1
|
Khonrak T, Watcharadetwittaya S, Chamgramol Y, Intarawichian P, Deenonpoe R. RET rearrangements are relevant to histopathologic subtypes and clinicopathological features in Thai papillary thyroid carcinoma patients. Pathol Oncol Res 2023; 29:1611138. [PMID: 37188126 PMCID: PMC10175595 DOI: 10.3389/pore.2023.1611138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Background: Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. The RET gene rearrangements CCDC6::RET and NCOA4::RET are the most common RET gene rearrangements in PTC patients. Different RET::PTC rearrangements are associated with different PTC phenotypes. Methods: Eighty-three formalin-fixed paraffin-embedded (FFPE) PTC samples were examined. The prevalence and expression levels of CCDC6::RET and NCOA4::RET were determined using semi-quantitative polymerase chain reaction (qRT-PCR). The association of these rearrangements with clinicopathological data was investigated. Results: The presence of CCDC6::RET rearrangement was significantly associated with the classic subtype and absence of angio/lymphatic invasion (p < 0.05). While NCOA4::RET was associated with the tall-cell subtype, and presence of angio/lymphatic invasion and lymph node metastasis (p < 0.05). Multivariate analysis demonstrated that an absence of extrathyroidal extension and extranodal extension were independent predictive factors for CCDC6::RET, whereas the tall-cell subtype, large tumor size, angioinvasion, lymphatic invasion and perineural invasion were independent predictive factors for NCOA4::RET (p < 0.05). However, the mRNA expression level of CCDC6::RET and of NCOA4::RET were not significantly associated with clinicopathological data. Conclusion: CCDC6::RET was correlated with an innocent PTC subtype and characteristics, but NCOA4::RET correlated with an aggressive phenotype of PTC. Therefore, these RET rearrangements strongly associated with clinicopathological phenotypes and can be used as predictive markers in PTC patients.
Collapse
Affiliation(s)
- Thitima Khonrak
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sasithorn Watcharadetwittaya
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand
| | - Yaovalux Chamgramol
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Piyapharom Intarawichian
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand
| | - Raksawan Deenonpoe
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Raksawan Deenonpoe,
| |
Collapse
|
2
|
Zhang Y, Chan S, He R, Liu Y, Song X, Tu ZC, Ren X, Zhou Y, Zhang Z, Wang Z, Zhou F, Ding K. 1-Methyl-3-((4-(quinolin-4-yloxy)phenyl)amino)-1H-pyrazole-4-carboxamide derivatives as new rearranged during Transfection (RET) kinase inhibitors capable of suppressing resistant mutants in solvent-front regions. Eur J Med Chem 2022; 244:114862. [DOI: 10.1016/j.ejmech.2022.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022]
|
3
|
The Utility of Galectin-3 and HBME-1 Immunohistochemical Expression in Thyroid Cancer in the Maltese Population. ENDOCRINES 2022. [DOI: 10.3390/endocrines3020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diagnosing thyroid carcinoma is not always easy on basic haemtoxylin and eosin staining since nuclear features are inconsistent and controversial. In view of this, studies on the role of immunohistochemical markers in the diagnosis of malignant thyroid carcinoma are necessary. Proposed immunohistochemical markers for papillary thyroid cancer include Hector Battifora mesothelial-1 (HBME-1), and Galectin-3 (Gal-3) which have been studied in this project. Immunohistochemical staining of fifty-eight formalin-fixed paraffin embedded surgically removed thyroid tissue from the years 2008 and 2013 was undertaken to determine the diagnostic accuracy of these two markers. We have concluded that both Gal-3 and HBME-1 are useful markers to aid in the diagnosis of papillary thyroid carcinoma and also in distinguishing between benign and malignant thyroid lesions. The sensitivity and specificity of Gal-3 over the 2years studied was found to be 96.2% and 92.6%, respectively, whilst HBME-1 was found to have sensitivity of 93.6% and specificity of 69.02%.
Collapse
|
4
|
Nacchio M, Pisapia P, Pepe F, Russo G, Vigliar E, Porcelli T, Luongo C, Iaccarino A, Pagni F, Salvatore D, Troncone G, Malapelle U, Bellevicine C. Predictive molecular pathology in metastatic thyroid cancer: the role of RET fusions. Expert Rev Endocrinol Metab 2022; 17:167-178. [PMID: 35404189 DOI: 10.1080/17446651.2022.2060819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rearranged during transfection (RET) gene fusions are detected in 10-20% of thyroid cancer patients. Recently, RET fusion-positive metastatic thyroid cancers have attracted much attention owing to the FDA approval of two highly selective anti-RET tyrosine kinase inhibitors, namely, selpercatinib, and pralsetinib. AREAS COVERED This review summarizes the available evidence on the biological and predictive role of RET gene fusions in thyroid carcinoma patients and the latest screening assays currently used to detect these genomic alterations in histological and cytological specimens. EXPERT OPINION Management of advanced thyroid carcinoma has significantly evolved over the last decade thanks to the approval of three multikinase inhibitors, i.e. sorafenib, lenvatinib, cabozantinib, and of two selective RET-tyrosine inhibitors, i.e. selpercatinib and pralsetinib. In this setting, the detection of RET-fusions in advanced thyroid cancer specimens through the use of next-generation sequencing has become a commonly used strategy in clinical practice to select the best treatment options.
Collapse
Affiliation(s)
- Mariantonia Nacchio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Tommaso Porcelli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Ngo TNM, Le TTB, Le T, Bychkov A, Oishi N, Jung CK, Hassell L, Kakudo K, Vuong HG. Primary Versus Secondary Anaplastic Thyroid Carcinoma: Perspectives from Multi-institutional and Population-Level Data. Endocr Pathol 2021; 32:489-500. [PMID: 34559383 DOI: 10.1007/s12022-021-09692-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 12/23/2022]
Abstract
Primary (or de novo) anaplastic thyroid carcinoma (ATC) is ATC without pre-existing history of differentiated thyroid carcinoma (DTC) and no co-existing DTC foci at the time of diagnosis. Secondary ATC is diagnosed if the patient had a history of DTC or co-existing DTC components at time of diagnosis. This study aimed to investigate the incidence, clinical presentations, outcomes, and genetic backgrounds of primary versus secondary ATCs. We searched for ATCs in our institutional databases and the Surveillance, Epidemiology, and End Result (SEER) database. We also performed a systematic review and meta-analysis to analyze the genetic alterations of primary and secondary ATCs. From our multi-institutional database, 22 primary and 23 secondary ATCs were retrieved. We also identified 620 and 24 primary and secondary ATCs in the SEER database, respectively. Compared to primary ATCs, secondary ATCs were not statistically different in terms of demographic, clinical manifestations, and patient survival. The only clinical discrepancy between the two groups was a significantly larger tumor diameter of the primary ATCs. The prevalence of TERT promoter, PIK3CA, and TP53 mutations was comparable between the two subtypes. In comparison to primary ATCs, however, BRAF mutations were more prevalent (OR = 4.70; 95% CI = 2.84-7.78) whereas RAS mutations were less frequent (OR = 0.43; 95% CI = 0.21-0.85) in secondary tumors. In summary, our results indicated that de novo and secondary ATCs might share many potential developmental steps, but there are other factors that suggest distinct developmental pathways.
