1
|
Tolu SS, Viny AD, Amengual JE, Pro B, Bates SE. Getting the right combination to break the epigenetic code. Nat Rev Clin Oncol 2025; 22:117-133. [PMID: 39623073 DOI: 10.1038/s41571-024-00972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 01/26/2025]
Abstract
Rapid advances in the field of epigenetics have facilitated the development of novel therapeutics targeting epigenetic mechanisms that are hijacked by cancer cells to support tumour growth and progression. Several epigenetic agents have been approved by the FDA for the treatment of cancer; however, the efficacy of these drugs is dependent on the underlying biology and drivers of the disease, with inherent differences between solid tumours and haematological malignancies. The efficacy of epigenetic drugs as single agents remains limited across most cancer types, which has spurred the clinical development of combination therapies, with the hope of attaining synergistic activity and/or overcoming treatment resistance. In this Review we discuss clinical advances that have been achieved with the use of epigenetic agents in combination with chemotherapies, immunotherapies or other targeted agents, including epigenetic-epigenetic combinations, as well as limitations and challenges associated with these combinatorial strategies. So far, the success of combination therapies targeting epigenetic mechanisms has generally been confined to haematological malignancies, with limited efficacy observed in patients with solid tumours. Nevertheless, this Review captures the field of epigenetic combination therapies across the spectra of haematology and oncology, highlighting opportunities for precision therapy to effectively harness the potential of epigenetic agents and produce meaningful improvements in clinical outcomes.
Collapse
Affiliation(s)
- Seda S Tolu
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| | - Aaron D Viny
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jennifer E Amengual
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Barbara Pro
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Susan E Bates
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Narukawa T, Yasuda S, Horinaka M, Taniguchi K, Tsujikawa T, Morita M, Ukimura O, Sakai T. The Novel HDAC Inhibitor OBP-801 Promotes MHC Class I Presentation Through LMP2 Upregulation, Enhancing the PD-1-Targeting Therapy in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2024; 16:4058. [PMID: 39682244 DOI: 10.3390/cancers16234058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibitors have been reported to exhibit immunomodulatory activities, including the upregulation of major histocompatibility complex class I (MHC class I). Although the immunoproteasome plays a pivotal role in MHC class I antigen presentation, its effect on immunotherapy for clear cell renal cell carcinoma (ccRCC) remains unclear. METHODS This study assessed whether OBP-801, a novel HDAC inhibitor, affects the expression of immunoproteasome subunits and subsequently the MHC class-I-mediated anti-cancer immunity in ccRCC. We analyzed the data of 531 patients with ccRCC from the Cancer Genome Atlas Kidney Clear Cell Carcinoma database. We further evaluated the treatment efficacy of the combination of OBP-801 and anti-PD-1 in a ccRCC mouse model. RESULTS Low molecular mass polypeptide (LMP) 2 was correlated most positively with CD3E, CD8A, and CD8B expression and estimated CD8+ T cell number. In vitro studies showed that OBP-801 upregulated MHC class I presentation by inducing LMP2 expression in the ccRCC cell lines RENCA, 786-O, and Caki-1. In vivo studies in a syngeneic mouse model with subcutaneous implantation of RENCA cells showed that OBP-801 treatment increased the percentage of CD45+CD3e+ T cells in tumor-infiltrating lymphocytes. The combination of anti-PD-1 antibody and OBP-801 enhanced the anti-tumor effect, LMP2 protein expression, and MHC class I presentation in tumor cells. MHC class I presentation in the tumors of each mouse was positively correlated with the percentage of CD45+CD3e+ T cells. CONCLUSIONS Our results demonstrate that OBP-801 promotes MHC class I presentation through LMP2 upregulation in tumor cells and thereby potentiates PD-1-targeting therapy. These data suggest that the combination of OBP-801 and anti-PD-1 treatment is a promising therapeutic strategy for ccRCC.
Collapse
Affiliation(s)
- Tsukasa Narukawa
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Urology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shusuke Yasuda
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Keiko Taniguchi
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takahiro Tsujikawa
- Department of Otolaryngology-Head & Neck Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mie Morita
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Osamu Ukimura
- Department of Urology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
3
|
Hernández-Rangel AE, Cabrera-Licona A, Hernandez-Fuentes GA, Beas-Guzmán OF, Martínez-Martínez FJ, Alcalá-Pérez MA, Montes-Galindo DA, Rodriguez-Sanchez IP, Martinez-Fierro ML, Casarez-Price JC, De-Leon-Zaragoza L, Garza-Veloz I, Delgado-Enciso I. Ethanolic Extract of Salvia officinalis Leaves Affects Viability, Survival, Migration, and the Formation and Growth of 3D Cultures of the Tumourigenic Murine HPV-16+-Related Cancer Cell Line. Biomedicines 2024; 12:1804. [PMID: 39200268 PMCID: PMC11351782 DOI: 10.3390/biomedicines12081804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Salvia officinalis (SO) is one of the most widely used plants in traditional medicine worldwide. In the present study, the effect of an ethanolic extract of S. officinalis leaves on hallmarks of cancer of HPV-16-positive cancer tumorigenic cells, TC-1, was analyzed in vitro. Phytochemical and spectroscopic analysis were performed. Additionally, the extract's flavonoid content, reducing iron, and antioxidant capacity were determined. In regard to the in vitro tests, the cytotoxic activity and its effect on the replicative capacity and on the cell migration of TC-1 cells were analyzed by viability and clonogenic, survival, and wound healing assays. The effect of a pre-treatment or treatment on 3D culture formation, growth, and reversion capacity was also examined. The results of the phytochemical analysis allowed the detection of tannins, saponins, steroids, and flavonoids. The flavonoids content was found to be 153.40 ± 10.68 µg/mg of extract. Additionally, the extract exhibited an antioxidant capacity and a ferric-reducing capacity of around 40% compared to the ascorbic acid. Thin layer chromatographic (TLC) analysis and spectroscopic tests showed the presence of compounds similar to quercetin and catechin flavonoids in the extract. In the in vitro assays, the SO extract induced in a concentration-dependent way changes in cell morphology, the decrease of cell viability, survival, and migration. At a concentration of 125 µg/mL, the extract inhibited spheroid formation, reduced their growth, and affected their reversion to 2D. Ethanolic extract of S. officinalis leaves had inhibitory effects on hallmarks of the cancer line HPV-16+. This suggests that the phytochemicals present in it may be a source of chemotherapeutics against cervical cancer.
Collapse
Affiliation(s)
| | - Ariana Cabrera-Licona
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico; (A.C.-L.); (M.A.A.-P.); (D.A.M.-G.); (J.C.C.-P.); (L.D.-L.-Z.)
| | | | - Oscar F. Beas-Guzmán
- School of Medicine, University of Colima, Colima 28040, Mexico; (A.E.H.-R.); (G.A.H.-F.); (O.F.B.-G.)
| | | | - Mario A. Alcalá-Pérez
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico; (A.C.-L.); (M.A.A.-P.); (D.A.M.-G.); (J.C.C.-P.); (L.D.-L.-Z.)
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (M.L.M.-F.); (I.G.-V.)
| | - Daniel A. Montes-Galindo
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico; (A.C.-L.); (M.A.A.-P.); (D.A.M.-G.); (J.C.C.-P.); (L.D.-L.-Z.)
- Faculty of Chemical Sciences, University of Colima, Coquimatlan 28400, Mexico;
| | - Iram P. Rodriguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66455, Mexico;
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (M.L.M.-F.); (I.G.-V.)
| | - Juan C. Casarez-Price
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico; (A.C.-L.); (M.A.A.-P.); (D.A.M.-G.); (J.C.C.-P.); (L.D.-L.-Z.)
| | - Luis De-Leon-Zaragoza
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico; (A.C.-L.); (M.A.A.-P.); (D.A.M.-G.); (J.C.C.-P.); (L.D.-L.-Z.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (M.L.M.-F.); (I.G.-V.)
| | - Iván Delgado-Enciso
- School of Medicine, University of Colima, Colima 28040, Mexico; (A.E.H.-R.); (G.A.H.-F.); (O.F.B.-G.)
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico; (A.C.-L.); (M.A.A.-P.); (D.A.M.-G.); (J.C.C.-P.); (L.D.-L.-Z.)
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
4
|
Fan W, Li W, Li L, Qin M, Mao C, Yuan Z, Wang P, Chu B, Jiang Y. Bifunctional HDAC and DNMT inhibitor induces viral mimicry activates the innate immune response in triple-negative breast cancer. Eur J Pharm Sci 2024; 197:106767. [PMID: 38636781 DOI: 10.1016/j.ejps.2024.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is a unique breast cancer subtype characterized by a lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Since TNBC lacks ER, PR, and HER2, there are currently no drugs that specifically target TNBC. Therefore, the development of new drugs or effective treatment strategies to target TNBC has become an urgent clinical need. Research has shown that the application of histone deacetylase (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors leads to genomic and epigenomic instability. This, in turn, triggers the activation of pattern recognition receptors (PRRs) and subsequently activates downstream interferon (IFN) signalling pathways. In this study, the bifunctional HDAC and DNMT inhibitor J208 exhibited antitumour activity in TNBC cell lines. J208 effectively induced apoptosis and cell cycle arrest at the G0/G1 phase, inhibiting cell migration and invasion in TNBC. Moreover, this bifunctional inhibitor induced the expression of endogenous retroviruses (ERVs) and elicited a viral mimicry response, which increased the intracellular levels of double-stranded RNA (dsRNA) to activate the innate immune signalling pathway in TNBC. In summary, we demonstrated that the bifunctional inhibitor J208, which is designed to inhibit HDAC and DNMT, has potent anticancer effects, providing a new research basis for reactivating antitumour immunity by triggering innate immune signalling and offering a promising strategy for TNBC treatment.
