1
|
De Vos K, Mavrogiannis A, Wolters JC, Schlenner S, Wierda K, Cortés Calabuig Á, Chinnaraj R, Dermesrobian V, Armoudjian Y, Jacquemyn M, Corthout N, Daelemans D, Annaert P. Tankyrase1/2 inhibitor XAV-939 reverts EMT and suggests that PARylation partially regulates aerobic activities in human hepatocytes and HepG2 cells. Biochem Pharmacol 2024; 227:116445. [PMID: 39053638 DOI: 10.1016/j.bcp.2024.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The maintenance of a highly functional metabolic epithelium in vitro is challenging. Metabolic impairments in primary human hepatocytes (PHHs) over time is primarily due to epithelial-to-mesenchymal transitioning (EMT). The immature hepatoma cell line HepG2 was used as an in vitro model to explore strategies for enhancing the hepatic phenotype. The phenotypic characterization includes measuring the urea cycle, lipid storage, tricarboxylic acid-related metabolites, reactive oxygen species, endoplasmic reticulum calcium efflux, mitochondrial membrane potentials, oxygen consumptions rate, and CYP450 biotransformation capacity. Expression studies were performed with transcriptomics, co-immunoprecipitation and proteomics. CRISPR/Cas9 was also employed to genetically engineer HepG2 cells. After confirming that PHHs develop an EMT phenotype, expression of tankyrase1/2 was found to increase over time. EMT was reverted when blocking tankyrases1/2-dependent poly-ADP-ribosylation (PARylation) activity, by biochemical and genetic perturbation. Wnt/β-catenin inhibitor XAV-939 blocks tankyrase1/2 and treatment elevated several oxygen-consuming reactions (electron-transport chain, OXHPOS, CYP450 mono-oxidase activity, phase I/II xenobiotic biotransformation, and prandial turnover), suggesting that cell metabolism was enhanced. Glutathione-dependent redox homeostasis was also significantly improved in the XAV-939 condition. Oxygen consumption rate and proteomics experiments in tankyrase1/2 double knockout HepG2 cells then uncovered PARylation as master regulator of aerobic-dependent cell respiration. Furthermore, novel tankyrase1/2-dependent PARylation targets, including mitochondrial DLST, and OGDH, were revealed. This work exposed a new mechanistic framework by linking PARylation to respiration and metabolism, thereby broadening the current understanding that underlies these vital processes. XAV-939 poses an immediate and straightforward strategy to improve aerobic activities, and metabolism, in (immature) cell cultures.
Collapse
Affiliation(s)
- Kristof De Vos
- Laboratory of Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Adamantios Mavrogiannis
- Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Justina Clarinda Wolters
- Section Systems Medicine of Metabolism and Signaling, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, the Netherlands
| | - Susan Schlenner
- Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | | | - Reena Chinnaraj
- KU Leuven Flow and Mass Cytometry Facility, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Vera Dermesrobian
- KU Leuven Flow and Mass Cytometry Facility, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | | | - Maarten Jacquemyn
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000 Leuven, Belgium
| | - Nikky Corthout
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; VIB Bio Imaging Core, 3000 Leuven, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000 Leuven, Belgium
| | - Pieter Annaert
- Laboratory of Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; BioNotus GCV, 2845 Niel, Belgium.
| |
Collapse
|
2
|
Yu M, Yang Y, Sykes M, Wang S. Small-Molecule Inhibitors of Tankyrases as Prospective Therapeutics for Cancer. J Med Chem 2022; 65:5244-5273. [PMID: 35306814 DOI: 10.1021/acs.jmedchem.1c02139] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tankyrases are multifunctional poly(adenosine diphosphate-ribose) polymerases that regulate diverse biological processes including telomere maintenance and cellular signaling. These processes are often implicated in a number of human diseases, with cancer being the most prevalent example. Accordingly, tankyrase inhibitors have gained increasing attention as potential therapeutics. Since the discovery of XAV939 and IWR-1 as the first tankyrase inhibitors over two decades ago, tankyrase-targeted drug discovery has made significant progress. This review starts with an introduction of tankyrases, with emphasis placed on their cancer-related functions. Small-molecule inhibitors of tankyrases are subsequently delineated based on their distinct modes of binding to the enzymes. In addition to inhibitors that compete with oxidized nicotinamide adenine dinucleotide (NAD+) for binding to the catalytic domain of tankyrases, non-NAD+-competitive inhibitors are detailed. This is followed by a description of three clinically trialled tankyrase inhibitors. To conclude, some of challenges and prospects in developing tankyrase-targeted cancer therapies are discussed.
