global low-frequency protein fluctuations on ligand binding. We further demonstrate that the higher dimensional parameter space that describes all potential variant transcription factors can be reduced to a two-dimensional free energy landscape that determines the key molecular parameters that predominantly regulate allostery. We additionally show that the amino acids we determine as contributing sensitively to allosteric control tend to be conserved in diverse bacteria; thus we identify a link between residues that contribute to low-frequency fluctuations and evolutionary selection pressures.
Collapse
Affiliation(s)
- Thomas L. Rodgers
- Biophysical Sciences Institute, Durham University, Durham, United Kingdom
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Philip D. Townsend
- Biophysical Sciences Institute, Durham University, Durham, United Kingdom
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - David Burnell
- Biophysical Sciences Institute, Durham University, Durham, United Kingdom
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Matthew L. Jones
- Department of Physics, Durham University, Durham, United Kingdom
| | - Shane A. Richards
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Tom C. B. McLeish
- Biophysical Sciences Institute, Durham University, Durham, United Kingdom
- Department of Chemistry, Durham University, Durham, United Kingdom
- Department of Physics, Durham University, Durham, United Kingdom
| | - Ehmke Pohl
- Biophysical Sciences Institute, Durham University, Durham, United Kingdom
- Department of Chemistry, Durham University, Durham, United Kingdom
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Mark R. Wilson
- Biophysical Sciences Institute, Durham University, Durham, United Kingdom
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Martin J. Cann
- Biophysical Sciences Institute, Durham University, Durham, United Kingdom
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Abstract
Molecular binding is an interaction between molecules that results in a stable association between those molecules. Cooperative binding occurs if the number of binding sites of a macromolecule that are occupied by a specific type of ligand is a nonlinear function of this ligand's concentration. This can be due, for instance, to an affinity for the ligand that depends on the amount of ligand bound. Cooperativity can be positive (supralinear) or negative (infralinear). Cooperative binding is most often observed in proteins, but nucleic acids can also exhibit cooperative binding, for instance of transcription factors. Cooperative binding has been shown to be the mechanism underlying a large range of biochemical and physiological processes.
Collapse
|