Collapse
Affiliation(s)
- Weiwen Fan
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Wenkai Li
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Lulu Li
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Meirong Qin
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Chengzhou Mao
- Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zigao Yuan
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen 518057, China.
| | - Bizhu Chu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Yuyang Jiang
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
5
|
Li NN, Lun DX, Gong N, Meng G, Du XY, Wang H, Bao X, Li XY, Song JW, Hu K, Li L, Li SY, Liu W, Zhu W, Zhang Y, Li J, Yao T, Mou L, Han X, Hao F, Hu Y, Liu L, Zhu H, Wu Y, Liu B. Targeting the chromatin structural changes of antitumor immunity. J Pharm Anal 2024; 14:100905. [PMID: 38665224 PMCID: PMC11043877 DOI: 10.1016/j.jpha.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 04/28/2024] Open
Abstract
Epigenomic imbalance drives abnormal transcriptional processes, promoting the onset and progression of cancer. Although defective gene regulation generally affects carcinogenesis and tumor suppression networks, tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes, which may have significant implications for the development and application of epigenetic therapy, cancer immunotherapy, and their combinations. Herein, we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes, DNA methylation, histone post-translational modification, and chromatin structure in tumor immunogenicity, and introduce these epigenetic research methods. We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immunotherapy through the complex interaction between cancer epigenetics and cancer immunology.
Collapse
Affiliation(s)
- Nian-nian Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deng-xing Lun
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Ningning Gong
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Gang Meng
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, Shaanxi, 725000, China
| | - Xin-ying Du
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - He Wang
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiangxiang Bao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xin-yang Li
- Guizhou Education University, Guiyang, 550018, China
| | - Ji-wu Song
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Kewei Hu
- Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261000, China
| | - Lala Li
- Guizhou Normal University, Guiyang, 550025, China
| | - Si-ying Li
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wenbo Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Wanping Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yunlong Zhang
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jikai Li
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, Tianjin, 300299, China
| | - Ting Yao
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| | - Leming Mou
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Xiaoqing Han
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Furong Hao
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yongcheng Hu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Lin Liu
- School of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongguang Zhu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
| | - Yuyun Wu
- Xinqiao Hospital of Army Military Medical University, Chongqing, 400038, China
| | - Bin Liu
- Weifang People's Hospital, Weifang, Shandong, 261000, China
- School of Life Sciences, Nankai University, Tianjin, 300071, China
- Teda Institute of Biological Sciences & Biotechnology, Nankai University, Tianjin, 300457, China
| |
Collapse
|
6
|
Huang X, Yang J, Xi H, Zhang M, Oh Y, Jin Z, Zheng Z. Implication of Amyloid Precursor-like Protein 2 Expression in Cutaneous Squamous Cell Carcinoma Pathogenesis. In Vivo 2024; 38:399-408. [PMID: 38148084 PMCID: PMC10756465 DOI: 10.21873/invivo.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM Regulatory functions of amyloid precursor-like protein 2 (APLP2) expression in intracellular trafficking of major histocompatibility complex class I (MHC-I) and biological behavior of tumor cells have been reported in various types of malignancies but not in cutaneous squamous cell carcinoma (CSCC). This study aimed to investigate the role of APLP2 expression in the pathogenesis of CSCC. PATIENTS AND METHODS The expression of APLP2 and a key modulator of cancer immune escape, MHC-I, were determined in CSCC tissue samples obtained from 141 patients using immunohistochemistry. The regulatory effects of APLP2 expression on the biological behavior and surface expression of MHC-I in CSCC cells were investigated by trypan blue assay, Matrigel invasion assay, and in vivo xenograft analysis. RESULTS APLP2 immunoreactivity was high in 73 (51.8%) tissue samples from patients with CSCC and was significantly related to subcutaneous fat invasion and poor prognosis in our cohort. Moreover, proliferation of and invasion by CSCC cells were significantly reduced after APLP2 knockdown in CSCC cells both in vitro and in vivo. A significant association was found between APLP2 and membrane MHC-I expression in patients with CSCC. In vivo xenograft analysis showed that APLP2 knockdown increased membrane MHC-I expression in CSCC cells. CONCLUSION APLP2 not only acts as an oncogene in CSCC progression but also as a possible modulator of cancer immune escape by influencing MHC-I expression on the cell surface. APLP2 may serve as a novel molecular biomarker and therapeutic target for patients with CSCC.
Collapse
Affiliation(s)
- Xiaodi Huang
- Department Dermatology, Yanbian University Hospital, Yanji City, P.R. China
| | - Jihye Yang
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Haoran Xi
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Meilan Zhang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yeongjoo Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Zhehu Jin
- Department Dermatology, Yanbian University Hospital, Yanji City, P.R. China;
| | - Zhenlong Zheng
- Department Dermatology, Yanbian University Hospital, Yanji City, P.R. China;
| |
Collapse
|
7
|
Kanwal M, Smahelova J, Ciharova B, Johari SD, Nunvar J, Olsen M, Smahel M. Aspartate β-hydroxylase Regulates Expression of Ly6 Genes. J Cancer 2024; 15:1138-1152. [PMID: 38356711 PMCID: PMC10861829 DOI: 10.7150/jca.90422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/13/2023] [Indexed: 02/16/2024] Open
Abstract
Background: Overexpression of aspartate β-hydroxylase (ASPH) in human tumors contributes to their progression by stimulating cell proliferation, migration, and invasion. Several signaling pathways affected by ASPH have been identified, but the high number of potential targets of ASPH hydroxylation suggests that additional mechanisms may be involved. This study was performed to reveal new targets of ASPH signaling. Methods: The effect of ASPH on the oncogenicity of three mouse tumor cell lines was tested using proliferation assays, transwell assays, and spheroid invasion assays after inhibition of ASPH with the small molecule inhibitor MO-I-1151. ASPH was also deactivated with the CRISPR/Cas9 system. A transcriptomic analysis was then performed with bulk RNA sequencing and differential gene expression was evaluated. Expression data were verified by quantitative PCR and immunoblotting. Results: Inhibition or abrogation of ASPH reduced proliferation of the cell lines and their migration and invasiveness. Among the genes with differential expression in more than one cell line, two members of the lymphocyte antigen 6 (Ly6) family, Ly6a and Ly6c1, were found. Their downregulation was confirmed at the protein level by immunoblotting, which also showed their reduction after ASPH inhibition in other mouse cell lines. Reduced production of the Ly6D and Ly6K proteins was shown after ASPH inhibition in human tumor cell lines. Conclusions: Since increased expression of Ly6 genes is associated with the development and progression of both mouse and human tumors, these results suggest a novel mechanism of ASPH oncogenicity and support the utility of ASPH as a target for cancer therapy.
Collapse
Affiliation(s)
- Madiha Kanwal
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jana Smahelova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Barbora Ciharova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Shweta Dilip Johari
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jaroslav Nunvar
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy - Glendale, Midwestern University, Glendale, AZ, USA
| | - Michal Smahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
8
|
dos Reis FD, Jerónimo C, Correia MP. Epigenetic modulation and prostate cancer: Paving the way for NK cell anti-tumor immunity. Front Immunol 2023; 14:1152572. [PMID: 37090711 PMCID: PMC10113550 DOI: 10.3389/fimmu.2023.1152572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Immunoepigenetics is a growing field, as there is mounting evidence on the key role played by epigenetic mechanisms in the regulation of tumor immune cell recognition and control of immune cell anti-tumor responses. Moreover, it is increasingly acknowledgeable a tie between epigenetic regulation and prostate cancer (PCa) development and progression. PCa is intrinsically a cold tumor, with scarce immune cell infiltration and low inflammatory tumor microenvironment. However, Natural Killer (NK) cells, main anti-tumor effector immune cells, have been frequently linked to improved PCa prognosis. The role that epigenetic-related mechanisms might have in regulating both NK cell recognition of PCa tumor cells and NK cell functions in PCa is still mainly unknown. Epigenetic modulating drugs have been showing boundless therapeutic potential as anti-tumor agents, however their role in immune cell regulation and recognition is scarce. In this review, we focused on studies addressing modulation of epigenetic mechanisms involved in NK cell-mediated responses, including both the epigenetic modulation of tumor cell NK ligand expression and NK cell receptor expression and function in different tumor models, highlighting studies in PCa. The integrated knowledge from diverse epigenetic modulation mechanisms promoting NK cell-mediated immunity in various tumor models might open doors for the development of novel epigenetic-based therapeutic options for PCa management.