Collapse
Affiliation(s)
- Mingfeng Yu
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Yuchao Yang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Matthew Sykes
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
3
|
Khatun B, Kamath V, Sathyanarayana MB, Pai A, Gupta R, Malviya R. Emerging Role of Wnt/Beta-Catenin Signalling Pathways in Cancer Progression and Role of Small Molecule Tankyrase Inhibitors in Combating Multistage Cancers. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210628122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present review, an attempt has been made to summarize the development of various
Tankyrase inhibitors focussing on Wnt/beta-Catenin pathways along with other cancer targets.
The last decade witnessed a plethora of research related to the role of various genetic and epigenetic
events that are responsible for the progression of multistage cancers. As a result, the discovery of
various signalling pathways responsible for the development of different types of cancers has resulted
in the development of molecularly targeted anticancer agents. Out of the many signalling pathways,
the Wnt/beta-Catenin pathways have attracted the attention of many research groups owing
to their involvement in cell proliferation, role in apoptosis induction, cellular differentiation and also
cell migration. The abnormal activation of this pathways has been documented in a variety of tumour
cells. Another crucial factor that makes this pathway attractive to the researches is its direct
involvement with poly ADP ribose polymerases. Tankyrases are poly ADP (Adenosine Diphosphate)
ribose polymerases that have the capacity to inhibit Wnt/beta-Catenin pathways and become
an attractive target for anticancer drugs.
Collapse
Affiliation(s)
- Babli Khatun
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka,India
| | - Venkatesh Kamath
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka,India
| | - Muddukrishna Badamane Sathyanarayana
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka,India
| | - Aravinda Pai
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka,India
| | - Ramji Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh,India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh,India
| |
Collapse
|
4
|
Okunlola FO, Akawa OB, Subair TI, Omolabi KF, Soliman MES. Unravelling the Mechanistic Role of Quinazolinone Pharmacophore in the Inhibitory Activity of Bis-quinazolinone Derivative on Tankyrase-1 in the Treatment of Colorectal Cancer (CRC) and Non-small Cell Lung Cancer (NSCLC): A Computational Approach. Cell Biochem Biophys 2021; 80:1-10. [PMID: 34453681 DOI: 10.1007/s12013-021-01027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 11/25/2022]
Abstract
In recent years, tankyrase inhibition has gained a great focus as an anti-cancer strategy due to their modulatory effect on WNT/β-catenin pathway implicated in many malignancies, including colorectal cancer (CRC) and non-small cell lung cancer (NSCLC). Based on the structural homology in the catalytic domain of PARP enzymes, bis-quinazolinone 5 (Cpd 5) was designed to be a potent selective tankyrase inhibitor. In this study, we employed molecular dynamics simulations and binding energy analysis to decipher the underlying mechanism of TNK-1 inhibition by Cpd 5 in comparison with a known selective tankyrase, IWR-1. The Cpd 5 had a relatively higher ΔGbind than IWR-1 from the thermodynamics analysis, revealing the better inhibitory activity of Cpd 5 compared to IWR-1. High involvement of solvation energy (ΔGsol) and the van der Waals energy (ΔEvdW) potentiated the affinity of Cpd 5 at TNK-1 active site. Interestingly, the keto group and the N3 atom of the quinazolinone nucleus of Cpd 5, occupying the NAM subsite, was able to form H-bond with Gly1185, thereby favoring the better stability and higher inhibitory efficacy of Cpd 5 relative to IWR-1. Our analysis proved that the firm binding of Cpd 5 was achieved by the quinazolinone groups via the hydrophobic interactions with the side chains of key site residues at the two subsite regions: His1201, Phe1188, Ala1191, and Ile1192 at the AD subsite and Tyr1224, Tyr1213, and Ala1215 at the NAM subsite. Thus, Cpd 5 is dominantly bound through π-π stacked interactions and other hydrophobic interactions. We believe that findings from this study would provide an important rationale towards the structure-based design of improved selective tankyrase inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Felix O Okunlola
