1
|
Bao S, Fan Y, Mei Y, Gao J. Integrating single-cell and bulk expression data to identify and analyze cancer prognosis-related genes. Heliyon 2024; 10:e25640. [PMID: 38379985 PMCID: PMC10877256 DOI: 10.1016/j.heliyon.2024.e25640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Compared with traditional evaluation methods of cancer prognosis based on tissue samples, single-cell sequencing technology can provide information on cell type heterogeneity for predicting biomarkers related to cancer prognosis. Therefore, the bulk and single-cell expression profiles of breast cancer and normal cells were comprehensively analyzed to identify malignant and non-malignant markers and construct a reliable prognosis model. We first screened highly reliable differentially expressed genes from bulk expression profiles of multiple breast cancer tissues and normal tissues, and inferred genes related to cell malignancy from single-cell data. Then we identified eight critical genes related to breast cancer to conduct Cox regression analysis, calculate polygenic risk score (PRS), and verify the predictive ability of PRS in two data groups. The results show that PRS can divide breast cancer patients into high-risk group and low-risk group. PRS is related to the overall survival time and relapse-free interval and is a prognosis factor independent of conventional clinicopathological characteristics. Breast cancer is usually regarded as a cancer with a relatively good prognosis. In order to further explore whether this workflow can be applied to cancer with poor prognosis, we selected lung cancer for a comparative study. The results show that this workflow can also build a reasonable prognosis model for lung cancer. This study provides new insight and practical source code for further research on cancer biomarkers and drug targets. It also provides basis for survival prediction, treatment response prediction, and personalized treatment.
Collapse
Affiliation(s)
- Shengbao Bao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaxin Fan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Mei
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junxiang Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
Malbeteau L, Jacquemetton J, Languilaire C, Corbo L, Le Romancer M, Poulard C. PRMT1, a Key Modulator of Unliganded Progesterone Receptor Signaling in Breast Cancer. Int J Mol Sci 2022; 23:9509. [PMID: 36076907 PMCID: PMC9455263 DOI: 10.3390/ijms23179509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The progesterone receptor (PR) is a key player in major physiological and pathological responses in women, and the signaling pathways triggered following hormone binding have been extensively studied, particularly with respect to breast cancer development and progression. Interestingly, growing evidence suggests a fundamental role for PR on breast cancer cell homeostasis in hormone-depleted conditions, with hormone-free or unliganded PR (uPR) involved in the silencing of relevant genes prior to hormonal stimulation. We herein identify the protein arginine methyltransferase PRMT1 as a novel actor in uPR signaling. In unstimulated T47D breast cancer cells, PRMT1 interacts and functions alongside uPR and its partners to target endogenous progesterone-responsive promoters. PRMT1 helps to finely tune the silencing of responsive genes, likely by promoting a proper BRCA1-mediated degradation and turnover of unliganded PR. As such, PRMT1 emerges as a key transcriptional coregulator of PR for a subset of relevant progestin-dependent genes before hormonal treatment. Since women experience periods of hormonal fluctuation throughout their lifetime, understanding how steroid receptor pathways in breast cancer cells are regulated when hormones decline may help to determine how to override treatment failure to hormonal therapy and improve patient outcome.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université Lyon 1, F-69000, Lyon, France
- Inserm U1052 CNRS UMR 5286, Cancer Research Center of Lyon, Centre Léon Bérard, F-69008 Lyon, France
| | - Julien Jacquemetton
- Université Lyon 1, F-69000, Lyon, France
- Inserm U1052 CNRS UMR 5286, Cancer Research Center of Lyon, Centre Léon Bérard, F-69008 Lyon, France
| | - Cécile Languilaire
- Université Lyon 1, F-69000, Lyon, France