Collapse
Affiliation(s)
- Tam N M Ngo
- Faculty of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 700-000, Vietnam
| | - Trang T B Le
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700-000, Vietnam
| | - Thoa Le
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700-000, Vietnam
| | - Andrey Bychkov
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pathology, Kameda Medical Center, Kamogawa, Chiba, 296-8602, Japan
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8523, Japan
| | - Naoki Oishi
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Lewis Hassell
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Kennichi Kakudo
- Department of Pathology and Thyroid Disease Center, Izumi City General Hospital, Wake-cho 4-5-1, Izumi-city, 594-0073, Japan
| | - Huy Gia Vuong
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Neurosurgery, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
6
|
Saha D, Ryan KR, Lakkaniga NR, Acharya B, Garcia NG, Smith EL, Frett B. Targeting Rearranged during Transfection in Cancer: A Perspective on Small-Molecule Inhibitors and Their Clinical Development. J Med Chem 2021; 64:11747-11773. [PMID: 34402300 DOI: 10.1021/acs.jmedchem.0c02167] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rearranged during transfection (RET) is a receptor tyrosine kinase essential for the normal development and maturation of a diverse range of tissues. Aberrant RET signaling in cancers, due to RET mutations, gene fusions, and overexpression, results in the activation of downstream pathways promoting survival, growth, and metastasis. Pharmacological manipulation of RET is effective in treating RET-driven cancers, and efforts toward developing RET-specific therapies have increased over the last 5 years. In 2020, RET-selective inhibitors pralsetinib and selpercatinib achieved clinical approval, which marked the first approvals for kinase inhibitors specifically developed to target the RET oncoprotein. This Perspective discusses current development and clinical applications for RET precision medicine by providing an overview of the incremental improvement of kinase inhibitors for use in RET-driven malignancies.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Katie Rose Ryan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Baku Acharya
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Noemi Garcia Garcia
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Erica Lane Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| |
Collapse
|
7
|
Romei C, Elisei R. A Narrative Review of Genetic Alterations in Primary Thyroid Epithelial Cancer. Int J Mol Sci 2021; 22:1726. [PMID: 33572167 PMCID: PMC7915177 DOI: 10.3390/ijms22041726] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/22/2022] Open
Abstract
Thyroid carcinoma is the most frequent endocrine neoplasia. Different types of thyroid carcinoma are described: well-differentiated papillary thyroid carcinoma (PTC), poorly differentiated thyroid carcinoma (PDTC), follicular thyroid carcinoma (FTC), anaplastic thyroid carcinoma (ATC), and medullary thyroid carcinoma (MTC). MTC is inherited as an autosomal dominant trait in 25% of cases. The genetic landscape of thyroid carcinoma has been largely deciphered. In PTC, genetic alterations have been found in about 95% of tumors: BRAF mutations and RET rearrangements are the main genetic alterations. BRAF and RAS mutations have been confirmed to play an important role also in PDTC and ATC, together with TP53 mutations that are fundamental in tumor progression. It has also been clearly demonstrated that telomerase reverse transcriptase (TERT) promoter mutations and TP53 mutations are present with a high-frequency in more advanced tumors, frequently associated with other mutations, and their presence, especially if simultaneous, is a signature of aggressiveness. In MTC, next-generation sequencing confirmed that mutations in the RET gene are the most common molecular events followed by H-RAS and K-RAS mutations. The comprehensive knowledge of the genetic events responsible for thyroid tumorigenesis is important to better predict the biological behavior and better plan the therapeutic strategy for specific treatment of the malignancy based on its molecular profile.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/genetics
- Adenocarcinoma, Follicular/pathology
- Biomarkers, Tumor/genetics
- Carcinogenesis/genetics
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/pathology
- DNA Mutational Analysis
- Gene Rearrangement
- Humans
- Mutation
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins B-raf/genetics
- Proto-Oncogene Proteins c-ret/genetics
- Proto-Oncogene Proteins p21(ras)/genetics
- Telomerase/genetics
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/pathology
- Thyroid Carcinoma, Anaplastic/genetics
- Thyroid Carcinoma, Anaplastic/pathology
- Thyroid Gland/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
| | - Rossella Elisei
- Department of Clinical and Experimental Medicine, Section of Endocrinology, University of Pisa, 56124 Pisa, Italy;
| |
Collapse
|
8
|
Ragazzi M, Torricelli F, Donati B, Ciarrocchi A, de Biase D, Tallini G, Zanetti E, Bisagni A, Kuhn E, Giordano D, Frasoldati A, Piana S. Coexisting well-differentiated and anaplastic thyroid carcinoma in the same primary resection specimen: immunophenotypic and genetic comparison of the two components in a consecutive series of 13 cases and a review of the literature. Virchows Arch 2021; 478:265-281. [PMID: 32683537 DOI: 10.1007/s00428-020-02891-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
Anaplastic carcinoma (AC) is a rare but highly aggressive form of thyroid cancer. It mostly arises on a background of pre-existing well-differentiated cancer (WDC); however, whether it evolves directly from a WDC or originates as a second independent neoplasm is still to be defined. To obtain further insights into these mechanisms, we performed morphological, immunohistochemical, and next-generation sequencing analyses to compare AC and its associated WDC in a subset of 13 surgically resected specimens. Histologically, most WDC were of aggressive subtypes. Papillary carcinomas (8 cases; 62%) were tall cell (4/8), columnar (1/8), classic with hobnail features (1/8), classic and follicular variant in the remaining 2 cases; Hürthle cell and follicular carcinomas were present in 5 (38%) and in 1 (8%) patient, respectively. One patient harbored both a PTC, follicular variant, and a Hürthle cell carcinoma. We did not find any correlation between a histotype of WDC and a specific anaplastic growth pattern. Immunohistochemically, ACs retained pankeratin/PAX8 expression but with significantly lower levels than WDCs, and they tended to lose TTF1 expression, as can be expected within a dedifferentiation process. In addition, AC showed a more frequent expression of p63 and/or SMA, a mutated pattern of p53, and an abnormal expression of p16. Genetic analysis showed that the number of mutations was higher in AC than in the associated WDC, confirming a role of the progressive accumulation of genetic damage in this transition. We observed that mutations found in the WDCs were consistently identified in the anaplastic counterparts, further supporting the hypothesis of a developmental link.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Cell Differentiation
- Female
- Genetic Predisposition to Disease
- High-Throughput Nucleotide Sequencing
- Humans
- Immunohistochemistry
- Immunophenotyping
- Male
- Middle Aged
- Molecular Diagnostic Techniques
- Mutation
- Neoplasms, Complex and Mixed/chemistry
- Neoplasms, Complex and Mixed/genetics
- Neoplasms, Complex and Mixed/pathology
- Phenotype
- Predictive Value of Tests
- Thyroid Carcinoma, Anaplastic/chemistry
- Thyroid Carcinoma, Anaplastic/genetics
- Thyroid Carcinoma, Anaplastic/pathology
- Thyroid Carcinoma, Anaplastic/surgery
- Thyroid Neoplasms/chemistry
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/surgery
Collapse
Affiliation(s)
- Moira Ragazzi
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giovanni Tallini
- Molecular Diagnostic Unit, Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Azienda USL di Bologna, University of Bologna, Bologna, Italy
| | - Eleonora Zanetti
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Alessandra Bisagni
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Elisabetta Kuhn
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Davide Giordano
- Otolaryngology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Andrea Frasoldati