Collapse
Affiliation(s)
- Filipa D. dos Reis
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Master Program in Oncology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
- *Correspondence: Margareta P. Correia,
| |
Collapse
|
9
|
Looi CK, Gan LL, Sim W, Hii LW, Chung FFL, Leong CO, Lim WM, Mai CW. Histone Deacetylase Inhibitors Restore Cancer Cell Sensitivity towards T Lymphocytes Mediated Cytotoxicity in Pancreatic Cancer. Cancers (Basel) 2022; 14:3709. [PMID: 35954379 PMCID: PMC9367398 DOI: 10.3390/cancers14153709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Despite medical advancements, the prognosis of pancreatic ductal adenocarcinoma (PDAC) has not improved significantly over the past 50 years. By utilising the large-scale genomic datasets available from the Australia Pancreatic Cancer Project (PACA-AU) and The Cancer Genomic Atlas Project (TCGA-PAAD), we studied the immunophenotype of PDAC in silico and identified that tumours with high cytotoxic T lymphocytes (CTL) killing activity were associated with favourable clinical outcomes. Using the STRING protein-protein interaction network analysis, the identified differentially expressed genes with low CTL killing activity were associated with TWIST/IL-6R, HDAC5, and EOMES signalling. Following Connectivity Map analysis, we identified 44 small molecules that could restore CTL sensitivity in the PDAC cells. Further high-throughput chemical library screening identified 133 inhibitors that effectively target both parental and CTL-resistant PDAC cells in vitro. Since CTL-resistant PDAC had a higher expression of histone proteins and its acetylated proteins compared to its parental cells, we further investigated the impact of histone deacetylase inhibitors (HDACi) on CTL-mediated cytotoxicity in PDAC cells in vitro, namely SW1990 and BxPC3. Further analyses revealed that givinostat and dacinostat were the two most potent HDAC inhibitors that restored CTL sensitivity in SW1990 and BxPC3 CTL-resistant cells. Through our in silico and in vitro studies, we demonstrate the novel role of HDAC inhibition in restoring CTL resistance and that combinations of HDACi with CTL may represent a promising therapeutic strategy, warranting its further detailed molecular mechanistic studies and animal studies before embarking on the clinical evaluation of these novel combined PDAC treatments.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-L.G.)
| | - Li-Lian Gan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-L.G.)
- Clinical Research Centre, Hospital Tuanku Ja’afar Seremban, Ministry of Health Malaysia, Seremban 70300, Malaysia
| | - Wynne Sim
- School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Ling-Wei Hii
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia;
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- AGTC Genomics, Kuala Lumpur 57000, Malaysia
| | - Wei-Meng Lim
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200127, China
| |
Collapse
|
10
|
Alseksek RK, Ramadan WS, Saleh E, El-Awady R. The Role of HDACs in the Response of Cancer Cells to Cellular Stress and the Potential for Therapeutic Intervention. Int J Mol Sci 2022; 23:8141. [PMID: 35897717 PMCID: PMC9331760 DOI: 10.3390/ijms23158141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Throughout the process of carcinogenesis, cancer cells develop intricate networks to adapt to a variety of stressful conditions including DNA damage, nutrient deprivation, and hypoxia. These molecular networks encounter genomic instability and mutations coupled with changes in the gene expression programs due to genetic and epigenetic alterations. Histone deacetylases (HDACs) are important modulators of the epigenetic constitution of cancer cells. It has become increasingly known that HDACs have the capacity to regulate various cellular systems through the deacetylation of histone and bounteous nonhistone proteins that are rooted in complex pathways in cancer cells to evade death pathways and immune surveillance. Elucidation of the signaling pathways involved in the adaptive responses to cellular stress and the role of HDACs may lead to the development of novel therapeutic agents. In this article, we overview the dominant stress types including metabolic, oxidative, genotoxic, and proteotoxic stress imposed on cancer cells in the context of HDACs, which guide stress adaptation responses. Next, we expose a closer view on the therapeutic interventions and clinical trials that involve HDACs inhibitors, in addition to highlighting the impact of using HDAC inhibitors in combination with stress-inducing agents for the management of cancer and to overcome the resistance to current cancer therapy.
Collapse
Affiliation(s)
- Rahma K. Alseksek
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S. Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ekram Saleh
- Clinical Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt;
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
11
|
Acharya N, Singh KP. Recent advances in the molecular basis of chemotherapy resistance and potential application of epigenetic therapeutics in chemorefractory renal cell carcinoma. WIREs Mech Dis 2022; 14:e1575. [DOI: 10.1002/wsbm.1575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Narayan Acharya
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) Texas Tech University Lubbock Texas USA
| | - Kamaleshwar P. Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) Texas Tech University Lubbock Texas USA
| |
Collapse
|
12
|
Spiesschaert B, Angerer K, Park J, Wollmann G. Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits. Cancers (Basel) 2021; 13:3386. [PMID: 34298601 PMCID: PMC8306439 DOI: 10.3390/cancers13143386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
- ViraTherapeutics GmbH, 6063 Rum, Austria
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Katharina Angerer
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - John Park
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
13
|
Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22041964. [PMID: 33671123 PMCID: PMC7922096 DOI: 10.3390/ijms22041964] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The immune system constantly monitors the emergence of cancerous cells and eliminates them. CD8+ cytotoxic T lymphocytes (CTLs), which kill tumor cells and provide antitumor immunity, select their targets by recognizing tumor antigenic peptides presented by MHC class-I (MHC-I) molecules. Cancer cells circumvent immune surveillance using diverse strategies. A key mechanism of cancer immune evasion is downregulation of MHC-I and key proteins of the antigen processing and presentation machinery (APM). Even though impaired MHC-I expression in cancers is well-known, reversing the MHC-I defects remains the least advanced area of tumor immunology. The discoveries that NLRC5 is the key transcriptional activator of MHC-I and APM genes, and genetic lesions and epigenetic modifications of NLRC5 are the most common cause of MHC-I defects in cancers, have raised the hopes for restoring MHC-I expression. Here, we provide an overview of cancer immunity mediated by CD8+ T cells and the functions of NLRC5 in MHC-I antigen presentation pathways. We describe the impressive advances made in understanding the regulation of NLRC5 expression, the data supporting the antitumor functions of NLRC5 and a few reports that argue for a pro-tumorigenic role. Finally, we explore the possible avenues of exploiting NLRC5 for cancer immunotherapy.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14834)
| |
Collapse
|
14
|
West AC, Christiansen AJ, Smyth MJ, Johnstone RW. The combination of histone deacetylase inhibitors with immune-stimulating antibodies has potent anti-cancer effects. Oncoimmunology 2021; 1:377-379. [PMID: 22737621 PMCID: PMC3382866 DOI: 10.4161/onci.18804] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The use of immunotherapy to treat cancer is rapidly gaining momentum. Using pre-clinical mouse models, we have recently demonstrated potent and long lasting tumor regression can be elicited by immune-stimulating monoclonal antibodies (mAbs) when combined with histone deacetylase inhibitors (HDACi) and believe this therapy will have broad application in humans.
Collapse
Affiliation(s)
- Alison C West
- Cancer Therapeutics; The Peter MacCallum Cancer Centre; East Melbourne, Australia ; Cancer Immunology Program; The Peter MacCallum Cancer Centre; East Melbourne, Australia
| | | | | | | |
Collapse
|
15
|
Targeting the epigenetic regulation of antitumour immunity. Nat Rev Drug Discov 2020; 19:776-800. [PMID: 32929243 DOI: 10.1038/s41573-020-0077-5] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 01/10/2023]
Abstract
Dysregulation of the epigenome drives aberrant transcriptional programmes that promote cancer onset and progression. Although defective gene regulation often affects oncogenic and tumour-suppressor networks, tumour immunogenicity and immune cells involved in antitumour responses may also be affected by epigenomic alterations. This could have important implications for the development and application of both epigenetic therapies and cancer immunotherapies, and combinations thereof. Here, we review the role of key aberrant epigenetic processes - DNA methylation and post-translational modification of histones - in tumour immunogenicity, as well as the effects of epigenetic modulation on antitumour immune cell function. We emphasize opportunities for small-molecule inhibitors of epigenetic regulators to enhance antitumour immune responses, and discuss the challenges of exploiting the complex interplay between cancer epigenetics and cancer immunology to develop treatment regimens combining epigenetic therapies with immunotherapies.
Collapse
|
16
|
Bezu L, Wu Chuang A, Liu P, Kroemer G, Kepp O. Immunological Effects of Epigenetic Modifiers. Cancers (Basel) 2019; 11:cancers11121911. [PMID: 31805711 PMCID: PMC6966579 DOI: 10.3390/cancers11121911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022] Open
Abstract
Epigenetic alterations are associated with major pathologies including cancer. Epigenetic dysregulation, such as aberrant histone acetylation, altered DNA methylation, or modified chromatin organization, contribute to oncogenesis by inactivating tumor suppressor genes and activating oncogenic pathways. Targeting epigenetic cancer hallmarks can be harnessed as an immunotherapeutic strategy, exemplified by the use of pharmacological inhibitors of DNA methyltransferases (DNMT) and histone deacetylases (HDAC) that can result in the release from the tumor of danger-associated molecular patterns (DAMPs) on one hand and can (re-)activate the expression of tumor-associated antigens on the other hand. This finding suggests that epigenetic modifiers and more specifically the DNA methylation status may change the interaction of chromatin with chaperon proteins including HMGB1, thereby contributing to the antitumor immune response. In this review, we detail how epigenetic modifiers can be used for stimulating therapeutically relevant anticancer immunity when used as stand-alone treatments or in combination with established immunotherapies.
Collapse
Affiliation(s)
- Lucillia Bezu
- Service anesthésie-réanimation, Hôpital européen Georges Pompidou, AP-HP, 75015 Paris, France;
- Faculty of Medicine, University of Paris Sud, 94270 Kremlin-Bicêtre, France;
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Alejandra Wu Chuang
- Faculty of Medicine, University of Paris Sud, 94270 Kremlin-Bicêtre, France;
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Peng Liu
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, 215123 Suzhou, China
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Correspondence: (G.K.); (O.K.)