- Inserm U1052 CNRS UMR 5286, Cancer Research Center of Lyon, Centre Léon Bérard, F-69008 Lyon, France
| | - Laura Corbo
- Université Lyon 1, F-69000, Lyon, France
- Inserm U1052 CNRS UMR 5286, Cancer Research Center of Lyon, Centre Léon Bérard, F-69008 Lyon, France
| | - Muriel Le Romancer
- Université Lyon 1, F-69000, Lyon, France
- Inserm U1052 CNRS UMR 5286, Cancer Research Center of Lyon, Centre Léon Bérard, F-69008 Lyon, France
| | - Coralie Poulard
- Université Lyon 1, F-69000, Lyon, France
- Inserm U1052 CNRS UMR 5286, Cancer Research Center of Lyon, Centre Léon Bérard, F-69008 Lyon, France
| |
Collapse
|
3
|
Jensen-Cody CW, Crooke AK, Rotti PG, Ievlev V, Shahin W, Park SY, Lynch TJ, Engelhardt JF. Lef-1 controls cell cycle progression in airway basal cells to regulate proliferation and differentiation. Stem Cells 2021; 39:1221-1235. [PMID: 33932322 PMCID: PMC8785221 DOI: 10.1002/stem.3386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 11/10/2022]
Abstract
The mammalian airways are lined by a continuous epithelial layer that is maintained by diverse populations of resident multipotent stem cells. These stem cells are responsible for replenishing the epithelium both at homeostasis and following injury, making them promising targets for stem cell and genetic-based therapies for a variety of respiratory diseases. However, the mechanisms that regulate when and how these stem cells proliferate, migrate, and differentiate remains incompletely understood. Here, we find that the high mobility group (HMG) domain transcription factor Lef-1 regulates proliferation and differentiation of mouse tracheal basal cells. We demonstrate that conditional deletion of Lef-1 stalls basal cell proliferation at the G1/S transition of the cell cycle, and that Lef-1 knockout cells are unable to maintain luminal tracheal cell types in long-term air-liquid interface culture. RNA sequencing analysis revealed that Lef-1 knockout (Lef-1KO) results in downregulation of key DNA damage response and cell cycle progression genes, including the kinase Chek1. Furthermore, chemical inhibition of Chek1 is sufficient to stall basal cell self-renewal in a similar fashion as Lef-1 deletion. Notably, the cell cycle block imposed by Lef-1KO in vitro is transient and basal cells eventually compensate to proliferate normally in a Chek1-independent manner. Finally, Lef-1KO cells were unable to fully regenerate tracheal epithelium following injury in vivo. These findings reveal that Lef-1 is essential for proper basal cell function. Thus, modulating Lef-1 function in airway basal cells may have applications in regenerative medicine.
Collapse
Affiliation(s)
- Chandler W Jensen-Cody
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Adrianne K Crooke
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Pavana G Rotti
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Vitaly Ievlev
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Weam Shahin
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Soo-Yeun Park
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Thomas J Lynch
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - John F Engelhardt
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Piskór BM, Przylipiak A, Dąbrowska E, Niczyporuk M, Ławicki S. Matrilysins and Stromelysins in Pathogenesis and Diagnostics of Cancers. Cancer Manag Res 2020; 12:10949-10964. [PMID: 33154674 PMCID: PMC7608139 DOI: 10.2147/cmar.s235776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases which are widely studied in terms of their role in the physiological and pathological processes in the organism. In this article, we consider usefulness of matrilysins and stromelysins in pathogenesis and diagnostic of the most common malignancies in the world, e.g., lung, breast, prostate, and colorectal cancers. In all of the mentioned cancers, matrilysins and stromelysins have a pivotal role in their development and also may have diagnostic utility. Influence to the cancerous process is connected with specific dependencies between these enzymes and components of the extracellular matrix (ECM), non-matrix components like cell surface components. All the information provided below allows to take a closer look at matrilysins and stromelysins and their functions in the cancer development.