- Endocrinology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Simonetta Piana
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| |
Collapse
|
9
|
Subbiah V, Yang D, Velcheti V, Drilon A, Meric-Bernstam F. State-of-the-Art Strategies for Targeting RET-Dependent Cancers. J Clin Oncol 2020; 38:1209-1221. [PMID: 32083997 DOI: 10.1200/jco.19.02551] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activating receptor tyrosine kinase RET (rarranged during transfection) gene alterations have been identified as oncogenic in multiple malignancies. RET gene rearrangements retaining the kinase domain are oncogenic drivers in papillary thyroid cancer, non-small-cell lung cancer, and multiple other cancers. Activating RET mutations are associated with different phenotypes of multiple endocrine neoplasia type 2 as well as sporadic medullary thyroid cancer. RET is thus an attractive therapeutic target in patients with oncogenic RET alterations. Multikinase inhibitors with RET inhibitor activity, such as cabozantinib and vandetanib, have been explored in the clinic for tumors with activating RET gene alterations with modest clinical efficacy. As a result of the nonselective nature of these multikinase inhibitors, patients had off-target adverse effects, such as hypertension, rash, and diarrhea. This resulted in a narrow therapeutic index of these drugs, limiting ability to dose for clinically effective RET inhibition. In contrast, the recent discovery and clinical validation of highly potent selective RET inhibitors (pralsetinib, selpercatinib) demonstrating improved efficacy and a more favorable toxicity profile are poised to alter the landscape of RET-dependent cancers. These drugs appear to have broad activity across tumors with activating RET alterations. The mechanisms of resistance to these next-generation highly selective RET inhibitors is an area of active research. This review summarizes the current understanding of RET alterations and the state-of-the-art treatment strategies in RET-dependent cancers.
Collapse
Affiliation(s)
- Vivek Subbiah
- Department of Investigational Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX.,Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX.,MD Anderson Cancer Network, Houston, TX
| | - Dong Yang
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Alexander Drilon
- Thoracic Oncology Service, Early Drug Development Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX.,Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
10
|
Russell MD, Kamani D, Randolph GW. Modern surgery for advanced thyroid cancer: a tailored approach. Gland Surg 2020; 9:S105-S119. [PMID: 32175251 DOI: 10.21037/gs.2019.12.16] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Surgical treatment of advanced thyroid malignancy can be morbid, compromising normal functions of the upper aerodigestive tract. There is a paucity of guidelines dedicated to the management of advanced disease. In fact, there is not even a uniform definition for advanced thyroid cancer currently. The presence of local invasion, bulky cervical nodes, distant metastases or recurrent disease should prompt careful preoperative evaluation and planning. Surgical strategy should evolve from multidisciplinary discussion that integrates individual disease characteristics and patient preference. Intraoperative neuromonitoring has important applications in surgery for advanced disease and should be used to guide surgical strategy and intraoperative decision-making. Recent paradigm shifts, including staged surgery and use of neoadjuvant targeted therapy hold potential for decreasing surgical morbidity and improving clinical outcomes. Modern surgical planning provides optimal treatment for each patient through a tailored approach based on exact extent and type of disease as well as incorporating appreciation of surgical complications, patient preferences and intraoperative findings.
Collapse
Affiliation(s)
- Marika D Russell
- Department of Otolaryngology & Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Dipti Kamani
- Division of Thyroid and Parathyroid Surgery, Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Gregory W Randolph
- Division of Thyroid and Parathyroid Surgery, Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,Division of Surgical Oncology, Endocrine Surgery Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Li AY, McCusker MG, Russo A, Scilla KA, Gittens A, Arensmeyer K, Mehra R, Adamo V, Rolfo C. RET fusions in solid tumors. Cancer Treat Rev 2019; 81:101911. [PMID: 31715421 DOI: 10.1016/j.ctrv.2019.101911] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
The RET proto-oncogene has been well-studied. RET is involved in many different physiological and developmental functions. When altered, RET mutations influence disease in a variety of organ systems from Hirschsprung's disease and multiple endocrine neoplasia 2 (MEN2) to papillary thyroid carcinoma (PTC) and non-small cell lung cancer (NSCLC). Changes in RET expression have been discovered in 30-70% of invasive breast cancers and 50-60% of pancreatic ductal adenocarcinomas in addition to colorectal adenocarcinoma, melanoma, small cell lung cancer, neuroblastoma, and small intestine neuroendocrine tumors. RET mutations have been associated with tumor proliferation, invasion, and migration. RET fusions or rearrangements are somatic juxtapositions of 5' sequences from other genes with 3' RET sequences encoding tyrosine kinase. RET rearrangements occur in approximately 2.5-73% of sporadic PTC and 1-3% of NSCLC patients. The most common RET fusions are CDCC6-RET and NCOA4-RET in PTC and KIF5B-RET in NSCLC. Tyrosine kinase inhibitors are drugs that target kinases such as RET in RET-driven (RET-mutation or RET-fusion-positive) disease. Multikinase inhibitors (MKI) target various kinases and other receptors. Several MKIs are FDA-approved for cancer therapy (sunitinib, sorafenib, vandetanib, cabozantinib, regorafenib, ponatinib, lenvatinib, alectinib) and non-oncologic disease (nintedanib). Selective RET inhibitor drugs LOXO-292 (selpercatinib) and BLU-667 (pralsetinib) are also undergoing phase I/II and I clinical trials, respectively, with preliminary results demonstrating partial response and low incidence of serious adverse events. RET fusions provide a viable therapeutic target for oncologic treatment, and further study is warranted into the prevalence and pathogenesis of RET fusions as well as development of current and new tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Andrew Y Li
- Department of Medicine, Division of General Internal Medicine, University of Maryland Medical Center, Baltimore, United States
| | - Michael G McCusker
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alessandro Russo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA; Medical Oncology Unit, A.O. Papardo & Department of Human Pathology, University of Messina, Italy
| | - Katherine A Scilla
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allison Gittens
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katherine Arensmeyer
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ranee Mehra
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincenzo Adamo
- Medical Oncology Unit, A.O. Papardo & Department of Human Pathology, University of Messina, Italy
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Rogova MO, Novosad SV, Martirosian NS, Trukhina LV, Petunina NA. [Molecular markers as risk factors for thyroid cancer]. TERAPEVT ARKH 2019; 91:119-123. [PMID: 32598640 DOI: 10.26442/00403660.2019.10.000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
Thyroid cancer is the most common malignant tumor of the endocrine system. An increase in the incidence of thyroid cancer has been noted over the past decade, mainly due to papillary cancer. The influence of environmental factors, increased availability of medical care, including sensitive diagnostic tests, such as ultrasound and fine - needle aspiration (FNA), can affect the fact of the growth of this incidence. Palpation of thyroid gland has very low diagnostic value for detecting thyroid cancer, while thyroid ultrasound and FNA can detect malignant tumors in 20% of cases. Today, the FNA is the fastest, most accurate, economically accessible, and quite safe method for cytological diagnosis of the thyroid nodules. And molecular genetic testing of FNA samples could serve as an additional reliable diagnostic tool in the case of atypia of undetermined significance.