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Oluwole B Akawa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Temitayo I Subair
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Kehinde F Omolabi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|
5
|
Miglani M, Pasha Q, Gupta A, Priyadarshini A, Pati Pandey R, Vibhuti A. Seeding drug discovery: Telomeric tankyrase as a pharmacological target for the pathophysiology of high-altitude hypoxia. Drug Discov Today 2021; 26:2774-2781. [PMID: 34302973 DOI: 10.1016/j.drudis.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/01/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
Cellular exposure to extreme environments leads to the expression of multiple proteins that participate in pathophysiological manifestations. Hypobaric hypoxia at high altitude (HA) generates reactive oxygen species (ROS) that can damage telomeres. Tankyrase (TNKS) belongs to multiple telomeric protein complexes and is actively involved in DNA damage repair. Although published research on TNKS indicates its possible role in cancer and other hypoxic diseases, its role in HA sicknesses remains elusive. Understanding the roles of telomeres, telomerase, and TNKS could ameliorate physiological issues experienced at HA. In addition, telomeric TNKS could be a potential biomarker in hypoxia-induced sicknesses or acclimatization. Thus, a new research avenue on TNKS linked to HA sickness might lead to the discovery of drugs for hypobaric hypoxia.
Collapse
Affiliation(s)
- Manjula Miglani
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India; Functional Genomics Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi 110007, India
| | - Qadar Pasha
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi 110007, India
| | - Archana Gupta
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India
| | - Anjali Priyadarshini
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India
| | - Ramendra Pati Pandey
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India.
| |
Collapse
|
6
|
Damale MG, Pathan SK, Shinde DB, Patil RH, Arote RB, Sangshetti JN. Insights of tankyrases: A novel target for drug discovery. Eur J Med Chem 2020; 207:112712. [PMID: 32877803 DOI: 10.1016/j.ejmech.2020.112712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Tankyrases are the group of enzymes belonging to a class of Poly (ADP-ribose) polymerase (PARP) recently named ADP-ribosyltransferase (ARTD). The two isoforms of tankyrase i.e. tankyrase1 (TNKS1) and tankyrase2 (TNKS2) were abundantly expressed in various biological functions in telomere regulation, Wnt/β-catenin signaling pathway, viral replication, endogenous hormone regulation, glucose transport, cherubism disease, erectile dysfunction, and apoptosis. The structural analysis, mechanistic information, in vitro and in vivo studies led identification and development of several classes of tankyrase inhibitors under clinical phases. In the nutshell, this review will drive future research on tankyrase as it enlighten the structural and functional features of TNKS 1 and TNKS 2, different classes of inhibitors with their structure-activity relationship studies, molecular modeling studies, as well as past, current and future perspective of the different class of tankyrase inhibitors.
Collapse
Affiliation(s)
- Manoj G Damale
- Department of Pharmaceutical Medicinal Chemistry, Srinath College of Pharmacy, Aurangabad, 431136, MS, India
| | - Shahebaaz K Pathan
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS, 431001, India
| | | | - Rajendra H Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, M.S, India
| | - Rohidas B Arote
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jaiprakash N Sangshetti
- Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS, 431001, India.