Collapse
Affiliation(s)
- Barbara Maria Piskór
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Andrzej Przylipiak
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Emilia Dąbrowska
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Marek Niczyporuk
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Ławicki
- Department of Population Medicine and Civilization Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Dong H, Diao H, Zhao Y, Xu H, Pei S, Gao J, Wang J, Hussain T, Zhao D, Zhou X, Lin D. Overexpression of matrix metalloproteinase-9 in breast cancer cell lines remarkably increases the cell malignancy largely via activation of transforming growth factor beta/SMAD signalling. Cell Prolif 2019; 52:e12633. [PMID: 31264317 PMCID: PMC6797518 DOI: 10.1111/cpr.12633] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Matrix metalloproteinase 9 (MMP-9) has been frequently noticed in the breast cancers. In this study, we aim to investigate the associations of MMP-9 with the activation of transforming growth factor beta (TGF-β)/SMAD signalling and the malignancy of breast malignant tumour cells. MATERIALS AND METHODS The distributions of MMP-9 and TGF-β in the tissues of canine breast cancers were screened by immunohistochemical assays. A recombinant plasmid expressing mouse MMP-9 was generated and transiently transfected into three different breast cancer cell lines. Cell Counting Kit-8 and colony formation assay were used to study cell viability. Migration and invasion ability were analysed by wound assay and transwell filters. Western blot and quantitative real-time PCR were used to determine the protein and mRNA expression. RESULT Remarkable strong MMP-9 and TGF-β signals were observed in the malignant tissues of canine breast cancers. In the cultured three cell lines receiving recombinant plasmid expressing mouse MMP-9, the cell malignancy was markedly increased, including the cell colony formation, migration and epithelial-mesenchymal transition. The levels of activated TGF-β, as well as SMAD4, SMAD2/3 and phosphorylation of SMAD2, were increased, reflecting an activation of TGF-β/SMAD signalling. We also demonstrated that the inhibitors specific for MMP-9 and TGF-β sufficiently blocked the overexpressing MMP-9 induced the activation of SMAD signalling and enhancement on invasion in the tested breast cancer cell lines. CONCLUSION Overexpression of MMP-9 increases the malignancy of breast cancer cell lines, largely via activation of the TGF-β/SMAD signalling.
Collapse
Affiliation(s)
- Haodi Dong
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongxiu Diao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ying Zhao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huihao Xu
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shimin Pei
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tariq Hussain
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Wang R, Li J, Yin C, Zhao D, Yin L. Identification of differentially expressed genes and typical fusion genes associated with three subtypes of breast cancer. Breast Cancer 2018; 26:305-316. [PMID: 30446971 DOI: 10.1007/s12282-018-0924-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/15/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND This study aimed to identify the differentially expressed genes (DEGs) and the typical fusion genes in different types of breast cancers using RNA-seq. METHODS GSE52643 was downloaded from Gene Expression Omnibus, which included 1 normal sample (MCF10A) and 7 breast cancer samples (BT-474, BT-20, MCF7, MDA-MB-231, MDA-MB-468, T47D, and ZR-75-1). The transcript abundance and the DEGs screening were performed by Cufflinks. The functional and pathway enrichment was analyzed by Gostats. SnowShoes-FTD was applied to identify the fusion genes. RESULTS We screened 430, 445, 397, 417, 369, 557, and 375 DEGs in BT-474, BT-20, MCF7, DA-MB-231, MDA-MB-468, T47D, and ZR-75-1, respectively, compared with MCF10A. DEGs in each comparison group (such as CD40 and CDH1) were significantly enriched in the functions of cell adhesion and extracellular matrix organization and pathways of CAMs and ECM receptor interaction. UCP2 was a common DEG in the 7 comparison groups. SFRP1 and MMP7 were significantly enriched in wnt/-catenin signaling pathway in MDA-MB-231. FAS was significantly enriched in autoimmune thyroid disease pathway in BT-474. Besides, we screened 96 fusion genes, such as ESR1-C6orf97 in ZR-75-1, COBRA1-C9orf167 in BT-20, and VAPB-IKZF3 and ACACA-STAC2 in BT-474. CONCLUSIONS The DEGs such as SFRP1, MMP7, CDH1, FAS, and UCP2 might be the potential biomarkers in breast cancer. Furthermore, some pivotal fusion genes like ESR1-C6orf97 with COBRA1-C9orf167 and VAPB-IKZF3 with ACACA-STAC2 were found in Luminal A and Luminal B breast cancer, respectively.