Collapse
Affiliation(s)
- M O Rogova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - S V Novosad
- Sechenov First Moscow State Medical University (Sechenov University)
| | - N S Martirosian
- Sechenov First Moscow State Medical University (Sechenov University)
| | - L V Trukhina
- Sechenov First Moscow State Medical University (Sechenov University)
| | - N A Petunina
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
13
|
Duan H, Li Y, Hu P, Gao J, Ying J, Xu W, Zhao D, Wang Z, Ye J, Lizaso A, He Y, Wu H, Liang Z. Mutational profiling of poorly differentiated and anaplastic thyroid carcinoma by the use of targeted next-generation sequencing. Histopathology 2019; 75:890-899. [PMID: 31230400 DOI: 10.1111/his.13942] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/18/2019] [Indexed: 02/04/2023]
Abstract
AIMS To characterise the mutational profiles of poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC) and to identify markers with potential diagnostic, prognostic and therapeutic significance. METHODS AND RESULTS Targeted next-generation sequencing with a panel of 18 thyroid carcinoma-related genes was performed on tissue samples from 41 PDTC and 25 ATC patients. Genetic alterations and their correlations with clinicopathological factors, including survival outcomes, were also analysed. Our results showed that ATC had significantly higher mutation rates of BRAF, TP53, TERT and PIK3CA than PDTC (P = 0.005, P = 0.007, P = 0.005, and P = 0.033, respectively). Nine (69%) ATC cases with papillary thyroid carcinoma (PTC) components harboured BRAF mutations, all of which coexisted with a late mutation event (TP53, TERT, or PIK3CA). Nine cases with oncogenic fusion (six RET cases, one NTRK1 case, one ALK case, and one PPARG case) were identified in 41 PDTCs, whereas only one case with oncogenic fusion (NTRK1) was found among 25 ATCs. Moreover, all six cases of RET fusion were found in PDTC with PTC components, accounting for 33%. In PDTC/ATC patients, concurrent TERT and PIK3CA mutations were associated with poor overall survival after adjustment for TNM stage (P = 0.001). CONCLUSIONS ATC with PTC components is typically characterised by a BRAF mutation with a late mutation event, whereas PDTC with PTC components is more closely correlated with RET fusion. TERT and concurrent PIK3CA mutations predict worse overall survival in PDTC/ATC patients.
Collapse
Affiliation(s)
- Huanli Duan
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Pathology, National Cancer Centre/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peizhen Hu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jie Gao
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Centre/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanni Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Danhui Zhao
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Junyi Ye
- Burning Rock Biotech, Guangzhou, China
| | | | - Yangzhige He
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Abstract
BACKGROUND Gene fusions are known in many cancers as driver or passenger mutations. They play an important role in both the etiology and pathogenesis of cancer and are considered as potential diagnostic and prognostic markers and possible therapeutic targets. The spectrum and prevalence of gene fusions in thyroid cancer ranges from single cases up to 80%, depending on the specific type of cancer. During last three years, massive parallel sequencing technologies have revealed new fusions and allowed detailed characteristics of fusions in different types of thyroid cancer. SUMMARY This article reviews all known fusions and their prevalence in papillary, poorly differentiated and anaplastic, follicular, and medullary carcinomas. The mechanisms of fusion formation are described. In addition, the mechanisms of oncogenic transformation, such as altered gene expression, forced oligomerization, and subcellular localization, are given. CONCLUSION The prognostic value and perspectives of the utilization of gene fusions as therapeutic targets are discussed.