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Correspondence: (G.K.); (O.K.)
| |
Collapse
|
17
|
Sun T, Li Y, Yang W, Wu H, Li X, Huang Y, Zhou Y, Du Z. Histone deacetylase inhibition up-regulates MHC class I to facilitate cytotoxic T lymphocyte-mediated tumor cell killing in glioma cells. J Cancer 2019; 10:5638-5645. [PMID: 31737100 PMCID: PMC6843866 DOI: 10.7150/jca.34471] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Immune cells recognize tumor antigens presented on major histocompatibility complex class I (MHC-I) molecule. Increase of MHC-I molecular expression makes tumor cells more susceptible to lysis by immune cells. Methods: Tumor lysate vaccine was prepared to damage glioma cells including cell lines and primary cultured cells from surgical samples. The enhanced effect of histone deacetylase inhibitors (HDACi) to tumor lysate vaccine was observed. The expressions of MHC-I pathway molecules were detected by flow cytometry and western blot after HDACi treatment. Cell apoptosis and cell lysis were measured following blocking cytotoxic T lymphocyte (CTL) pathway. Tumor size and mice survival were analyzed in combinative treatment with HDACi and tumor lysate. Results: HDACi up-regulated the expressions of MHC-I pathway molecules, and enhanced the recognition and killing of immune cells, which was activated by tumor lysate. Activated antigen specific immune responses regulated CTL activity, and HDACi promoted immune response through cytotoxic effect of CTL. Anti-tumor effect of tumor lysate pulse immunogenicity in vivo was elevated by HDACi due to up-regulation of antigen presentation. Conclusions: Our study showed that HDACi enhanced recognition of glioma cell by immune cells and sensitivity of tumor immunotherapy, and improved the anti-tumor effect of tumor lysate vaccine through activating CTL immune response. These pharmacological molecular mechanisms of increasing immune recognition suggest that epigenetic modulation is a promising strategy for sensitizing immunotherapy for glioma treatment.
Collapse
Affiliation(s)
- Ting Sun
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanyan Li
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Haibin Wu
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuetao Li
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yulun Huang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Youxin Zhou
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ziwei Du
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Wang X, Waschke BC, Woolaver RA, Chen Z, Zhang G, Piscopio AD, Liu X, Wang JH. Histone Deacetylase Inhibition Sensitizes PD1 Blockade-Resistant B-cell Lymphomas. Cancer Immunol Res 2019; 7:1318-1331. [PMID: 31235619 PMCID: PMC6679731 DOI: 10.1158/2326-6066.cir-18-0875] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/22/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023]
Abstract
PD1 blockade is effective in a subset of patients with B-cell lymphoma (e.g., classical-Hodgkin lymphomas); however, most patients do not respond to anti-PD1 therapy. To study PD1 resistance, we used an isoform-selective histone deacetylase inhibitor (HDACi; OKI-179), and a mouse mature B-cell lymphoma, G1XP lymphoma, immunosuppressive features of which resemble those of human B-cell lymphomas, including downregulation of MHC class I and II, exhaustion of CD8+ and CD4+ tumor-infiltrating lymphocytes (TIL), and PD1-blockade resistance. Using two lymphoma models, we show that treatment of B-cell lymphomas refractory to PD1 blockade with both OKI-179 and anti-PD1 inhibited growth; furthermore, sensitivity to single or combined treatment required tumor-derived MHC class I, and positively correlated with MHC class II expression level. We conclude that OKI-179 sensitizes lymphomas to PD1-blockade by enhancing tumor immunogenicity. In addition, we found that different HDACis exhibited distinct effects on tumors and T cells, yet the same HDACi could differentially affect HLA expression on different human B-cell lymphomas. Our study highlights the immunologic effects of HDACis on antitumor responses and suggests that optimal treatment efficacy requires personalized design and rational combination based on prognostic biomarkers (e.g., MHCs) and the individual profiles of HDACi.
Collapse
Affiliation(s)
- Xiaoguang Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Brittany C Waschke
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Gan Zhang
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | | | - Xuedong Liu
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
- OnKure Inc., Boulder, Colorado
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
19
|
Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy. Int J Mol Sci 2019; 20:ijms20092241. [PMID: 31067680 PMCID: PMC6539010 DOI: 10.3390/ijms20092241] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 04/28/2019] [Indexed: 12/26/2022] Open
Abstract
Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration. Finally, we have included examples of ongoing trials for each of the above categories of HDACis as standalone agents or in combination with immunotherapeutic approaches.
Collapse
|
20
|
Schnekenburger M, Dicato M, Diederich MF. Anticancer potential of naturally occurring immunoepigenetic modulators: A promising avenue? Cancer 2019; 125:1612-1628. [PMID: 30840315 DOI: 10.1002/cncr.32041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/29/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022]
Abstract
The immune system represents the major primary defense line against carcinogenesis and acts by identifying and eradicating nascent transformed cells. A growing body of evidence is indicating that aberrant epigenetic reprogramming plays a key role in tumor immune escape through: 1) impaired efficient recognition of neoplastic cells by the immune system, resulting from a downregulation or loss of the expression of tumor-associated antigens, human leukocyte antigens, antigen processing and presenting machinery, and costimulatory molecule genes; 2) aberrant expression of immune checkpoint proteins and their ligands; and 3) modification of cytokine profiles and tumor-associated immune cell populations toward an immunosuppressive state in the tumor microenvironment. Consistent with the inherent reversibility of epigenetic alterations, epigenetic drugs, including DNA methyltransferase and histone deacetylase inhibitors, have the unique potential to favorably modify the tumor microenvironment, restore tumor recognition and stimulate an antitumor immune response. The objective of this review is to highlight selected, naturally occurring epigenetic modulators, namely, butyrate, curcumin, (-)-epigallocatechin-3-gallate, resveratrol, romidepsin, and trichostatin A, with a special focus on their antitumor immune properties.
Collapse
Affiliation(s)
- Michael Schnekenburger
- Laboratory of Molecular and Cellular Biology of Cancer, Kirchberg Hospital, Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratory of Molecular and Cellular Biology of Cancer, Kirchberg Hospital, Luxembourg, Luxembourg
| | - Marc F Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
21
|
Teknos TN, Grecula J, Agrawal A, Old MO, Ozer E, Carrau R, Kang S, Rocco J, Blakaj D, Diavolitsis V, Kumar B, Kumar P, Pan Q, Palettas M, Wei L, Baiocchi R, Savvides P. A phase 1 trial of Vorinostat in combination with concurrent chemoradiation therapy in the treatment of advanced staged head and neck squamous cell carcinoma. Invest New Drugs 2018; 37:702-710. [PMID: 30569244 DOI: 10.1007/s10637-018-0696-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
Purpose Vorinostat is a potent HDAC inhibitor that sensitizes head and neck squamous cell carcinoma (HNSCC) to cytotoxic therapy while sparing normal epithelium. The primary objective of this Phase I study was to determine the maximally tolerated dose (MTD) and safety of Vorinostat in combination with standard chemoradiation therapy treatment in HNSCC. Patients and Methods Eligible patients had pathologically confirmed Stage III, IVa, IVb HNSCC, that was unresectable or borderline resectable involving the larynx, hypopharynx, nasopharynx, and oropharynx. Vorinostat was administered at the assigned dosage level (100-400 mg, three times weekly) in a standard 3 + 3 dose escalation design. Vorinostat therapy began 1 week prior to initiation of standard, concurrent chemoradiation therapy and continued during the entire course of therapy. Results Twenty six patients met eligibility criteria and completed the entire protocol. The primary tumor sites included tonsil (12), base of tongue (9), posterior pharyngeal wall (1), larynx (4) and hypopharynx (3). Of the 26 patients, 17 were HPV-positive and 9 were HPV-negative. The MTD of Vorinostat was 300 mg administered every other day. Anemia (n = 23/26) and leukopenia (n = 20/26) were the most commonly identified toxicities. The most common Grade3/4 events included leukopenia (n = 11) and lymphopenia (n = 17). No patient had Grade IV mucositis, dermatitis or xerostomia. The median follow time was 33.8 months (range 1.6-82.9 months). Twenty four of 26 (96.2%) patients had a complete response to therapy. Conclusion Vorinostat in combination with concurrent chemoradiation therapy is a safe and highly effective treatment regimen in HNSCC. There was a high rate of complete response to therapy with toxicity rates comparable, if not favorable to existing therapies. Further investigation in Phase II and III trials is strongly recommended.