| |
Collapse
|
7
|
Huang J, Qu Q, Guo Y, Xiang Y, Feng D. Tankyrases/β-catenin Signaling Pathway as an Anti-proliferation and Anti-metastatic Target in Hepatocarcinoma Cell Lines. J Cancer 2020; 11:432-440. [PMID: 31897238 PMCID: PMC6930431 DOI: 10.7150/jca.30976] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 09/28/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: The Wnt/β-catenin pathway is involved in the development of hepatocellular carcinoma (HCC) and malignant events such as the epithelial-mesenchymal transition (EMT), metastasis, and invasion. Studies have illustrated that the inhibition of tankyrases (TNKS) antagonizes Wnt/β-catenin signaling in many cancer cells. Methods: The expression levels of proteins related to the Wnt/β-catenin pathway and EMT were analyzed by immunohistochemistry in HCC tissue and paired adjacent normal tissue (n = 10), and in an analysis of The Cancer Genome Atlas (TCGA) data. Additionally, after treatment of HCC cell lines with TNKS1/2 small interfering RNA (siRNA) and a novel TNKS inhibitor (NVP-TNKS656), cell viability, cell clone formation, wound-healing, and cell invasion assays were performed. Results: Higher expression of β-catenin, TNKS, vimentin, and N-cadherin was observed in HCC tissue compared to adjacent normal tissue, but lower expression of E-cadherin was found in HCC tissue. These findings were also observed in the TCGA analysis. In addition, TNKS inhibition (using TNKS1/2 siRNA and NVP-TNKS656) not only abrogated the proliferation of the HCC cell lines but also suppressed metastasis, invasion, and EMT phenotypic features. Moreover, the mechanisms related to TNKS inhibition in HCC probably involved the stabilization of AXIN levels and the downregulation of β-catenin, which mediates EMT marker expression. Conclusion: The TNKS/β-catenin signaling pathway is a potential anti-proliferation and anti-metastatic target in HCC.
Collapse
Affiliation(s)
- Jianghai Huang
- Department of Pathology, the Second Xiangya Hospital.,Department of Pathology, School of Basic Medical Sciences
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital
| | - Yong Guo
- Department of neurosurgery, Xiangya Hospital
| | - Yuqi Xiang
- Department of Pathology, School of Basic Medical Sciences
| | - Deyun Feng
- Department of Pathology, School of Basic Medical Sciences.,Department of Pathology, Xiangya Hospital, Central South University, Changsha city, Hunan province, China
| |
Collapse
|
8
|
Langelier MF, Eisemann T, Riccio AA, Pascal JM. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Curr Opin Struct Biol 2018; 53:187-198. [PMID: 30481609 DOI: 10.1016/j.sbi.2018.11.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribose) is a posttranslational modification and signaling molecule that regulates many aspects of human cell biology, and it is synthesized by enzymes known as poly(ADP-ribose) polymerases, or PARPs. A diverse collection of domain structures dictates the different cellular roles of PARP enzymes and regulates the production of poly(ADP-ribose). Here we primarily review recent structural insights into the regulation and catalysis of two family members: PARP-1 and Tankyrase. PARP-1 has multiple roles in the cellular response to DNA damage and the regulation of gene transcription, and Tankyrase regulates a diverse set of target proteins involved in cellular processes such as mitosis, genome integrity, and cell signaling. Both enzymes offer interesting modes of regulating the production and the target site selectivity of the poly(ADP-ribose) modification.