Collapse
Affiliation(s)
- Valentina D Yakushina
- 1 Research Centre for Medical Genetics , Moscow, Russian Federation
- 2 Moscow Institute of Physics and Technology , Moscow, Russian Federation
| | | | - Alexander V Lavrov
- 1 Research Centre for Medical Genetics , Moscow, Russian Federation
- 4 Russian National Research Medical University , Moscow, Russian Federation
| |
Collapse
|
15
|
Iacobas DA, Tuli NY, Iacobas S, Rasamny JK, Moscatello A, Geliebter J, Tiwari RK. Gene master regulators of papillary and anaplastic thyroid cancers. Oncotarget 2017; 9:2410-2424. [PMID: 29416781 PMCID: PMC5788649 DOI: 10.18632/oncotarget.23417] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/09/2017] [Indexed: 12/13/2022] Open
Abstract
We hypothesize that distinct cell phenotypes are governed by different sets of gene master regulators (GMRs) whose strongly protected (by the homeostatic mechanisms) abundance modulates most cell processes by coordinating the expression of numerous genes from the corresponding functional pathways. Gene Commanding Height (GCH), a composite measure of gene expression control and coordination, is introduced to establish the gene hierarchy in each phenotype. If the hypothesis is true, than one can selectively destroy cancer nodules from a heterogeneous tissue by altering the expression of genes whose GCHs are high in cancer but low in normal cell phenotype. Here, we test the hypothesis and show its utility for the thyroid cancer (TC) gene therapy. First, we prove that malignant and cancer free surrounding areas of a surgically removed papillary TC (PTC) tumor are governed by different GMRs. Second, we show that stable transfection of a gene induces larger transcriptomic alterations in the cells where it has higher GCH than in other cells. For this, we profiled the transcriptomes of the papillary BCPAP and anaplastic 8505C TC cell lines before and after stable transfection with NEMP1, DDX19B, PANK2 or UBALD1. The four genes were selected to have similar expression levels but significantly different GCH scores in the two cell lines before transfection. Indeed, each of the four genes triggered larger alterations in the cells where they had larger GCH. Our results prove the feasibility of a personalized gene therapy approach that selectively targets the cancer cells from a tissue.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA.,Center for Computational Systems Biology at Prairie View A&M University, Prairie View, TX, USA
| | - Neha Y Tuli
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - John K Rasamny
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA.,Department of Otolaryngology, New York Medical College, Valhalla, NY, USA
| | - Augustine Moscatello
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA.,Department of Otolaryngology, New York Medical College, Valhalla, NY, USA
| | - Jan Geliebter
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
| | - Raj K Tiwari
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
16
|
Molecular alterations of coexisting thyroid papillary carcinoma and anaplastic carcinoma: identification of TERT mutation as an independent risk factor for transformation. Mod Pathol 2017; 30:1527-1537. [PMID: 28731042 DOI: 10.1038/modpathol.2017.75] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
Abstract
Thyroid papillary carcinoma is the most common endocrine neoplasm and generally carries a favorable prognosis. However, a small subset of papillary carcinomas transforms into anaplastic carcinoma, an undifferentiated cancer with a dismal prognosis. Recent studies using next-generation sequencing revealed the genomic landscape of papillary carcinoma and anaplastic carcinoma. However, risk factors for anaplastic transformation in papillary carcinoma remain obscure. In the present study, we investigated molecular alterations of papillary carcinoma and anaplastic carcinoma components in 27 tumors in which anaplastic carcinoma coexisted with antecedent papillary carcinoma. We conducted direct sequencing for BRAF, TERT promoter and PIK3CA, and immunohistochemistry for p53, TTF-1 and subunits of the SWI/SNF complex (ARID1A, ARID1B, ATRX, SMARCA2, SMARCA4, SMARCB1, and PBRM1). BRAFV600E and TERT promoter mutated at the rate of 90% and 95%, respectively, and these mutational statuses were almost identical between the papillary carcinoma and anaplastic carcinoma components. PIK3CA mutation was positive in 33% of our samples with a heterogeneous mutation pattern of the papillary carcinoma and anaplastic carcinoma components. Aberrant expression of p53 and loss of TTF-1 were present in 63 and 59%, respectively, and these two alterations were confined to the anaplastic carcinoma components. There was a loss of the SWI/SNF complex in a subset of the tumors with a heterogeneous pattern of the papillary carcinoma and anaplastic carcinoma components: SMARCA4 in 4% and PBRM1 in 4%. In a multivariate comparison between the antecedent papillary carcinoma components and control papillary carcinomas without anaplastic transformation, TERT promoter mutation was independently associated with anaplastic transformation. Collectively, papillary carcinoma-derived anaplastic carcinomas are characterized by BRAF and TERT promoter mutations, and these mutations occur prior to anaplastic transformation. Alterations of PIK3CA and the SWI/SNF complex are relatively rare and temporally heterogeneous. Of note, a papillary carcinoma harboring TERT promoter mutation is at higher risk for anaplastic transformation.
Collapse
|
17
|
Tavares C, Melo M, Cameselle-Teijeiro JM, Soares P, Sobrinho-Simões M. ENDOCRINE TUMOURS: Genetic predictors of thyroid cancer outcome. Eur J Endocrinol 2016; 174:R117-26. [PMID: 26510840 DOI: 10.1530/eje-15-0605] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/28/2015] [Indexed: 12/20/2022]
Abstract
Genetic predictors of outcome are reviewed in the context of a disease--cancer--that can be (too) simplistically described as a 'successful, invasive clone of our own tissues'. Context has many faces that determine a thyroid cancer patient's outcome beyond the influence of genetic markers. There is also plenty of evidence on the prognostic meaning of the interplay between genetics and context/microenvironment factors (encapsulation, degree of invasion, staging, etc.). This review addresses only genetic alterations detected by molecular methods in surgically resected specimens, thus ruling out immunohistochemistry and (F)ISH, despite their crucial relevance as topographically oriented methods. For the sake of the discussion, well-differentiated carcinomas were divided into two main morphologic types: papillary carcinoma (classic and most variants) displaying BRAFV600E mutations and RET/papillary thyroid carcinoma rearrangements and the group of follicular patterned carcinomas that encompasses follicular carcinoma and the encapsulated form of follicular variant of papillary carcinoma, displaying RAS mutations and PAX8/PPARγ rearrangement. TERT promoter mutations have been recently described (and associated with distant metastases and reduced survival) in papillary and follicular carcinomas, as well as in poorly differentiated and undifferentiated carcinoma. TP53 mutations, previously thought to be restricted to less differentiated carcinomas, were also detected in papillary and follicular carcinoma and found to carry a guarded prognosis. Besides their putative importance for targeted therapies, the prognostic meaning of such mutations is discussed per se and in the setting of concurrent BRAF mutation.