Collapse
Affiliation(s)
- Theodoros N Teknos
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA. .,Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| | - J Grecula
- Radiation Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - A Agrawal
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - M O Old
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - E Ozer
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - R Carrau
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - S Kang
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - J Rocco
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - D Blakaj
- Radiation Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - V Diavolitsis
- Radiation Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - B Kumar
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - P Kumar
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - Q Pan
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - M Palettas
- Center for Biostatistics, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - L Wei
- Center for Biostatistics, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - R Baiocchi
- Hematology-Medical Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - P Savvides
- Hematology-Medical Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| |
Collapse
|
22
|
Indrová M, Rossowska J, Pajtasz-Piasecka E, Mikyšková R, Richter J, Rosina J, Sedlacek R, Fišerová A. The role of immune cell subpopulations in the growth and rejection of TC-1/A9 tumors in novel mouse strains differing in the H2-D haplotype and NKC domain. Oncol Lett 2018; 15:3594-3601. [PMID: 29467880 PMCID: PMC5795941 DOI: 10.3892/ol.2018.7763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2017] [Indexed: 11/07/2022] Open
Abstract
The present study aimed to elucidate the role of cluster of differentiation (CD)8+, CD4+, natural killer (NK), and myeloid (CD11b+) cells in the course of the growth and rejection of experimental major histocompatibility complex (MHC) class I-deficient, HPV16 E6/E7-associated TC-1/A9 tumors in mice. Stable mouse lines (F30) generated by inbreeding of Balb/c and C57BL/6 strains, which were characterized by H-2Db+d-NK1.1neg (B6-neg) and H-2Db-d+NK1.1high (Balb-high) phenotypes, were used for the present study. The novel strains spontaneously regressed tumors in 70–90% of cases. Ex vivo histological analysis of the tumor microenvironment in cryosections showed an indirect correlation between the growth of the transplanted tumor (progressor vs. regressor mice) and the proportion of immunocompetent cell infiltration in the tumors. The regressor mice exhibited a higher infiltration of tumors with CD4+ and CD8+ cells, and in Balb-high with NK cells as well, compared with the progressors. All tumor transplants also indicated a huge infiltration of CD11b+ cells, but this infiltration was not dependent on the stage of the TC-1/A9 tumor development. Depletion of individual cell subpopulations in vivo exhibited different effects on the tumor development in the two strains. Elimination of CD8-positive cells enhanced growth of TC-1/A9 tumor transplants in both hybrid stains, whereas CD4+ cell depletion affected rejection of TC-1/A9 tumors in the B6-neg mice only. Depletion of NK cells with anti-asialo GM1 antibody in the Balb-high strain led to enhancement of tumor growth, which was more pronounced after depletion of the NK1.1+ subpopulation. On the other hand, depletion of NK cells with anti-asialo GM1 in B6-neg mice did not affect the regression of TC-1/A9 tumor transplants, but increased the CD11b+ cell infiltration. In summary, these results indicate that co-operation of particular subsets of immunocompetent cells is essential for the rejection of TC-1/A9 tumor transplants. In B6-neg mice, the co-operative action of CD8+ and CD4+ cells is required, whereas in Balb-high mice, the synergy of CD8+ and NK1.1+ cells is of major importance.
Collapse
Affiliation(s)
- Marie Indrová
- Department of Transgenic Models of Diseases, Institute of Molecular Genetics of The Czech Academy of Sciences, 252 42 Vestec, Czech Republic.,Czech Centre for Phenogenomics, Institute of Molecular Genetics of The Czech Academy of Sciences, 252 42 Vestec, Czech Republic
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Elzbieta Pajtasz-Piasecka
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Romana Mikyšková
- Department of Transgenic Models of Diseases, Institute of Molecular Genetics of The Czech Academy of Sciences, 252 42 Vestec, Czech Republic.,Czech Centre for Phenogenomics, Institute of Molecular Genetics of The Czech Academy of Sciences, 252 42 Vestec, Czech Republic
| | - Jan Richter
- Department of Health Care Disciplines and Population Protection, Czech Technical University in Prague, Faculty of Biomedical Engineering, 27201 Kladno, Czech Republic
| | - Jozef Rosina
- Department of Health Care Disciplines and Population Protection, Czech Technical University in Prague, Faculty of Biomedical Engineering, 27201 Kladno, Czech Republic
| | - Radislav Sedlacek
- Department of Transgenic Models of Diseases, Institute of Molecular Genetics of The Czech Academy of Sciences, 252 42 Vestec, Czech Republic.,Czech Centre for Phenogenomics, Institute of Molecular Genetics of The Czech Academy of Sciences, 252 42 Vestec, Czech Republic
| | - Anna Fišerová
- Department of Health Care Disciplines and Population Protection, Czech Technical University in Prague, Faculty of Biomedical Engineering, 27201 Kladno, Czech Republic.,Laboratory of Immunotherapy, Institute of Microbiology of The Czech Academy of Sciences Prague, 14220 Prague 4, Czech Republic
| |
Collapse
|
23
|
Selinger E, Reiniš M. Epigenetic View on Interferon γ Signalling in Tumour Cells. Folia Biol (Praha) 2018; 64:125-136. [PMID: 30724158 DOI: 10.14712/fb2018064040125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
IFN-γ is a pleiotropic cytokine crucial for both innate and adaptive immunity, which also plays a critical role in immunological surveillance of cancer. Genetic defects or gene silencing in the IFN-γ signal transduction pathways as well as in the expression of IFN-γ-regulated genes represent frequent mechanisms by which tumour cells can escape from immune responses. Epigenetic control of the IFN-γ signalling pathway activation associated with epigenetic changes in the corresponding regulatory gene regions, such as chromatin remodelling, histone acetylation and methylation, and DNA demethylation is frequently dysregulated in tumour cells. Epigenetic silencing of the IFN-γ regulatory pathway components, as well as of the IFN-γ-regulated genes crucial for tumour cell recognition or induction of anti-tumour immune responses, has been documented in various cancer models. Expression of both IFN-γ signalling pathway components and selected IFN-γ-regulated genes can be influenced by epigenetic modifiers, namely DNA methyltransferase and histone deacetylase inhibitors. These agents thus can mimic, restore, or boost the immunomodulatory effects of IFN-γ in tumour cells, which can contribute to their anti-tumour therapeutic efficacies and justifies their potential use in combined epigenetic therapy with immunotherapeutic approaches.
Collapse
Affiliation(s)
- E Selinger
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the ASCR, v. v. i, Prague, Czech Republic
| | - M Reiniš
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the ASCR, v. v. i, Prague, Czech Republic
| |
Collapse
|
24
|
Haque S, Yellu M, Randhawa J, Hashemi-Sadraei N. Profile of pembrolizumab in the treatment of head and neck squamous cell carcinoma: design development and place in therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2537-2549. [PMID: 28919706 PMCID: PMC5587117 DOI: 10.2147/dddt.s119537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Head and neck squamous cell cancer (HNSCC) is the sixth most common malignancy worldwide, and despite advances in cytotoxic, surgical and radiation techniques, outcomes are still poor in those with both locally advanced and metastatic diseases. The need for development of better therapeutics along with a greater understanding of the relationship between the immune system and malignancies has led to a new therapeutic modality, immune modulators, particularly checkpoint inhibitors in HNSCC. It is now well recognized that HNSCC circumvents crucial pathways utilized by the immune system to escape surveillance. These hijacked pathways include impairing tumor antigen presentation machinery and co-opting checkpoint receptors. This understanding has led to the development of monoclonal antibodies targeting checkpoint receptors and has resulted in promising outcomes in HNSCC. This article describes the mechanisms that HNSCC utilizes to escape immune surveillance, clinical impact of checkpoint inhibitors (with a focus on pembrolizumab), ongoing studies, and future directions.
Collapse
Affiliation(s)
- Sulsal Haque
- Division of Hematology/Oncology, Department of Medicine, University of Cincinnati.,University of Cincinnati Cancer Institute, Cincinnati, OH, USA
| | - Mahender Yellu
- Division of Hematology/Oncology, Department of Medicine, University of Cincinnati.,University of Cincinnati Cancer Institute, Cincinnati, OH, USA
| | - Jaskirat Randhawa
- Division of Hematology/Oncology, Department of Medicine, University of Cincinnati.,University of Cincinnati Cancer Institute, Cincinnati, OH, USA
| | - Nooshin Hashemi-Sadraei
- Division of Hematology/Oncology, Department of Medicine, University of Cincinnati.,University of Cincinnati Cancer Institute, Cincinnati, OH, USA
| |
Collapse
|
25
|
Chacon JA, Schutsky K, Powell DJ. The Impact of Chemotherapy, Radiation and Epigenetic Modifiers in Cancer Cell Expression of Immune Inhibitory and Stimulatory Molecules and Anti-Tumor Efficacy. Vaccines (Basel) 2016; 4:E43. [PMID: 27854240 PMCID: PMC5192363 DOI: 10.3390/vaccines4040043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022] Open
Abstract
Genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers are used for the treatment of cancer due to their apoptotic effects on the aberrant cells. However, these therapies may also induce widespread changes within the immune system and cancer cells, which may enable tumors to avoid immune surveillance and escape from host anti-tumor immunity. Genomic destabilizers can induce immunogenic death of tumor cells, but also induce upregulation of immune inhibitory ligands on drug-resistant cells, resulting in tumor progression. While administration of immunomodulatory antibodies that block the interactions between inhibitory receptors on immune cells and their ligands on tumor cells can mediate cancer regression in a subset of treated patients, it is crucial to understand how genomic destabilizers alter the immune system and malignant cells, including which inhibitory molecules, receptors and/or ligands are upregulated in response to genotoxic stress. Knowledge gained in this area will aid in the rational design of trials that combine genomic destabilizers, epigenetic modifiers and immunotherapeutic agents that may be synergized to improve clinical responses and prevent tumor escape from the immune system. Our review article describes the impact genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers have on anti-tumor immunity and the tumor microenvironment. Although genomic destabilizers cause DNA damage on cancer cells, these therapies can also have diverse effects on the immune system, promote immunogenic cell death or survival and alter the cancer cell expression of immune inhibitor molecules.
Collapse
Affiliation(s)
- Jessica Ann Chacon
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Keith Schutsky
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Daniel J Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Songock WK, Kim SM, Bodily JM. The human papillomavirus E7 oncoprotein as a regulator of transcription. Virus Res 2016; 231:56-75. [PMID: 27818212 DOI: 10.1016/j.virusres.2016.10.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
Abstract
High-risk human papillomaviruses (HPVs) encode oncoproteins which manipulate gene expression patterns in the host keratinocytes to facilitate viral replication, regulate viral transcription, and promote immune evasion and persistence. In some cases, oncoprotein-induced changes in host cell behavior can cause progression to cancer, but a complete picture of the functions of the viral oncoproteins in the productive HPV life cycle remains elusive. E7 is the HPV-encoded factor most responsible for maintaining cell cycle competence in differentiating keratinocytes. Through interactions with dozens of host factors, E7 has an enormous impact on host gene expression patterns. In this review, we will examine the role of E7 specifically as a regulator of transcription. We will discuss mechanisms of regulation of cell cycle-related genes by E7 as well as genes involved in immune regulation, growth factor signaling, DNA damage responses, microRNAs, and others pathways. We will also discuss some unanswered questions about how transcriptional regulation by E7 impacts the biology of HPV in both benign and malignant conditions.