Collapse
Affiliation(s)
- Rong Wang
- National Research Institute for Health and Family Planning, Beijing, 100081, China
| | - Jinbin Li
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China
| | - Chunyu Yin
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China
| | - Di Zhao
- Dermatological of Department, The 309 Hospital of Chinese PLA, Beijing, 100091, China
| | - Ling Yin
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
7
|
Yuan J, Xiao C, Lu H, Yu H, Hong H, Guo C, Wu Z. Effects of various treatment approaches for treatment efficacy for late stage breast cancer and expression level of TIMP-1 and MMP-9. Cancer Biomark 2018; 23:1-7. [PMID: 30010105 DOI: 10.3233/cbm-170901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jianfen Yuan
- Department of Clinical Laboratory, Nantong Traditional Chinese Medicine Hospital, Nantong 226001, Jiangsu, China
| | - Chunhong Xiao
- Department of Clinical Laboratory, Nantong Tumor Hospital, Nantong 226361, Jiangsu, China
| | - Huijun Lu
- Department of Clinical Laboratory, Nantong Traditional Chinese Medicine Hospital, Nantong 226001, Jiangsu, China
| | - Haizhong Yu
- Department of Clinical Laboratory, Nantong Traditional Chinese Medicine Hospital, Nantong 226001, Jiangsu, China
| | - Hong Hong
- Department of Clinical Laboratory, Nantong Traditional Chinese Medicine Hospital, Nantong 226001, Jiangsu, China
| | - Chunyan Guo
- Department of Clinical Laboratory, Nantong Traditional Chinese Medicine Hospital, Nantong 226001, Jiangsu, China
| | - Zhimei Wu
- Department of Clinical Laboratory, Nantong Traditional Chinese Medicine Hospital, Nantong 226001, Jiangsu, China
| |
Collapse
|
8
|
Improvement Activity of 1-Deoxynojirimycin in the Growth of Dairy Goat Primary Mammary Epithelial Cell through Upregulating LEF-1 Expression. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7809512. [PMID: 29670907 PMCID: PMC5836298 DOI: 10.1155/2018/7809512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/29/2017] [Accepted: 01/23/2018] [Indexed: 11/18/2022]
Abstract
LEF-1/wnt10b is one of the most important signaling pathways regulating mammary gland growth and development and is also a potential target for molecular breeding. In this work, 1-deoxynojirimycin (DNJ), a natural alkaloid extracted from plant mulberry or microorganism, was found to have a positive activity in primary breast epithelial cell growth of dairy goats. The findings showed that, compared to the control, 6 μM DNJ in the DMEM/F12 medium in vitro greatly improved the density of dairy goat breast epithelial cell and significantly increased the LEF-1 mRNA level (P < 0.01) and thus enhanced cell growth. In addition, DNJ displayed a similar function in alleviating the growth suppression of epithelial cell and the decrease of LEF-1 mRNA level resulting from lentiviral-mediated LEF-1 knockdown. Simultaneously, no significant change of the mRNA levels of IGF-1 and Fgf10, the other two key regulators in mammary gland growth and development, could be detected. Furthermore, the mammary duct of DNJ-fed mouse illustrated a better development accompanied with a higher LET-1 mRNA level than that of the control. In conclusion, DNJ could improve breast epithelial cell growth through upregulating LEF-1 expression, which supplied a new means in studying mammary gland growth and development.
Collapse
|
9
|
Rai-Bhogal R, Wong C, Kissoondoyal A, Davidson J, Li H, Crawford DA. Maternal exposure to prostaglandin E 2 modifies expression of Wnt genes in mouse brain - An autism connection. Biochem Biophys Rep 2018; 14:43-53. [PMID: 29872733 PMCID: PMC5986660 DOI: 10.1016/j.bbrep.2018.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 11/03/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a lipid signaling molecule important for brain development and function. Various genetic and environmental factors can influence the level of PGE2 and increase the risk of developing Autism Spectrum Disorder (ASD). We have previously shown that in neuronal cell lines and mouse brain, PGE2 can interfere with the Wnt canonical pathway, which is essential during early brain development. Higher levels of PGE2 increased Wnt-dependent motility and proliferation of neuroectodermal stem cells, and modified the expression of Wnt genes previously linked to autism disorders. We also recently established a cross-talk between these two pathways in the prenatal mouse brain lacking PGE2 producing enzyme (COX-/-). The current study complements the published data and reveals that PGE2 signaling also converges with the Wnt canonical pathway in the developing mouse brain after maternal exposure to PGE2 at the onset of neurogenesis. We found significant changes in the expression level of Wnt-target genes, Mmp7, Wnt2, and Wnt3a, during prenatal and early postnatal stages. Interestingly, we observed variability in the expression level of these genes between genetically-identical pups within the same pregnancy. Furthermore, we found that all the affected genes have been previously associated with disorders of the central nervous system, including autism. We determined that prenatal exposure to PGE2 affects the Wnt pathway at the level of β-catenin, the major downstream regulator of Wnt-dependent gene transcription. We discuss how these results add new knowledge into the molecular mechanisms by which PGE2 may interfere with neuronal development during critical periods.