Collapse
Affiliation(s)
- Catarina Tavares
- Instituto de Investigacão e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalCancer BiologyInstitute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Prof. Hernâni Monteiro, P-4200 Porto, PortugalEndocrinologyDiabetes and Metabolism Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075 Coimbra, PortugalMedical FacultyUniversity of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, PortugalDepartment of PathologyMedical Faculty, Servicio Gallego de Salud-SERGAS, Clinical University Hospital, University of Santiago de Compostela, 15705 Santiago de Compostela, SpainDepartment of Pathology and OncologyMedical Faculty of Porto University, Porto, PortugalDepartment of PathologyHospital de S. João, Al. Prof. Hernâni Monteiro, P-4200 Porto, Portugal Instituto de Investigacão e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalCancer BiologyInstitute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Prof. Hernâni Monteiro, P-4200 Porto, PortugalEndocrinologyDiabetes and Metabolism Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075 Coimbra, PortugalMedical FacultyUniversity of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, PortugalDepartment of PathologyMedical Faculty, Servicio Gallego de Salud-SERGAS, Clinical University Hospital, University of Santiago de Compostela, 15705 Santiago de Compostela, SpainDepartment of Pathology and OncologyMedical Faculty of Porto University, Porto, PortugalDepartment of PathologyHospital de S. João, Al. Prof. Hernâni Monteiro, P-4200 Porto, Portugal Instituto de Investigacão e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalCancer BiologyInstitute of Molecular Pathology and
| | - Miguel Melo
- Instituto de Investigacão e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalCancer BiologyInstitute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Prof. Hernâni Monteiro, P-4200 Porto, PortugalEndocrinologyDiabetes and Metabolism Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075 Coimbra, PortugalMedical FacultyUniversity of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, PortugalDepartment of PathologyMedical Faculty, Servicio Gallego de Salud-SERGAS, Clinical University Hospital, University of Santiago de Compostela, 15705 Santiago de Compostela, SpainDepartment of Pathology and OncologyMedical Faculty of Porto University, Porto, PortugalDepartment of PathologyHospital de S. João, Al. Prof. Hernâni Monteiro, P-4200 Porto, Portugal Instituto de Investigacão e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalCancer BiologyInstitute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Prof. Hernâni Monteiro, P-4200 Porto, PortugalEndocrinologyDiabetes and Metabolism Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075 Coimbra, PortugalMedical FacultyUniversity of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, PortugalDepartment of PathologyMedical Faculty, Servicio Gallego de Salud-SERGAS, Clinical University Hospital, University of Santiago de Compostela, 15705 Santiago de Compostela, SpainDepartment of Pathology and OncologyMedical Faculty of Porto University, Porto, PortugalDepartment of PathologyHospital de S. João, Al. Prof. Hernâni Monteiro, P-4200 Porto, Portugal Instituto de Investigacão e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalCancer BiologyInstitute of Molecular Pathology and
| | - José Manuel Cameselle-Teijeiro
- Instituto de Investigacão e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalCancer BiologyInstitute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Prof. Hernâni Monteiro, P-4200 Porto, PortugalEndocrinologyDiabetes and Metabolism Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075 Coimbra, PortugalMedical FacultyUniversity of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, PortugalDepartment of PathologyMedical Faculty, Servicio Gallego de Salud-SERGAS, Clinical University Hospital, University of Santiago de Compostela, 15705 Santiago de Compostela, SpainDepartment of Pathology and OncologyMedical Faculty of Porto University, Porto, PortugalDepartment of PathologyHospital de S. João, Al. Prof. Hernâni Monteiro, P-4200 Porto, Portugal
| | - Paula Soares
- Instituto de Investigacão e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalCancer BiologyInstitute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Prof. Hernâni Monteiro, P-4200 Porto, PortugalEndocrinologyDiabetes and Metabolism Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075 Coimbra, PortugalMedical FacultyUniversity of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, PortugalDepartment of PathologyMedical Faculty, Servicio Gallego de Salud-SERGAS, Clinical University Hospital, University of Santiago de Compostela, 15705 Santiago de Compostela, SpainDepartment of Pathology and OncologyMedical Faculty of Porto University, Porto, PortugalDepartment of PathologyHospital de S. João, Al. Prof. Hernâni Monteiro, P-4200 Porto, Portugal Instituto de Investigacão e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalCancer BiologyInstitute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Prof. Hernâni Monteiro, P-4200 Porto, PortugalEndocrinologyDiabetes and Metabolism Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075 Coimbra, PortugalMedical FacultyUniversity of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, PortugalDepartment of PathologyMedical Faculty, Servicio Gallego de Salud-SERGAS, Clinical University Hospital, University of Santiago de Compostela, 15705 Santiago de Compostela, SpainDepartment of Pathology and OncologyMedical Faculty of Porto University, Porto, PortugalDepartment of PathologyHospital de S. João, Al. Prof. Hernâni Monteiro, P-4200 Porto, Portugal Instituto de Investigacão e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalCancer BiologyInstitute of Molecular Pathology and
| | - Manuel Sobrinho-Simões
- Instituto de Investigacão e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalCancer BiologyInstitute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Prof. Hernâni Monteiro, P-4200 Porto, PortugalEndocrinologyDiabetes and Metabolism Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075 Coimbra, PortugalMedical FacultyUniversity of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, PortugalDepartment of PathologyMedical Faculty, Servicio Gallego de Salud-SERGAS, Clinical University Hospital, University of Santiago de Compostela, 15705 Santiago de Compostela, SpainDepartment of Pathology and OncologyMedical Faculty of Porto University, Porto, PortugalDepartment of PathologyHospital de S. João, Al. Prof. Hernâni Monteiro, P-4200 Porto, Portugal Instituto de Investigacão e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalCancer BiologyInstitute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Prof. Hernâni Monteiro, P-4200 Porto, PortugalEndocrinologyDiabetes and Metabolism Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075 Coimbra, PortugalMedical FacultyUniversity of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, PortugalDepartment of PathologyMedical Faculty, Servicio Gallego de Salud-SERGAS, Clinical University Hospital, University of Santiago de Compostela, 15705 Santiago de Compostela, SpainDepartment of Pathology and OncologyMedical Faculty of Porto University, Porto, PortugalDepartment of PathologyHospital de S. João, Al. Prof. Hernâni Monteiro, P-4200 Porto, Portugal Instituto de Investigacão e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalCancer BiologyInstitute of Molecular Pathology and
| |
Collapse
|
18
|
Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol 2016; 12:192-202. [PMID: 26868437 DOI: 10.1038/nrendo.2016.11] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The rearranged during transfection (RET) proto-oncogene was identified in 1985 and, very soon thereafter, a rearrangement named RET/PTC was discovered in papillary thyroid carcinoma (PTC). After this discovery, other RET rearrangements were found in PTCs, particularly in those induced by radiation. For many years, it was thought that these genetic alterations only occurred in PTC, but, in the past couple of years, some RET/PTC rearrangements have been found in other human tumours. 5 years after the discovery of RET/PTC rearrangements in PTC, activating point mutations in the RET proto-oncogene were discovered in both hereditary and sporadic forms of medullary thyroid carcinoma (MTC). In contrast to the alterations found in PTC, the activation of RET in MTC is mainly due to activating point mutations. Interestingly, in the past year, RET rearrangements that were different to those described in PTC were observed in sporadic MTC. The identification of RET mutations is relevant to the early diagnosis of hereditary MTC and the prognosis of sporadic MTC. The diagnostic and prognostic role of the RET/PTC rearrangements in PTC is less relevant but still important in patient management, particularly for deciding if a targeted therapy should be initiated. In this Review, we discuss the pathogenic, diagnostic and prognostic roles of the RET proto-oncogene in both PTC and MTC.