Collapse
Affiliation(s)
- Marie-France Langelier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Travis Eisemann
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Amanda A Riccio
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
9
|
The tankyrase inhibitor G007-LK inhibits small intestine LGR5 + stem cell proliferation without altering tissue morphology. Biol Res 2018; 51:3. [PMID: 29316982 PMCID: PMC5759193 DOI: 10.1186/s40659-017-0151-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/28/2017] [Indexed: 12/16/2022] Open
Abstract
Background The WNT pathway regulates intestinal stem cells and is frequently disrupted in intestinal adenomas. The pathway contains several potential biotargets for interference, including the poly-ADP ribosyltransferase enzymes tankyrase1 and 2. LGR5 is a known WNT pathway target gene and marker of intestinal stem cells. The LGR5+ stem cells are located in the crypt base and capable of regenerating all intestinal epithelial cell lineages. Results We treated Lgr5-EGFP-Ires-CreERT2;R26R-Confetti mice with the tankyrase inhibitor G007-LK for up to 3 weeks to assess the effect on duodenal stem cell homeostasis and on the integrity of intestinal epithelium. At the administered doses, G007-LK treatment inhibited WNT signalling in LGR5+ stem cells and reduced the number and distribution of cells traced from duodenal LGR5+ stem cells. However, the gross morphology of the duodenum remained unaltered and G007-LK-treated mice showed no signs of weight loss or any other visible morphological changes. The inhibitory effect on LGR5+ stem cell proliferation was reversible. Conclusion We show that the tankyrase inhibitor G007-LK is well tolerated by the mice, although proliferation of the LGR5+ intestinal stem cells was inhibited. Our observations suggest the presence of a tankyrase inhibitor-resistant cell population in the duodenum, able to rescue tissue integrity in the presence of G007-LK-mediated inhibition of the WNT signalling dependent LGR5+ intestinal epithelial stem cells. Electronic supplementary material The online version of this article (10.1186/s40659-017-0151-6) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Mariotti L, Pollock K, Guettler S. Regulation of Wnt/β-catenin signalling by tankyrase-dependent poly(ADP-ribosyl)ation and scaffolding. Br J Pharmacol 2017; 174:4611-4636. [PMID: 28910490 PMCID: PMC5727255 DOI: 10.1111/bph.14038] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022] Open
Abstract
The Wnt/β-catenin signalling pathway is pivotal for stem cell function and the control of cellular differentiation, both during embryonic development and tissue homeostasis in adults. Its activity is carefully controlled through the concerted interactions of concentration-limited pathway components and a wide range of post-translational modifications, including phosphorylation, ubiquitylation, sumoylation, poly(ADP-ribosyl)ation (PARylation) and acetylation. Regulation of Wnt/β-catenin signalling by PARylation was discovered relatively recently. The PARP tankyrase PARylates AXIN1/2, an essential central scaffolding protein in the β-catenin destruction complex, and targets it for degradation, thereby fine-tuning the responsiveness of cells to the Wnt signal. The past few years have not only seen much progress in our understanding of the molecular mechanisms by which PARylation controls the pathway but also witnessed the successful development of tankyrase inhibitors as tool compounds and promising agents for the therapy of Wnt-dependent dysfunctions, including colorectal cancer. Recent work has hinted at more complex roles of tankyrase in Wnt/β-catenin signalling as well as challenges and opportunities in the development of tankyrase inhibitors. Here we review some of the latest advances in our understanding of tankyrase function in the pathway and efforts to modulate tankyrase activity to re-tune Wnt/β-catenin signalling in colorectal cancer cells. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Laura Mariotti
- Division of Structural BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | - Katie Pollock
- Division of Structural BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Sebastian Guettler
- Division of Structural BiologyThe Institute of Cancer ResearchLondonUK
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
11
|
Xu W, Lau YH, Fischer G, Tan YS, Chattopadhyay A, de la Roche M, Hyvönen M, Verma C, Spring DR, Itzhaki LS. Macrocyclized Extended Peptides: Inhibiting the Substrate-Recognition Domain of Tankyrase. J Am Chem Soc 2017; 139:2245-2256. [PMID: 28084734 PMCID: PMC5358875 DOI: 10.1021/jacs.6b10234] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Indexed: 12/25/2022]
Abstract
We report a double-click macrocyclization approach for the design of constrained peptide inhibitors having non-helical or extended conformations. Our targets are the tankyrase proteins (TNKS), poly(ADP-ribose) polymerases (PARP) that regulate Wnt signaling by targeting Axin for degradation. TNKS are deregulated in many different cancer types, and inhibition of TNKS therefore represents an attractive therapeutic strategy. However, clinical development of TNKS-specific PARP catalytic inhibitors is challenging due to off-target effects and cellular toxicity. We instead targeted the substrate-recognition domain of TNKS, as it is unique among PARP family members. We employed a two-component strategy, allowing peptide and linker to be separately engineered and then assembled in a combinatorial fashion via click chemistry. Using the consensus substrate-peptide sequence as a starting point, we optimized the length and rigidity of the linker and its position along the peptide. Optimization was further guided by high-resolution crystal structures of two of the macrocyclized peptides in complex with TNKS. This approach led to macrocyclized peptides with submicromolar affinities for TNKS and high proteolytic stability that are able to disrupt the interaction between TNKS and Axin substrate and to inhibit Wnt signaling in a dose-dependent manner. The peptides therefore represent a promising starting point for a new class of substrate-competitive inhibitors of TNKS with potential for suppressing Wnt signaling in cancer. Moreover, by demonstrating the application of the double-click macrocyclization approach to non-helical, extended, or irregularly structured peptides, we greatly extend its potential and scope, especially given the frequency with which such motifs mediate protein-protein interactions.