Collapse
Affiliation(s)
- William K Songock
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Seong-Man Kim
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jason M Bodily
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
27
|
Histone deacetylase inhibitors enhance CD1d-dependent NKT cell responses to lymphoma. Cancer Immunol Immunother 2016; 65:1411-1421. [PMID: 27614429 DOI: 10.1007/s00262-016-1900-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/02/2016] [Indexed: 12/24/2022]
Abstract
Histone deacetylases (HDACs) are a family of enzymes that influence expression of genes implicated in tumor initiation, progression, and anti-tumor responses. In addition to their canonical role in deacetylation of histones, HDACs regulate many non-canonical targets, such as Signal Transducer and Activator of Transcription 3 (STAT3). We hypothesize that tumors use epigenetic mechanisms to dysregulate CD1d-mediated antigen presentation, thereby impairing the ability of natural killer T (NKT) cells to recognize and destroy malignant cells. In this study, we pre-treated CD1d-expressing tumor cells with HDAC inhibitors (HDACi) and assessed CD1d-dependent NKT cell responses to mantle cell lymphoma (MCL). Pre-treatment with Trichostatin-A, a pan-HDACi, rapidly enhanced both CD1d- and MHC class II-mediated antigen presentation. Similarly, treatment of MCL cells with other HDACi resulted in enhanced CD1d-dependent NKT cell responses. The observed changes are due, at least in part, to an increase in both CD1D mRNA and CD1d cell surface expression. Mechanistically, we found that HDAC2 binds to the CD1D promoter. Knockdown of HDAC2 in tumor cells resulted in a significant increase in CD1d-mediated antigen presentation. In addition, treatment with HDACi inhibited STAT3 and STAT3-regulated inflammatory cytokine secretion by MCL cells. We demonstrated that MCL-secreted IL-10 inhibits CD1d-mediated antigen presentation and pre-treatment with TSA abrogates secretion of IL-10 by MCL. Taken together, our studies demonstrate the efficacy of HDACi in restoring anti-tumor responses to MCL through both cell-intrinsic and cell-extrinsic mechanisms and strongly implicate a role for HDACi in enhancing immune responses to cancer.
Collapse
|
28
|
Tomita Y, Lee MJ, Lee S, Tomita S, Chumsri S, Cruickshank S, Ordentlich P, Trepel JB. The interplay of epigenetic therapy and immunity in locally recurrent or metastatic estrogen receptor-positive breast cancer: Correlative analysis of ENCORE 301, a randomized, placebo-controlled phase II trial of exemestane with or without entinostat. Oncoimmunology 2016; 5:e1219008. [PMID: 27999738 PMCID: PMC5139687 DOI: 10.1080/2162402x.2016.1219008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 11/29/2022] Open
Abstract
Entinostat, a class I-selective histone deacetylase inhibitor, has shown promising activity in ENCORE 301, a randomized, placebo-controlled, phase II trial of exemestane with or without entinostat in women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on a nonsteroidal aromatase inhibitor. ENCORE 301 showed an 8.3-mo improvement in median overall survival among patients who received entinostat. We investigated the impact of entinostat on immune subsets with CD40, HLA-DR, and immune checkpoint receptor expression analyses in 34 patient blood samples from ENCORE 301. We found that entinostat significantly decreased granulocytic and monocytic MDSCs at cycle 1 day 15. MDSC CD40 was significantly downregulated by entinostat. A significant increase in HLA-DR expression on CD14+ monocytes by entinostat was observed. Entinostat did not impact T-cell subsets or T-cell immune checkpoint receptor expression. Our findings suggest that a significant interplay between this epigenetic regimen and host immune homeostatic mechanisms may impact therapeutic outcome.
Collapse
Affiliation(s)
- Yusuke Tomita
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Saori Tomita
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | | | | | | | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
29
|
HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8797206. [PMID: 27556043 PMCID: PMC4983322 DOI: 10.1155/2016/8797206] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/08/2016] [Accepted: 06/29/2016] [Indexed: 01/13/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are powerful epigenetic regulators that have enormous therapeutic potential and have pleiotropic effects at the cellular and systemic levels. To date, HDAC inhibitors are used clinically for a wide variety of disorders ranging from hematopoietic malignancies to psychiatric disorders, are known to have anti-inflammatory properties, and are in clinical trials for several other diseases. In addition to influencing gene expression, HDAC enzymes also function as part of large, multisubunit complexes which have many nonhistone targets, alter signaling at the cellular and systemic levels, and result in divergent and cell-type specific effects. Thus, the effects of HDAC inhibitor treatment are too intricate to completely understand with current knowledge but the ability of HDAC inhibitors to modulate the immune system presents intriguing therapeutic possibilities. This review will explore the complexity of HDAC inhibitor treatment at the cellular and systemic levels and suggest strategies for effective use of HDAC inhibitors in biomedical research, focusing on the ability of HDAC inhibitors to modulate the immune system. The possibility of combining the documented anticancer effects and newly emerging immunomodulatory effects of HDAC inhibitors represents a promising new combinatorial therapeutic approach for HDAC inhibitor treatments.
Collapse
|
30
|
Tandon N, Ramakrishnan V, Kumar SK. Clinical use and applications of histone deacetylase inhibitors in multiple myeloma. Clin Pharmacol 2016; 8:35-44. [PMID: 27226735 PMCID: PMC4866749 DOI: 10.2147/cpaa.s94021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The incorporation of various novel therapies has resulted in a significant survival benefit in newly diagnosed and relapsed patients with multiple myeloma (MM) over the past decade. Despite these advances, resistance to therapy leads to eventual relapse and fatal outcomes in the vast majority of patients. Hence, there is an unmet need for new safe and efficacious therapies for continued improvement in outcomes. Given the role of epigenetic aberrations in the pathogenesis and progression of MM and the success of histone deacetylase inhibitors (HDACi) in other malignancies, many HDACi have been tried in MM. Various preclinical studies helped us to understand the antimyeloma activity of different HDACi in MM as a single agent or in combination with conventional, novel, and immune therapies. The early clinical trials of HDACi depicted only modest single-agent activity, but recent studies have revealed encouraging clinical response rates in combination with other antimyeloma agents, especially proteasome inhibitors. This led to the approval of the combination of panobinostat and bortezomib for the treatment of relapsed/refractory MM patients with two prior lines of treatment by the US Food and Drug Administration. However, it remains yet to be defined how we can incorporate HDACi in the current therapeutic paradigms for MM that will help to achieve longer disease control and significant survival benefits. In addition, isoform-selective and/or class-selective HDAC inhibition to reduce unfavorable side effects needs further evaluation.
Collapse
Affiliation(s)
- Nidhi Tandon
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
31
|
Wachowska M, Muchowicz A, Golab J. Targeting Epigenetic Processes in Photodynamic Therapy-Induced Anticancer Immunity. Front Oncol 2015; 5:176. [PMID: 26284197 PMCID: PMC4519687 DOI: 10.3389/fonc.2015.00176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/16/2015] [Indexed: 01/04/2023] Open
Abstract
Photodynamic therapy (PDT) of cancer is an approved therapeutic procedure that generates oxidative stress leading to cell death of tumor and stromal cells. Cell death resulting from oxidative damage to intracellular components leads to the release of damage-associated molecular patterns (DAMPs) that trigger robust inflammatory response and creates local conditions for effective sampling of tumor-associated antigens (TAA) by antigen-presenting cells. The latter can trigger development of TAA-specific adaptive immune response. However, due to a number of mechanisms, including epigenetic regulation of TAA expression, tumor cells evade immune recognition. Therefore, numerous approaches are being developed to combine PDT with immunotherapies to allow development of systemic immunity. In this review, we describe immunoregulatory mechanisms of epigenetic treatments that were shown to restore the expression of epigenetically silenced or down-regulated major histocompatibility complex molecules as well as TAA. We also discuss the results of our recent studies showing that epigenetic treatments based on administration of methyltransferase inhibitors in combination with PDT can release effective mechanisms leading to development of antitumor immunity and potentiated antitumor effects.
Collapse
Affiliation(s)
| | - Angelika Muchowicz
- Department of Immunology, Medical University of Warsaw , Warsaw , Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
32
|
Kroesen M, Gielen P, Brok IC, Armandari I, Hoogerbrugge PM, Adema GJ. HDAC inhibitors and immunotherapy; a double edged sword? Oncotarget 2015; 5:6558-72. [PMID: 25115382 PMCID: PMC4196144 DOI: 10.18632/oncotarget.2289] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epigenetic modifications, like histone acetylation, are essential for regulating gene expression within cells. Cancer cells acquire pathological epigenetic modifications resulting in gene expression patterns that facilitate and sustain tumorigenesis. Epigenetic manipulation therefore is emerging as a novel targeted therapy for cancer. Histone Acetylases (HATs) and Histone Deacetylases (HDACs) regulate histone acetylation and hence gene expression. Histone deacetylase (HDAC) inhibitors are well known to affect cancer cell viability and biology and are already in use for the treatment of cancer patients. Immunotherapy can lead to clinical benefit in selected cancer patients, especially in patients with limited disease after tumor debulking. HDAC inhibitors can potentially synergize with immunotherapy by elimination of tumor cells. The direct effects of HDAC inhibitors on immune cell function, however, remain largely unexplored. Initial data have suggested HDAC inhibitors to be predominantly immunosuppressive, but more recent reports have challenged this view. In this review we will discuss the effects of HDAC inhibitors on tumor cells and different immune cell subsets, synergistic interactions and possible mechanisms. Finally, we will address future challenges and potential application of HDAC inhibitors in immunocombination therapy of cancer.