Collapse
Affiliation(s)
- Cristina Romei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Raffaele Ciampi
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Rossella Elisei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| |
Collapse
|
19
|
Şahpaz A, Önal B, Yeşilyurt A, Han Ü, Delibaşı T. BRAF(V600E) Mutation, RET/PTC1 and PAX8-PPAR Gamma Rearrangements in Follicular Epithelium Derived Thyroid Lesions - Institutional Experience and Literature Review. Balkan Med J 2015; 32:156-66. [PMID: 26167339 DOI: 10.5152/balkanmedj.2015.15101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/08/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Thyroid cancers are the most frequently occurring endocrine malignancy worldwide. In Turkey, thyroid cancers are ranked 2(nd) on the incidence list in women, with a rate of 16.2%, but they are not included among the top 10 cancer types in men. AIMS To identify the contribution of the BRAF(V600E) mutation, and the RET/PTC1 and PAX8-PPARγ rearrangements in the diagnosis and differential diagnosis of follicular epithelial-derived thyroid lesions. STUDY DESIGN Retrospective clinical and molecular genetic study. METHODS A total of 86 thyroid cases diagnosed between 2001 and 2012 at the Department of Pathology were included in the retrospective study group. Samples best representing the lesion and comprising capsules were chosen in the selection of paraffin blocks pertaining to the cases. The BRAF(V600E) mutation, and the RET/PTC1 and PAX8-PPARγ rearrangements were investigated in all cases. RESULTS The BRAF(V600E) mutation was observed in 12 out of 37 papillary carcinoma cases (32.4%), in 1 out of 15 follicular carcinoma cases (6.6%), and in 1 out of 7 undifferentiated carcinoma cases (14.3%). No mutation was detected in benign lesions. The RET/PTC1 rearrangement was detected in 2 out of 7 undifferentiated carcinoma cases (28.6%), and in 1 out of 15 follicular carcinoma cases (6.6%). No gene rearrangement was detected in benign lesions. The PAX8-PPARγ rearrangement was detected in 5 out of 15 follicular thyroid carcinoma cases (33.3%) and in 1 out of 15 follicular adenoma cases (6.6%). CONCLUSION The BRAF(V600E) mutation and RET/PTC1 rearrangement were effective in distinguishing the follicular epithelium-derived benign and malignant lesions of the thyroid in the resection materials. The BRAF(V600E) mutation was rather specific to papillary carcinoma in the thyroid, and in cases where the BRAF(V600E) mutation was detected, multi-centricity, lymph node metastasis and capsular invasion findings were observed more frequently compared to cases in which no mutation was observed. The PAX8-PPARγ rearrangement was observed to be more effective in the differentiation of adenomas and carcinomas in follicular neoplasms of the thyroid, whereas the RET/PTC1 analysis contributed to the differential diagnosis of papillary carcinoma histogenesis at a frequency of 29% in undifferentiated thyroid carcinomas.
Collapse
Affiliation(s)
- Ahmet Şahpaz
- Department of Pathology & Cytology, Ankara Dışkapı Training and Research Hospital, Ankara, Turkey
| | - Binnur Önal
- Department of Pathology & Cytology, Ankara Dışkapı Training and Research Hospital, Ankara, Turkey
| | - Ahmet Yeşilyurt
- Genetic Diagnosis Center, Ankara Dışkapı Training and Research Hospital, Ankara, Turkey
| | - Ünsal Han
- Department of Pathology & Cytology, Ankara Dışkapı Training and Research Hospital, Ankara, Turkey
| | - Tuncay Delibaşı
- Department of Endocrinology and Metabolism, Ankara Dışkapı Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
20
|
Guerra A, Di Crescenzo V, Garzi A, Cinelli M, Carlomagno C, Tonacchera M, Zeppa P, Vitale M. Genetic mutations in the treatment of anaplastic thyroid cancer: a systematic review. BMC Surg 2013; 13 Suppl 2:S44. [PMID: 24267151 PMCID: PMC3851243 DOI: 10.1186/1471-2482-13-s2-s44] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is a rare, lethal disease associated with a median survival of 6 months despite the best multidisciplinary care. Surgical resection is not curative in ATC patients, being often a palliative procedure. Multidisciplinary care may include surgery, loco-regional radiotherapy, and systemic therapy. Besides conventional chemotherapy, multi kinase-targeted inhibitors are emerging as novel therapeutic tools. The numerous molecular alteration detected in ATC are targets for these inhibitors. The aim of this review is to determine the prevalence of the major genetic alterations occurring in ATC and place the results in the context of the emerging kinase-targeted therapies. METHODS The study is based on published PubMed studies addressing the prevalence of BRAF, RAS, PTEN, PI3KCA and TP53 mutations and RET rearrangements in ATC. RESULTS 21 articles dealing with 652 genetic analyses of the selected genes were used. The overall prevalence determined were the following: RET/PTC, 4%; BRAF, 23%; RAS, 60%; PTEN, 16%; PI3KCA, 24%; TP53, 48%. Genetic alterations are sometimes overlapping. CONCLUSIONS Mutations of BRAF, PTEN and PI3KCA genes are common in ATC, with RAS and TP53 being the most frequent. Given ATC genetic complexity, effective therapies may benefit from individualized therapeutic regimens in a multidisciplinary approach.
Collapse
|
21
|
Smallridge RC, Ain KB, Asa SL, Bible KC, Brierley JD, Burman KD, Kebebew E, Lee NY, Nikiforov YE, Rosenthal MS, Shah MH, Shaha AR, Tuttle RM. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 2012; 22:1104-39. [PMID: 23130564 DOI: 10.1089/thy.2012.0302] [Citation(s) in RCA: 480] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is a rare but highly lethal form of thyroid cancer. Rapid evaluation and establishment of treatment goals are imperative for optimum patient management and require a multidisciplinary team approach. Here we present guidelines for the management of ATC. The development of these guidelines was supported by the American Thyroid Association (ATA), which requested the authors, members the ATA Taskforce for ATC, to independently develop guidelines for ATC. METHODS Relevant literature was reviewed, including serial PubMed searches supplemented with additional articles. The quality and strength of recommendations were adapted from the Clinical Guidelines Committee of the American College of Physicians, which in turn was developed by the Grading of Recommendations Assessment, Development and Evaluation workshop. RESULTS The guidelines include the diagnosis, initial evaluation, establishment of treatment goals, approaches to locoregional disease (surgery, radiotherapy, systemic therapy, supportive care during active therapy), approaches to advanced/metastatic disease, palliative care options, surveillance and long-term monitoring, and ethical issues including end of life. The guidelines include 65 recommendations. CONCLUSIONS These are the first comprehensive guidelines for ATC and provide recommendations for management of this extremely aggressive malignancy. Patients with stage IVA/IVB resectable disease have the best prognosis, particularly if a multimodal approach (surgery, radiation, systemic therapy) is used, and some stage IVB unresectable patients may respond to aggressive therapy. Patients with stage IVC disease should be considered for a clinical trial or hospice/palliative care, depending upon their preference.