Collapse
Affiliation(s)
- Wenshu Xu
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Yu Heng Lau
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Gerhard Fischer
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Yaw Sing Tan
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix 138671, Singapore
| | - Anasuya Chattopadhyay
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Marc de la Roche
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Marko Hyvönen
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Chandra Verma
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix 138671, Singapore
- School
of Biological Sciences, Nanyang Technological
University, 60 Nanyang
Drive 637551, Singapore
- Department
of Biological Sciences, National University
of Singapore, 14 Science
Drive 4 117543, Singapore
| | - David R. Spring
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Laura S. Itzhaki
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| |
Collapse
|
12
|
Mariotti L, Templeton CM, Ranes M, Paracuellos P, Cronin N, Beuron F, Morris E, Guettler S. Tankyrase Requires SAM Domain-Dependent Polymerization to Support Wnt-β-Catenin Signaling. Mol Cell 2016; 63:498-513. [PMID: 27494558 PMCID: PMC4980433 DOI: 10.1016/j.molcel.2016.06.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/13/2016] [Accepted: 06/13/2016] [Indexed: 01/14/2023]
Abstract
The poly(ADP-ribose) polymerase (PARP) Tankyrase (TNKS and TNKS2) is paramount to Wnt-β-catenin signaling and a promising therapeutic target in Wnt-dependent cancers. The pool of active β-catenin is normally limited by destruction complexes, whose assembly depends on the polymeric master scaffolding protein AXIN. Tankyrase, which poly(ADP-ribosyl)ates and thereby destabilizes AXIN, also can polymerize, but the relevance of these polymers has remained unclear. We report crystal structures of the polymerizing TNKS and TNKS2 sterile alpha motif (SAM) domains, revealing versatile head-to-tail interactions. Biochemical studies informed by these structures demonstrate that polymerization is required for Tankyrase to drive β-catenin-dependent transcription. We show that the polymeric state supports PARP activity and allows Tankyrase to effectively access destruction complexes through enabling avidity-dependent AXIN binding. This study provides an example for regulated signal transduction in non-membrane-enclosed compartments (signalosomes), and it points to novel potential strategies to inhibit Tankyrase function in oncogenic Wnt signaling.
Collapse
Affiliation(s)
- Laura Mariotti
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Catherine M Templeton
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Michael Ranes
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Patricia Paracuellos
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Nora Cronin
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Edward Morris
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Sebastian Guettler
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK.
| |
Collapse
|
13
|
Wang Y, Jiang W, Liu X, Zhang Y. Tankyrase 2 (TNKS2) polymorphism associated with risk in developing non-small cell lung cancer in a Chinese population. Pathol Res Pract 2015; 211:766-71. [PMID: 26293798 DOI: 10.1016/j.prp.2015.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/22/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVES We investigated the association between poly(ADP-ribose) polymerase Tankyrase 2 (TNKS2) single-nucleotide polymorphisms (SNPs) and the risk of developing non-small cell lung cancer (NSCLC) in a Han Chinese population. METHODS Five-hundred NSCLC cases and 500 healthy controls were genotyped for four TNKS2 tagging SNPs (rs1538833, rs1538833, rs1340420, and rs1340420). The association between genotype and NSCLC risk was evaluated by computing the odds ratio (OR) and 95% confidence interval (CI) using multivariate unconditional logistic regression analyses. RESULTS Individual alleles of the four TNKS2 SNPs were not associated with NSCLC risk in the studied Chinese population. However, patients carrying TNKS2 rs1340420 G/G and A/G genotypes were associated with a lower risk of developing NSCLC and adenocarcinoma (OR=0.14; 95% CI=0.02-1.15 and OR=0.11; 95% CI=0.03-0.91, respectively), whereas females patients homozygous for the TNKS2 rs1770474 T allele, a rare type, were associated with a higher risk of developing squamous-cell carcinoma (SCC) (OR=4.67; 95% CI=0.87-25.01). CONCLUSION TNKS2 rs1340420 SNP was associated with lower NSCLC risk, whereas rs1770474 SNP was associated with higher SCC risk, suggesting that these two SNPs may be useful predictors of risk of developing NSCLC and SCC in this Chinese population.