Collapse
Affiliation(s)
- Ravneet Rai-Bhogal
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada M3J 1P3.,Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Christine Wong
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada M3J 1P3.,School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, Canada M3J 1P3
| | - Ashby Kissoondoyal
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada M3J 1P3.,School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, Canada M3J 1P3
| | - Jennilee Davidson
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada M3J 1P3.,Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Hongyan Li
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, Canada M3J 1P3
| | - Dorota A Crawford
- Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada M3J 1P3.,Department of Biology, York University, Toronto, ON, Canada M3J 1P3.,School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, Canada M3J 1P3
| |
Collapse
|
10
|
Li H, Qiu Z, Li F, Wang C. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett 2017; 14:5865-5870. [PMID: 29113219 PMCID: PMC5661385 DOI: 10.3892/ol.2017.6924] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022] Open
Abstract
The relationship between the expression levels of matrix metalloproteinase-2 (MMP-2) and MMP-9 and breast cancer prognosis was studied. Two breast cancer cell lines (MDA-MB-231 and MCF-7) and one human normal breast cell line (HS578Bst) were investigated. Fluorescence real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blotting were used to detect cellular mRNA and protein MMP-2 and MMP-9 expression levels. Breast cancer tissue samples from 80 patients and tumor-adjacent normal tissue samples from 40 patients were collected, and MMP-2 and MMP-9 expression in these samples were examined using immunohistochemistry (IHC). The relationship of MMP-2 and MMP-9 expression levels with breast cancer patient clinicopathological parameters and prognosis was analyzed. RT-PCR and western blot results showed that MMP-2 and MMP-9 mRNA and protein expression levels were significantly higher in MDA-MB-231 and MCF-7 cells than in HS578Bst cells. A high expression of MMP-2 and MMP-9 was found in 83.75% (67/80) and 78.75% (63/80) of breast cancer tissue samples, respectively. MMP-2 and MMP-9 expression in breast cancer tissues were significantly different from that in tumor-adjacent normal tissues (p<0.01). MMP-2 and MMP-9 expression levels in breast cancer tissues were correlated with lymph node metastasis and tumor staging. Single factor survival analysis showed that MMP-2 and MMP-9 were factors influencing breast cancer prognosis. MMP-2 and MMP-9 are highly expressed in breast cancer tissues and are closely related to lymph node metastasis and tumor staging. MMP-2 and MMP-9 can be used as reference indices for guiding breast cancer prognosis and treatment.
Collapse
Affiliation(s)
- Hai Li
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Zhenwei Qiu
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Feng Li
- Department of General Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Chunlei Wang
- Department of General Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
11
|
Zheng T, Wang A, Hu D, Wang Y. Molecular mechanisms of breast cancer metastasis by gene expression profile analysis. Mol Med Rep 2017; 16:4671-4677. [PMID: 28791367 PMCID: PMC5647040 DOI: 10.3892/mmr.2017.7157] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 05/18/2017] [Indexed: 01/08/2023] Open
Abstract
Metastasis is the main cause of breast cancer‑related mortalities. The present study aimed to uncover the relevant molecular mechanisms of breast cancer metastasis and to explore potential biomarkers that may be used for prognosis. Expression profile microarray data GSE8977, which contained 22 stroma samples (15 were from normal breast and 7 were from invasive ductal carcinoma tumor samples), were obtained from the Gene Expression Omnibus database. Following data preprocessing, differentially expressed genes (DEGs) were selected based on analyses conducted using the linear models for microarray analysis package from R and Bioconductor software. The resulting data were used in subsequent function and pathway enrichment analyses, as well as protein‑protein interaction (PPI) network and subnetwork analyses. Transcription factors (TFs) and tumor‑associated genes were also identified among the DEGs. A total of 234 DEGs were identified, which were enriched in immune response, cell differentiation and cell adhesion‑related functions and pathways. Downregulated DEGs included TFs, such as the proto‑oncogene SPI1, pre‑B‑cell leukemia homeobox 3 (PBX3) and lymphoid enhancer‑binding factor 1 (LEF1), as well as tumor suppressors (TSs), such as capping actin protein, gelsolin like (CAPG) and tumor protein p53‑inducible nuclear protein 1 (TP53INP1). Upregulated DEGs also included TFs and tumor suppressors, consisting of transcription factor 7‑like 2 (TCF7L2) and pleiomorphic adenoma gene‑like 1 (PLAGL1). DEGs that were identified at the hub nodes in the PPI network and the subnetwork were epidermal growth factor receptor (EGFR) and spleen‑associated tyrosine kinase (SYK), respectively. Several genes crucial in the metastasis of breast cancer were identified, which may serve as potential biomarkers, many of which were associated with cell adhesion, proliferation or immune response, and may influence breast cancer metastasis by regulating these function or pathways.