Collapse
|
22
|
Soares P, Lima J, Preto A, Castro P, Vinagre J, Celestino R, Couto JP, Prazeres H, Eloy C, Máximo V, Sobrinho-Simões M. Genetic alterations in poorly differentiated and undifferentiated thyroid carcinomas. Curr Genomics 2012; 12:609-17. [PMID: 22654560 PMCID: PMC3271313 DOI: 10.2174/138920211798120853] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/20/2022] Open
Abstract
Thyroid gland presents a wide spectrum of tumours derived from follicular cells that range from well differentiated, papillary and follicular carcinoma (PTC and FTC, respectively), usually carrying a good prognosis, to the clinically aggressive, poorly differentiated (PDTC) and undifferentiated thyroid carcinoma (UTC).It is usually accepted that PDTC and UTC occur either de novo or progress from a pre-existing well differentiated carcinoma through a multistep process of genetic and epigenetic changes that lead to clonal expansion and neoplastic development. Mutations and epigenetic alterations in PDTC and UTC are far from being totally clarified. Assuming that PDTC and UTC may derive from well differentiated thyroid carcinomas (WDTC), it is expected that some PDTC and UTC would harbour genetic alterations that are typical of PTC and FTC. This is the case for some molecular markers (BRAF and NRAS) that are present in WDTC, PDTC and UTC. Other genes, namely P53, are almost exclusively detected in less differentiated and undifferentiated thyroid tumours, supporting a diagnosis of PDTC or, much more often, UTC. Thyroid-specific rearrangements RET/PTC and PAX8/PPARγ, on the other hand, are rarely found in PDTC and UTC, suggesting that these genetic alterations do not predispose cells to dedifferentiation. In the present review we have summarized the molecular changes associated with the two most aggressive types of thyroid cancer.
Collapse
Affiliation(s)
- Paula Soares
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), 4200-465 Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Romei C, Elisei R. RET/PTC Translocations and Clinico-Pathological Features in Human Papillary Thyroid Carcinoma. Front Endocrinol (Lausanne) 2012; 3:54. [PMID: 22654872 PMCID: PMC3356050 DOI: 10.3389/fendo.2012.00054] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/26/2012] [Indexed: 12/27/2022] Open
Abstract
Thyroid carcinoma is the most frequent endocrine cancer accounting for 5-10% of thyroid nodules. Papillary histotype (PTC) is the most prevalent form accounting for 80% of all thyroid carcinoma. Although much is known about its epidemiology, pathogenesis, clinical, and biological behavior, the only documented risk factor for PTC is the ionizing radiation exposure. Rearrangements of the Rearranged during Transfection (RET) proto-oncogene are found in PTC and have been shown to play a pathogenic role. The first RET rearrangement, named RET/PTC, was discovered in 1987. This rearrangement constitutively activates the transcription of the RET tyrosine-kinase domain in follicular cell, thus triggering the signaling along the MAPK pathway and an uncontrolled proliferation. Up to now, 13 different types of RET/PTC rearrangements have been reported but the two most common are RET/PTC1 and RET/PTC3. Ionizing radiations are responsible for the generation of RET/PTC rearrangements, as supported by in vitro studies and by the evidence that RET/PTC, and particularly RET/PTC3, are highly prevalent in radiation induced PTC. However, many thyroid tumors without any history of radiation exposure harbor similar RET rearrangements. The overall prevalence of RET/PTC rearrangements varies from 20 to 70% of PTCs and they are more frequent in childhood than in adulthood thyroid cancer. Controversial data have been reported on the relationship between RET/PTC rearrangements and the PTC prognosis. RET/PTC3 is usually associated with a more aggressive phenotype and in particular with a greater tumor size, the solid variant, and a more advanced stage at diagnosis which are all poor prognostic factors. In contrast, RET/PTC1 rearrangement does not correlate with any clinical-pathological characteristics of PTC. Moreover, the RET protein and mRNA expression level did not show any correlation with the outcome of patients with PTC and no correlation between RET/PTC rearrangements and the expression level of the thyroid differentiation genes was observed. Recently, a diagnostic role of RET/PTC rearrangements has been proposed. It can be searched for in the mRNA extracted from cytological sample especially in case with indeterminate cytology. However, both the fact that it can be present in a not negligible percentage of benign cases and the technical challenge in extracting mRNA from cytological material makes this procedure not applicable at routine level, at least for the moment.
Collapse
Affiliation(s)
- Cristina Romei
- Department of Endocrinology and Metabolism, WHO Collaborating Center for the Study and Treatment of Thyroid Diseases and Other Endocrine and Metabolic DisordersUniversity of Pisa, Pisa, Italy
| | - Rossella Elisei
- Department of Endocrinology and Metabolism, WHO Collaborating Center for the Study and Treatment of Thyroid Diseases and Other Endocrine and Metabolic DisordersUniversity of Pisa, Pisa, Italy
- *Correspondence: Rossella Elisei, Department of Endocrinology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy. e-mail:
| |
Collapse
|
24
|
Abstract
Thyroid cancer is the most common endocrine malignancy, and its incidence is rising in the USA and other countries. Papillary and follicular thyroid carcinomas are the two most common types of thyroid cancer. Non-overlapping genetic alterations, including BRAF and RAS point mutations, and RET/PTC and PAX8/PPARγ rearrangements, are found in more than 70% of papillary and follicular thyroid carcinomas. These represent the most common genetic alterations in thyroid cancer, as well as molecular markers of diagnostic and prognostic significance. The use of these and other emerging molecular markers will likely improve the diagnosis of malignancy in thyroid nodules as well as facilitate more individualized operative and postoperative management. Herein, we provide a brief overview of the common genetic alterations in papillary and follicular thyroid carcinoma and discuss the diagnostic and prognostic significance thereof.
Collapse
Affiliation(s)
- Feriyl Bhaijee
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | | |
Collapse
|
25
|
Abstract
CONTEXT Thyroid cancer is the most common type of endocrine malignancy and its incidence is steadily increasing. Papillary carcinoma and follicular carcinoma are the most common types of thyroid cancer and represent those tumor types for which use of molecular markers for diagnosis and prognostication is of high clinical significance. OBJECTIVE To review the most common molecular alterations in thyroid cancer and their diagnostic and prognostic utility. DATA SOURCES PubMed (US National Library of Medicine)-available review articles, peer-reviewed original articles, and experience of the author. CONCLUSIONS The most common molecular alterations in thyroid cancer include BRAF and RAS point mutations and RET/PTC and PAX8/PPAR γ rearrangements. These nonoverlapping genetic alterations are found in more than 70% of papillary and follicular thyroid carcinomas. These molecular alterations can be detected in surgically resected samples and fine-needle aspiration samples from thyroid nodules and can be of significant diagnostic use. The diagnostic role of BRAF mutations has been studied most extensively, and recent studies also demonstrated a significant diagnostic utility of RAS, RET/PTC, and PAX8/PPAR γ mutations, particularly in thyroid fine-needle aspiration samples with indeterminate cytology. In addition to the diagnostic use, BRAF V600E mutation can also be used for tumor prognostication, as this mutation is associated with higher rate of tumor recurrence and tumor-related mortality. The use of these and other emerging molecular markers is expected to improve significantly the accuracy of cancer diagnosis in thyroid nodules and allow more individualized surgical and postsurgical management of patients with thyroid cancer.
Collapse
Affiliation(s)
- Yuri E Nikiforov
- Department of Pathology and Laboratory Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
26
|
Tyrosine kinase inhibitors in differentiated thyroid carcinoma: a review of the clinical evidence. ACTA ACUST UNITED AC 2011. [DOI: 10.4155/cli.10.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|