Collapse
Affiliation(s)
- Ying Wang
- Department of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Xiaogu Liu
- Department of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongjun Zhang
- Department of Integration of Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
14
|
Haikarainen T, Krauss S, Lehtio L. Tankyrases: structure, function and therapeutic implications in cancer. Curr Pharm Des 2015; 20:6472-88. [PMID: 24975604 PMCID: PMC4262938 DOI: 10.2174/1381612820666140630101525] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022]
Abstract
Several cellular signaling pathways are regulated by ADP-ribosylation, a posttranslational modification catalyzed by members of the ARTD superfamily. Tankyrases are distinguishable from the rest of this family by their unique domain organization, notably the sterile alpha motif responsible for oligomerization and ankyrin repeats mediating protein-protein interactions. Tankyrases are involved in various cellular functions, such as telomere homeostasis, Wnt/β-catenin signaling, glucose metabolism, and cell cycle progression. In these processes, Tankyrases regulate the interactions and stability of target proteins by poly (ADP-ribosyl)ation. Modified proteins are subsequently recognized by the E3 ubiquitin ligase RNF146, poly-ubiquitinated and predominantly guided to 26S proteasomal degradation. Several small molecule inhibitors have been described for Tankyrases; they compete with the co-substrate NAD+ for binding to the ARTD catalytic domain. The recent, highly potent and selective inhibitors possess several properties of lead compounds and can be used for proof-of-concept studies in cancer and other Tankyrase linked diseases.
Collapse
Affiliation(s)
| | | | - Lari Lehtio
- SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleen 21, 0349, Oslo, Norway.
| |
Collapse
|
15
|
Lehtiö L, Chi NW, Krauss S. Tankyrases as drug targets. FEBS J 2013; 280:3576-93. [PMID: 23648170 DOI: 10.1111/febs.12320] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/30/2013] [Accepted: 05/01/2013] [Indexed: 12/11/2022]
Abstract
Tankyrase 1 and tankyrase 2 are poly(ADP-ribosyl)ases that are distinguishable from other members of the enzyme family by the structural features of the catalytic domain, and the presence of a sterile α-motif multimerization domain and an ankyrin repeat protein-interaction domain. Tankyrases are implicated in a multitude of cellular functions, including telomere homeostasis, mitotic spindle formation, vesicle transport linked to glucose metabolism, Wnt-β-catenin signaling, and viral replication. In these processes, tankyrases interact with target proteins, catalyze poly(ADP-ribosyl)ation, and regulate protein interactions and stability. The proposed roles of tankyrases in disease-relevant cellular processes have made them attractive drug targets. Recently, several inhibitors have been identified. The selectivity and potency of these small molecules can be rationalized by how they fit within the NAD(+)-binding groove of the catalytic domain. Some molecules bind to the nicotinamide subsite, such as generic diphtheria toxin-like ADP-ribosyltransferase inhibitors, whereas others bind to a distinct adenosine subsite that diverges from other diphtheria toxin-like ADP-ribosyltransferases and confers specificity. A highly potent dual-site inhibitor is also available. Within the last few years, tankyrase inhibitors have proved to be useful chemical probes and potential lead compounds, especially for specific cancers.