Collapse
Affiliation(s)
- Tianying Zheng
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Aijun Wang
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dongyan Hu
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yonggang Wang
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
12
|
Maurer V, Reimers K, Lück HJ, Vogt PM, Bucan V. Anti-apoptotic protein Lifeguard does not act as a tumor marker in breast cancer. Oncol Lett 2017; 13:1518-1524. [PMID: 28454284 PMCID: PMC5403417 DOI: 10.3892/ol.2017.5658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/02/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to use an enzyme-linked immunosorbent assay (ELISA) to determine the concentrations of Lifeguard (LFG) protein in the serum of 36 patients diagnosed with breast cancer and to compare these values with the concentrations of LFG protein in the serum of 7 healthy volunteers in order to detect a possible association between the expression of LFG in the serum and the degree of malignancy of the disease. Although there is no direct association between the LFG protein concentration in the serum and the degree of malignancy of breast cancer, a statistically significant distribution of the concentration in all investigated samples was observed. This indicated an association between the LFG protein concentration in human serum with a currently unknown factor.
Collapse
Affiliation(s)
- Viktor Maurer
- Department of Plastic, Hand and Reconstructive Surgery, Hanover Medical School, D-30652 Hanover, Germany
| | - Kerstin Reimers
- Department of Plastic, Hand and Reconstructive Surgery, Hanover Medical School, D-30652 Hanover, Germany
| | - Hans J Lück
- Gynecologic Oncology Practice, D-30177 Hanover, Germany
| | - Peter M Vogt
- Department of Plastic, Hand and Reconstructive Surgery, Hanover Medical School, D-30652 Hanover, Germany
| | - Vesna Bucan
- Department of Plastic, Hand and Reconstructive Surgery, Hanover Medical School, D-30652 Hanover, Germany
| |
Collapse
|
13
|
Yang Y, Otte A, Hass R. Human mesenchymal stroma/stem cells exchange membrane proteins and alter functionality during interaction with different tumor cell lines. Stem Cells Dev 2015; 24:1205-22. [PMID: 25525832 DOI: 10.1089/scd.2014.0413] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To analyze effects of cellular interaction between human mesenchymal stroma/stem cells (MSC) and different cancer cells, direct co-cultures were performed and revealed significant growth stimulation of the tumor populations and a variety of protein exchanges. More than 90% of MCF-7 and primary human HBCEC699 breast cancer cells as well as NIH:OVCAR-3 ovarian adenocarcinoma cells acquired CD90 proteins during MSC co-culture, respectively. Furthermore, SK-OV-3 ovarian cancer cells progressively elevated CD105 and CD90 proteins in co-culture with MSC. Primary small cell hypercalcemic ovarian carcinoma cells (SCCOHT-1) demonstrated undetectable levels of CD73 and CD105; however, both proteins were significantly increased in the presence of MSC. This co-culture-mediated protein induction was also observed at transcriptional levels and changed functionality of SCCOHT-1 cells by an acquired capability to metabolize 5'cAMP. Moreover, exchange between tumor cells and MSC worked bidirectional, as undetectable expression of epithelial cell adhesion molecule (EpCAM) in MSC significantly increased after co-culture with SK-OV-3 or NIH:OVCAR-3 cells. In addition, a small population of chimeric/hybrid cells appeared in each MSC/tumor cell co-culture by spontaneous cell fusion. Immune fluorescence demonstrated nanotube structures and exosomes between MSC and tumor cells, whereas cytochalasin-D partially abolished the intercellular protein transfer. More detailed functional analysis of FACS-separated MSC and NIH:OVCAR-3 cells after co-culture revealed the acquisition of epithelial cell-specific properties by MSC, including increased gene expression for cytokeratins and epithelial-like differentiation factors. Vice versa, a variety of transcriptional regulatory genes were down-modulated in NIH:OVCAR-3 cells after co-culture with MSC. Together, these mutual cellular interactions contributed to functional alterations in MSC and tumor cells.