Collapse
Affiliation(s)
- Michiel Kroesen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Pediatric Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Paul Gielen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; These authors contributed equally to this work
| | - Ingrid C Brok
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; These authors contributed equally to this work
| | - Inna Armandari
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- Department of Pediatric Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands; Princes Máxima Center for Pediatric Oncology, The Bilt, The Netherlands
| | - Gosse J Adema
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Vlková V, Štěpánek I, Hrušková V, Šenigl F, Mayerová V, Šrámek M, Šímová J, Bieblová J, Indrová M, Hejhal T, Dérian N, Klatzmann D, Six A, Reiniš M. Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes. Oncotarget 2015; 5:6923-35. [PMID: 25071011 PMCID: PMC4196173 DOI: 10.18632/oncotarget.2222] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Downregulation of MHC class I expression on tumour cells, a common mechanism by which tumour cells can escape from specific immune responses, can be associated with coordinated silencing of antigen-presenting machinery genes. The expression of these genes can be restored by IFNγ. In this study we documented association of DNA demethylation of selected antigen-presenting machinery genes located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFNγ treatment with MHC class I upregulation on tumour cells in several MHC class I-deficient murine tumour cell lines (TC-1/A9, TRAMP-C2, MK16 and MC15). Our data also documented higher methylation levels in these genes in TC-1/A9 cells, as compared to their parental MHC class I-positive TC-1 cells. IFNγ-mediated DNA demethylation was relatively fast in comparison with demethylation induced by DNA methyltransferase inhibitor 5-azacytidine, and associated with increased histone H3 acetylation in the promoter regions of APM genes. Comparative transcriptome analysis in distinct MHC class I-deficient cell lines upon their treatment with either IFNγ or epigenetic agents revealed that a set of genes, significantly enriched for the antigen presentation pathway, was regulated in the same manner. Our data demonstrate that IFNγ acts as an epigenetic modifier when upregulating the expression of antigen-presenting machinery genes.
Collapse
Affiliation(s)
- Veronika Vlková
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Ivan Štěpánek
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Veronika Hrušková
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Filip Šenigl
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Veronika Mayerová
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Martin Šrámek
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Jana Šímová
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Jana Bieblová
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Marie Indrová
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Tomáš Hejhal
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| | - Nicolas Dérian
- UPMC Univ Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy & Département Hospitalo-Universitaire (DHU) Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - David Klatzmann
- UPMC Univ Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy & Département Hospitalo-Universitaire (DHU) Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Adrien Six
- UPMC Univ Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy & Département Hospitalo-Universitaire (DHU) Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Milan Reiniš
- Department of Tumour Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v. v. i., Prague
| |
Collapse
|
34
|
Siddle HV, Kaufman J. Immunology of naturally transmissible tumours. Immunology 2015; 144:11-20. [PMID: 25187312 PMCID: PMC4264906 DOI: 10.1111/imm.12377] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022] Open
Abstract
Naturally transmissible tumours can emerge when a tumour cell gains the ability to pass as an infectious allograft between individuals. The ability of these tumours to colonize a new host and to cross histocompatibility barriers contradicts our understanding of the vertebrate immune response to allografts. Two naturally occurring contagious cancers are currently active in the animal kingdom, canine transmissible venereal tumour (CTVT), which spreads among dogs, and devil facial tumour disease (DFTD), among Tasmanian devils. CTVT are generally not fatal as a tumour-specific host immune response controls or clears the tumours after transmission and a period of growth. In contrast, the growth of DFTD tumours is not controlled by the Tasmanian devil's immune system and the disease causes close to 100% mortality, severely impacting the devil population. To avoid the immune response of the host both DFTD and CTVT use a variety of immune escape strategies that have similarities to many single organism tumours, including MHC loss and the expression of immunosuppressive cytokines. However, both tumours appear to have a complex interaction with the immune system of their respective host, which has evolved over the relatively long life of these tumours. The Tasmanian devil is struggling to survive with the burden of this disease and it is only with an understanding of how DFTD passes between individuals that a vaccine might be developed. Further, an understanding of how these tumours achieve natural transmissibility should provide insights into general mechanisms of immune escape that emerge during tumour evolution.
Collapse
Affiliation(s)
- Hannah V Siddle
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | | |
Collapse
|
35
|
Zheng F, Hasim A, Anwer J, Niyaz M, Sheyhidin I. LMP gene promoter hypermethylation is a mechanism for its down regulation in Kazak's esophageal squamous cell carcinomas. Mol Biol Rep 2013; 40:2069-75. [PMID: 23283737 DOI: 10.1007/s11033-012-2138-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
Abnormal hypermethylation of CpG islands not only associated with tumor suppressor genes can lead to repression of gene expression, but also contribute to escape of the tumor from immune surveillance and contribute significantly to tumorigenesis. In the present study, we studied the hypermethylation of low molecular-weight protein (LMP) gene and its regulation on protein expression in biopsies from resected tissues from Kazak's esophageal squamous cell carcinoma (ESCC) patients and their neighboring normal tissues. LMP2 and LMP7 genes promoter region methylation sequences were maped in esophageal cancer cell line Eca109 by bisulfite-sequencing PCR and quantitative detection of methylated DNA from 30 pairs of Kazak's ESCC and adjacent normal tissues by MassARRAY (Sequenom, San Diego, CA, USA) and LMP2 and LMP7 protein expression were analyzed with immunohistochemistry. In Eca109, we identified 6 CG sites methylated from all of 22 CpG sites of LMP7 gene. However, no methylation was found for LMP2. The analysis of the data resulted from the quantitative analysis of single CpG site methylation by Sequenom MassARRAY platform, has shown that the methylation level between two groups CpG sites (CpG_5, CpG_9, CpG_20, CpG_21 and CpG_20) from CpG_1, CpG_2, CpG_3, CpG_4, CpG_5, CpG_6, CpG_7, CpG_8, CpG_9, CpG_10.11, CpG_12.13.14, CpG_15.16.17.18, CpG_19, CpG_20, CpG_21 and CpG_22 significant differences between ESCC and neighboring normal tissues. The analysis of methylation level of whole target CpG fragment indicated that the methylation level of LMP7 was significant higher in ESCC (0.0517 ± 0.0357) than in neighboring normal tissues (0.0380 ± 0.0214, P < 0.05). there was a tendency of decreasing the LMP7 proteins expression as the increasing the methylation level of LMP7 gene promoter regions (F = 7.69, P = 0.041). The LMP7 gene promoter methylation and protein downregulation were correlated at high extent in Kazakh's ESCC patients, and may explain the epigenetic regulation on gene expression.
Collapse
Affiliation(s)
- Feng Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Medical University of Xinjiang, Liyushan Road, Urumqi, 830054, China
| | | | | | | | | |
Collapse
|
36
|
Thrombospondin-1 expression in melanoma is blocked by methylation and targeted reversal by 5-Aza-deoxycytidine suppresses angiogenesis. Matrix Biol 2012. [PMID: 23202046 DOI: 10.1016/j.matbio.2012.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Reversibility of aberrant methylation via pharmacological means is an attractive target for therapies through epigenetic reprogramming. To establish that pharmacologic reversal of methylation could result in functional inhibition of angiogenesis, we undertook in vitro and in vivo studies of thrombospondin-1 (TSP1), a known inhibitor of angiogenesis. TSP1 is methylated in several malignancies, and can inhibit angiogenesis in melanoma xenografts. We analyzed effects of 5-Aza-deoxycytidine (5-Aza-dC) on melanoma cells in vitro to confirm reversal of promoter hypermethylation and restoration of TSP1 expression. We then investigated the effects of TSP1 expression on new blood vessel formation and tumor growth in vivo. Finally, to determine potential for clinical translation, the methylation status of TSP1 promoter regions of nevi and melanoma tissues was investigated. RESULTS 5-Aza-dC reduced DNA (cytosine-5)-methyltransferase 1 (DNMT1) protein, reversed promoter hypermethylation, and restored TSP1 expression in five melanoma cell lines, while having no effect on TSP1 protein levels in normal human melanocytes. In in vivo neovascularization studies, mice were implanted with melanoma cells (A375) either untreated or treated with 5Aza-dC. Vessels at tumor sites were counted by an observer blinded to treatments and the number of tumor vessels was significantly decreased at pretreated tumor sites. This difference occurred before a significant difference in tumor volumes was seen, yet in further studies the average tumor volume in mice treated in vivo with 5-Aza-dC was decreased by 55% compared to untreated controls. Knockdown of TSP1 expression with shRNA enhanced tumor-induced angiogenesis by 68%. Analyses of promoter methylation status of TSP1 in tumors derived from untreated and treated mice identified 67% of tumors from untreated and 17% of tumors from treated mice with partial methylation consistent with the methylation specific PCR analysis of A375 cells. Examination of methylation patterns in the promoter of TSP1 and comparison of aberrantly methylated TSP1 in melanoma with non-malignant nevi identified a significantly higher frequency of promoter methylation in tumor samples from melanoma patients. CONCLUSIONS Pharmacological reversal of methylation silenced TSP1 had functional biological consequences in enhancing angiogenesis inhibition and inducing antitumor effects to decrease murine melanoma growth. Angiogenesis inhibition is an additional mechanism by which epigenetic modulators can have antitumor effects.