Collapse
Affiliation(s)
- Lari Lehtiö
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Oulu, Finland.
| | | | | |
Collapse
|
16
|
Heller A, Zörnig I, Müller T, Giorgadze K, Frei C, Giese T, Bergmann F, Schmidt J, Werner J, Buchler MW, Jaeger D, Giese NA. Immunogenicity of SEREX-identified antigens and disease outcome in pancreatic cancer. Cancer Immunol Immunother 2010; 59:1389-400. [PMID: 20514540 PMCID: PMC11029919 DOI: 10.1007/s00262-010-0870-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 05/15/2010] [Indexed: 01/06/2023]
Abstract
Despite spontaneous or vaccination-induced immune responses, pancreatic cancer remains one of the most deadly immunotherapy-resistant malignancies. We sought to comprehend the spectrum of pancreatic tumor-associated antigens (pTAAs) and to assess the clinical relevance of their immunogenicity. An autologous SEREX-based screening of a cDNA library constructed from a pancreatic T3N0M0/GIII specimen belonging to a long-term survivor (36 months) revealed 18 immunogenic pTAA. RT-PCR analysis displayed broad distribution of the identified antigens among normal human tissues. PNLIPRP2 and MIA demonstrated the most distinct pancreatic cancer-specific patterns. ELISA-based screening of sera for corresponding autoantibodies revealed that although significantly increased, the immunogenicity of these molecules was not a common feature in pancreatic cancer. QRT-PCR and immunohistochemistry characterized PNLIPRP2 as a robust acinar cell-specific marker whose decreased expression mirrored the disappearance of parenchyma in the diseased organ, but was not related to the presence of PNLIPRP2 autoantibodies. Analyses of MIA-known to be preferentially expressed in malignant cells-surprisingly revealed an inverse correlation between intratumoral gene expression and the emergence of autoantibodies. MIA(high) patients were autoantibody-negative and had shorter median survival when compared with autoantibody-positive MIA(low) patients (12 vs. 34 months). The observed pTAA spectrum comprised molecules associated with acinar, stromal and malignant structures, thus presenting novel targets for tumor cell-specific therapies as well as for approaches based on the bystander effects. Applying the concept of cancer immunoediting to interpret relationships between gene expression, antitumor immune responses, and clinical outcome might better discriminate between past and ongoing immune responses, consequently enabling prognostic stratification of patients and individual adjustment of immunotherapy.
Collapse
Affiliation(s)
- A. Heller
- Department of Surgery, University Hospital Heidelberg, INF 116, 69120 Heidelberg, Germany
| | - I. Zörnig
- Medical Oncology, National Centre of Tumor Diseases (NCT), University Hospital Heidelberg, INF 350, 69120 Heidelberg, Germany
| | - T. Müller
- Medical Oncology, National Centre of Tumor Diseases (NCT), University Hospital Heidelberg, INF 350, 69120 Heidelberg, Germany
| | - K. Giorgadze
- Department of Surgery, University Hospital Heidelberg, INF 116, 69120 Heidelberg, Germany
| | - C. Frei
- Medical Oncology, National Centre of Tumor Diseases (NCT), University Hospital Heidelberg, INF 350, 69120 Heidelberg, Germany
| | - T. Giese
- Institute of Immunology, University Hospital Heidelberg, INF 305, 69120 Heidelberg, Germany
| | - F. Bergmann
- Institute of Pathology, University Hospital Heidelberg, INF 220, 69120 Heidelberg, Germany
| | - J. Schmidt
- Department of Surgery, University Hospital Heidelberg, INF 116, 69120 Heidelberg, Germany
| | - J. Werner
- Department of Surgery, University Hospital Heidelberg, INF 116, 69120 Heidelberg, Germany
| | - M. W. Buchler
- Department of Surgery, University Hospital Heidelberg, INF 116, 69120 Heidelberg, Germany
| | - D. Jaeger
- Medical Oncology, National Centre of Tumor Diseases (NCT), University Hospital Heidelberg, INF 350, 69120 Heidelberg, Germany
| | - N. A. Giese
- Department of Surgery, University Hospital Heidelberg, INF 116, 69120 Heidelberg, Germany
| |
Collapse
|