Collapse
Affiliation(s)
- Yuanyuan Yang
- 1 Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School , Hannover, Germany
| | | | | |
Collapse
|
14
|
Liu YY, Ayers S, Milanesi A, Teng X, Rabi S, Akiba Y, Brent GA. Thyroid hormone receptor sumoylation is required for preadipocyte differentiation and proliferation. J Biol Chem 2015; 290:7402-15. [PMID: 25572392 DOI: 10.1074/jbc.m114.600312] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Thyroid hormone and thyroid hormone receptor (TR) play an essential role in metabolic regulation. However, the role of TR in adipogenesis has not been established. We reported previously that TR sumoylation is essential for TR-mediated gene regulation and that mutation of either of the two sites in TRα or any of the three sites in TRβ reduces TR sumoylation. Here, we transfected TR sumoylation site mutants into human primary preadiocytes and the mouse 3T3L1 preadipocyte cell line to determine the role of TR sumoylation in adipogenesis. Reduced sumoylation of TRα or TRβ resulted in fewer and smaller lipid droplets and reduced proliferation of preadipocytes. TR sumoylation mutations, compared with wild-type TR, results in reduced C/EBP expression and reduced PPARγ2 mRNA and protein levels. TR sumoylation mutants recruited NCoR and disrupted PPARγ-mediated perilipin1 (Plin1) gene expression, associated with impaired lipid droplet formation. Expression of NCoRΔID, a mutant NCoR lacking the TR interaction domain, partially "rescued" the delayed adipogenesis and restored Plin1 gene expression and adipogenesis. TR sumoylation site mutants impaired Wnt/β-catenin signaling pathways and the proliferation of primary human preadipocytes. Expression of the TRβ K146Q sumoylation site mutant down-regulated the essential genes required for canonical Wnt signal-mediated proliferation, including Wnt ligands, Fzds, β-catenin, LEF1, and CCND1. Additionally, the TRβ K146Q mutant enhanced the canonical Wnt signaling inhibitor Dickkopf-related protein 1 (DKK1). Our data demonstrate that TR sumoylation is required for activation of the Wnt canonical signaling pathway during preadipocyte proliferation and enhances the PPARγ signaling that promotes differentiation.
Collapse
Affiliation(s)
- Yan-Yun Liu
- From the Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System and Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073,
| | - Stephen Ayers
- the Genomic Medicine Program, Methodist Hospital Research Institute, Houston, Texas 77030, and
| | - Anna Milanesi
- From the Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System and Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073
| | - Xiaochun Teng
- the Institute of Endocrinology, China Medical University, Shenyang 110001, China
| | - Sina Rabi
- From the Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System and Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073
| | - Ysutada Akiba
- From the Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System and Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073
| | - Gregory A Brent
- From the Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System and Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073,
| |
Collapse
|
15
|
Xu RX, Wei N, Wang Y, Wang GQ, Yang GS, Pang WJ. Association of Novel Polymorphisms in Lymphoid Enhancer Binding Factor 1 (LEF-1) Gene with Number of Teats in Different Breeds of Pig. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1254-62. [PMID: 25178368 PMCID: PMC4150191 DOI: 10.5713/ajas.2013.13772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/14/2014] [Accepted: 04/14/2014] [Indexed: 11/27/2022]
Abstract
Lymphoid enhancer binding factor 1 (LEF-1) is a member of the T-cell specific factor (TCF) family, which plays a key role in the development of breast endothelial cells. Moreover, LEF-1 gene has been identified as a candidate gene for teat number trait. In the present study, we detected two novel mutations (NC_010450.3:g. 99514A>G, 119846C>T) by DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism in exon 4 and intron 9 of LEF-1 in Guanzhong Black, Hanjiang Black, Bamei and Large White pigs. Furthermore, we analyzed the association between the genetic variations with teat number trait in these breeds. The 99514A>G mutation showed an extremely significant statistical relevance between different genotypes and teat number trait in Guanzhong (p<0.001) and Large White (p = 0.002), and significant relevance in Hanjiang (p = 0.017); the 119846C>T mutation suggested significant association in Guanzhong Black pigs (p = 0.042) and Large White pigs (p = 0.003). The individuals with “AG” or “GG” genotype displayed more teat numbers than those with “AA”; the individuals with “TC” or “CC” genotype showed more teat numbers than those with “TT”. Our findings suggested that the 99514A>G and 119846C>T mutations of LEF-1 affected porcine teat number trait and could be used in breeding strategies to accelerate porcine teat number trait improvement of indigenous pigs breeds through molecular marker assisted selection.