Collapse
|
37
|
Post-transcriptional and epigenetic regulation of antigen processing machinery (APM) components and HLA-I in cervical cancers from Uighur women. PLoS One 2012; 7:e44952. [PMID: 23024775 PMCID: PMC3443204 DOI: 10.1371/journal.pone.0044952] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 08/14/2012] [Indexed: 11/24/2022] Open
Abstract
Normal function of human leukocyte antigen class I (HLA-I) and antigen processing machinery (APM) proteins is required for T cell-mediated anti-tumor or antiviral immunity, whereas the tumor survival indicates a failure of the host in immune surveillance associated with the dysfunction in antigen presentation, mainly due to the deregulation in HLA-I and APM expression or function. The posttranscriptional regulation of HLA-I and APM expression may associate with epigenetic modifications in cancer development which was not described so far. Here we showed that the development of cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) in Uighur women was accompanied with the partial or total loss of protein expression of HLA-I, ß2-m and APM components, including the transporter associated with antigen processing (TAP1/2), low molecular mass protein (LMP2, LMP7), endoplasmic reticulum aminopeptidase 1(ERAP1), chaperone molecules include calreticulin (CLR), calnexin (CNX) and ERp57, and this was proved again by analysis of transcription of the same genes in addition to three genes HLA-A, B and C coding for HLA-I. By bisulfite sequencing approach, we identified target CpG islands methylated at the gene promoter region of TAP1, TAP2, LMP7, tapasin and ERp57 in cervical carcinoma cells. Further analysis of CpG site specific methylation of these genes in cases of CSCC and CIN demonstrated an inverse correlation of altered CpG island methylation of TAP1, LMP7, and ERp57 with changes in protein expression. Moreover, promoter methylation of these genes was significantly higher in cases positive for human papillomavirus 16 (HPV 16) than negative ones. Our results suggested that epigenetic modifications are responsible for the aberrant expression of certain HLA-I and APM genes, and may help to understand unrevealed mechanisms of tumor escape from immune surveillance in cervical carcinogenesis.
Collapse
|
38
|
Tumor evasion from T cell surveillance. J Biomed Biotechnol 2011; 2011:918471. [PMID: 22190859 PMCID: PMC3228689 DOI: 10.1155/2011/918471] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/29/2011] [Indexed: 12/17/2022] Open
Abstract
An intact immune system is essential to prevent the development and progression of neoplastic cells in a process termed immune surveillance. During this process the innate and the adaptive immune systems closely cooperate and especially T cells play an important role to detect and eliminate tumor cells. Due to the mechanism of central tolerance the frequency of T cells displaying appropriate arranged tumor-peptide-specific-T-cell receptors is very low and their activation by professional antigen-presenting cells, such as dendritic cells, is frequently hampered by insufficient costimulation resulting in peripheral tolerance. In addition, inhibitory immune circuits can impair an efficient antitumoral response of reactive T cells. It also has been demonstrated that large tumor burden can promote a state of immunosuppression that in turn can facilitate neoplastic progression. Moreover, tumor cells, which mostly are genetically instable, can gain rescue mechanisms which further impair immune surveillance by T cells. Herein, we summarize the data on how tumor cells evade T-cell immune surveillance with the focus on solid tumors and describe approaches to improve anticancer capacity of T cells.
Collapse
|
39
|
Immunotherapy augments the effect of 5-azacytidine on HPV16-associated tumours with different MHC class I-expression status. Br J Cancer 2011; 105:1533-41. [PMID: 22015556 PMCID: PMC3242529 DOI: 10.1038/bjc.2011.428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Epigenetic mechanisms have important roles in the tumour escape from immune responses, such as in MHC class I downregulation or altered expression of other components involved in antigen presentation. Chemotherapy with DNA methyltransferase inhibitors (DNMTi) can thus influence the tumour cell interactions with the immune system and their sensitivity to immunotherapy. METHODS We evaluated the therapeutic effects of the DNMTi 5-azacytidine (5AC) against experimental MHC class I-deficient and -positive tumours. The 5AC therapy was combined with immunotherapy, using a murine model for HPV16-associated tumours. RESULTS We have demonstrated 5AC additive effects against MHC class I-positive and -deficient tumours when combined with unmethylated CpG oligodeoxynucleotides or with IL-12-producing cellular vaccine. The efficacy of the combined chemoimmunotherapy against originally MHC class I-deficient tumours was partially dependent on the CD8(+)-mediated immune responses. Increased cell surface expression of MHC class I cell molecules, associated with upregulation of the antigen-presenting machinery-related genes, as well as of genes encoding selected components of the IFNγ-signalling pathway in tumours explanted from 5AC-treated animals, were observed. CONCLUSION Our data suggest that chemotherapy of MHC class I-deficient tumours with 5AC combined with immunotherapy is an attractive setting in the treatment of MHC class I-deficient tumours.
Collapse
|
40
|
Eradication of solid tumors using histone deacetylase inhibitors combined with immune-stimulating antibodies. Proc Natl Acad Sci U S A 2011; 108:4141-6. [PMID: 21368108 DOI: 10.1073/pnas.1011037108] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Histone deacetylase inhibitors (HDACi) have been successfully used as monotherapies for the treatment of hematological malignancies; however, the single agent effects of HDACi against solid tumors are less robust. Using preclinical models of lymphoma, we have recently demonstrated that HDACi induce tumor cell-specific apoptosis and that this is essential for the therapeutic effects of these agents. Herein, we demonstrate that HDACi can be combined with immune-activating antibodies designed to promote the function of antigen-presenting cells (APCs) and enhance proliferation and survival of cytotoxic T cells (CTL) to stimulate a host antitumor immune response resulting in eradication of established solid tumors. This unique combination therapy was dependent on tumor cell apoptosis mediated by HDACi that stimulated the uptake of dead tumor cells by APCs. Tumor eradication was mediated by CD8(+) CTL that used perforin as the key immune effector molecule. This combination therapy was well tolerated and induced long-term immunological antitumor memory capable of mediating spontaneous tumor eradication upon rechallenge. These studies indicate that the ability of HDACi to mediate subtherapeutic levels of tumor cell apoptosis can be exploited by combining with antibodies that augment host antitumor immune responses to mediate robust and prolonged eradication of solid tumors.
Collapse
|
41
|
Xiao WH, Sanren GW, Zhu JH, Li QW, Kang HR, Wang RL, Song LP, Ye M. Effect of 5-Aza-2’-deoxycytidine on immune-associated proteins in exosomes from hepatoma. World J Gastroenterol 2010; 16:2371-7. [PMID: 20480522 PMCID: PMC2874141 DOI: 10.3748/wjg.v16.i19.2371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of 5-Aza-2’-deoxycytidine (5-Aza-CdR) on heat shock protein 70 (HSP70), human leucocyte antigen-I (HLA-I) and NY-ESO-1 proteins in exosomes produced by hepatoma cells, HepG2 and Hep3B.
METHODS: Exosomes derived from HepG2 and Hep3B cells treated with or without 5-aza-CdR were isolated and purified by ultrafiltration centrifugation and sucrose gradient ultracentrifugation. The number of exosomes was counted under electron microscope. Concentration of proteins in exosomes was measured by bicinchoninic acid protein assay. Expression of HSP70, HLA-I and NY-ESO-1 proteins in exosomes was detected by Western blotting and immunoelectron microscopy. mRNA expression of p53 gene was detected by reverse transcription polymerase chain reaction.
RESULTS: The mRNA expression of p53 gene was increased in both hepatoma cell lines after treatment with 5-Aza-CdR. The number of exosomes and the concentration of total proteins in exosomes were increased significantly after treatment with 5-aza-CdR (P < 0.05). After treatment with 5-Aza-CdR, immunoelectron microscopy and Western blotting showed that the HSP70, HLA-I and NY-ESO-1 proteins were increased in exosomes produced by both hepatoma cell lines.
CONCLUSION: 5-aza-CdR, an inhibitor of DNA methyltransferase, can increase exosomes produced by hepatoma cells and immune-associated protein component of exosomes, which may be mediated by p53 gene up-regulation and 5-Aza-CdR demethylation.
Collapse
|
42
|
Ptitsyn AA, Weil MM, Thamm DH. Systems biology approach to identification of biomarkers for metastatic progression in cancer. BMC Bioinformatics 2008; 9 Suppl 9:S8. [PMID: 18793472 PMCID: PMC2537559 DOI: 10.1186/1471-2105-9-s9-s8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metastases are responsible for the majority of cancer fatalities. The molecular mechanisms governing metastasis are poorly understood, hindering early diagnosis and treatment. Previous studies of gene expression patterns in metastasis have concentrated on selection of a small number of "signature" biomarkers. RESULTS We propose an alternative approach that puts into focus gene interaction networks and molecular pathways rather than separate genes. We have reanalyzed expression data from a large set of primary solid and metastatic tumors originating from different tissues using the latest available tools for normalization, identification of differentially expressed genes and pathway analysis. Our studies indicate that regardless of the tissue of origin, all metastatic tumors share a number of common features related to changes in basic energy metabolism, cell adhesion/cytoskeleton remodeling, antigen presentation and cell cycle regulation. Analysis of multiple independent datasets indicates significantly reduced oxidative phosphorylation in metastases compared to primary solid tumors. CONCLUSION Our methods allow identification of robust, although not necessarily highly expressed biomarkers. A systems approach relying on groups of interacting genes rather than single markers is also essential for understanding the cellular processes leading to metastatic progression. We have identified metabolic pathways associated with metastasis that may serve as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrey A Ptitsyn
- Center for Bioinformatics, Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA.
| | | | | |
Collapse
|