Collapse
|
16
|
Wang WJ, Yao Y, Jiang LL, Hu TH, Ma JQ, Liao ZJ, Yao JT, Li DF, Wang SH, Nan KJ. Knockdown of lymphoid enhancer factor 1 inhibits colon cancer progression in vitro and in vivo. PLoS One 2013; 8:e76596. [PMID: 24098538 PMCID: PMC3788715 DOI: 10.1371/journal.pone.0076596] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/03/2013] [Indexed: 01/24/2023] Open
Abstract
Expression of lymphoid enhancer factor 1 (LEF1) is frequently altered in different human cancers. This study aimed to assess LEF1 expression in colon cancer tissues and to explore changed phenotypes, gene expressions, and the possible mechanism after knocked down LEF1 expression in colon cancer cell lines. A total of 106 colon cancer and matched paratumorous normal tissues were used to assess LEF1 expression using immunohistochemistry and qRT-PCR. LEF1 lentivirus was used to knockdown LEF1 expression for the assessment of cell viability, cell cycle distribution, apoptosis, and gene expressions. The nude mouse xenograft assay was performed to detect the effects of LEF1 knockdown in vivo. The data showed that the levels of LEF1 mRNA and protein were significantly increased in human colon cancer tissues compared to the matched paratumorous normal tissues and were associated with infiltration depth, lymph node and distant metastases, advanced TNM (tumor-node-metastasis) stages, and shorter overall survival. Furthermore, LEF1 knockdown reduced tumor cell viability, invasion capacity, MMP2 and MMP-9 expression, but induced apoptosis. Nude mouse xenograft assay showed that LEF1 knockdown suppressed tumor formation and growth in vivo. In addition, the expression of Notch pathway-related proteins RBP-jκ and Hes1 was reduced in LEF1 knockdown cells. Taken together, LEF1 protein was overexpressed in colon cancer tissues and knockdown of LEF1 expression inhibited colon cancer growth in vitro and in vivo. These data suggest that targeting of LEF1 expression should be further evaluated for colon cancer prevention and therapy.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Yu Yao
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Li-Li Jiang
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Ting-Hua Hu
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Jie-Qun Ma
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Zi-Jun Liao
- Affiliated Shaanxi Provincial Cancer Hospital, College of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Jun-Tao Yao
- Affiliated Shaanxi Provincial Cancer Hospital, College of Medicine, Xi’an Jiaotong University, Xi’an, China
| | | | - Shu-Hong Wang
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
- * E-mail: (K-JN); (S-HW)
| | - Ke-Jun Nan
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
- * E-mail: (K-JN); (S-HW)
| |
Collapse
|
17
|
Hass R, Otte A. Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell Commun Signal 2012; 10:26. [PMID: 22943670 PMCID: PMC3444900 DOI: 10.1186/1478-811x-10-26] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/28/2012] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSC) represent a heterogeneous population exhibiting stem cell-like properties which are distributed almost ubiquitously among perivascular niches of various human tissues and organs. Organismal requirements such as tissue damage determine interdisciplinary functions of resident MSC including self-renewal, migration and differentiation, whereby MSC support local tissue repair, angiogenesis and concomitant immunomodulation. However, growth of tumor cells and invasion also causes local tissue damage and injury which subsequently activates repair mechanisms and consequently, attracts MSC. Thereby, MSC exhibit a tissue-specific functional biodiversity which is mediated by direct cell-to-cell communication via adhesion molecule signaling and by a tightly regulated exchange of a multifactorial panel of cytokines, exosomes, and micro RNAs. Such interactions determine either tumor-promoting or tumor-inhibitory support by MSC. Moreover, fusion with necrotic/apoptotic tumor cell bodies contributes to re-program MSC into an aberrant phenotype also suggesting that tumor tissue in general represents different types of neoplastic cell populations including tumor-associated stem cell-like cells. The present work summarizes some functional characteristics and biodiversity of MSC and highlights certain controversial interactions with normal and tumorigenic cell populations, including associated modulations within the MSC microenvironment.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Gynecology Research Unit, Department of Obstetrics and Gynecology (OE 6410), Medical University Hannover, Carl-Neuberg-Str, 1, 30625 Hannover, Germany.
| | | |
Collapse
|