1
|
Song R, Jia X, Zhao J, Du P, Zhang JA. T cell receptor revision and immune repertoire changes in autoimmune diseases. Int Rev Immunol 2021; 41:517-533. [PMID: 34243694 DOI: 10.1080/08830185.2021.1929954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Autoimmune disease (AID) is a condition in which the immune system breaks down and starts to attack the body. Some common AIDs include systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus and so forth. The changes in T-cell receptor (TCR) repertoire have been found in several autoimmune diseases, and may be responsible for the breakdown of peripheral immune tolerance. In this review, we discussed the processes of TCR revision in peripheral immune environment, the changes in TCR repertoire that occurred in various AIDs, and the specifically expanded T cell clones. We hope our discussion can provide insights for the future studies, helping with the discovery of disease biomarkers and expanding the strategies of immune-targeted therapy. HighlightsRestricted TCR repertoire and biased TCR-usage are found in a variety of AIDs.TCR repertoire shows tissue specificity in a variety of AID diseases.The relationship between TCR repertoire diversity and disease activity is still controversial in AIDs.Dominant TCR clonotypes may help to discover new disease biomarkers and expand the strategies of immune-targeted therapy.
Collapse
Affiliation(s)
- Ronghua Song
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peng Du
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
2
|
Morello G, Cancila V, La Rosa M, Germano G, Lecis D, Amodio V, Zanardi F, Iannelli F, Greco D, La Paglia L, Fiannaca A, Urso AM, Graziano G, Ferrari F, Pupa SM, Sangaletti S, Chiodoni C, Pruneri G, Bardelli A, Colombo MP, Tripodo C. T Cells Expressing Receptor Recombination/Revision Machinery Are Detected in the Tumor Microenvironment and Expanded in Genomically Over-unstable Models. Cancer Immunol Res 2021; 9:825-837. [PMID: 33941587 DOI: 10.1158/2326-6066.cir-20-0645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/08/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
Tumors undergo dynamic immunoediting as part of a process that balances immunologic sensing of emerging neoantigens and evasion from immune responses. Tumor-infiltrating lymphocytes (TIL) comprise heterogeneous subsets of peripheral T cells characterized by diverse functional differentiation states and dependence on T-cell receptor (TCR) specificity gained through recombination events during their development. We hypothesized that within the tumor microenvironment (TME), an antigenic milieu and immunologic interface, tumor-infiltrating peripheral T cells could reexpress key elements of the TCR recombination machinery, namely, Rag1 and Rag2 recombinases and Tdt polymerase, as a potential mechanism involved in the revision of TCR specificity. Using two syngeneic invasive breast cancer transplantable models, 4T1 and TS/A, we observed that Rag1, Rag2, and Dntt in situ mRNA expression characterized rare tumor-infiltrating T cells. In situ expression of the transcripts was increased in coisogenic Mlh1-deficient tumors, characterized by genomic overinstability, and was also modulated by PD-1 immune-checkpoint blockade. Through immunolocalization and mRNA hybridization analyses, we detected the presence of rare TDT+RAG1/2+ cells populating primary tumors and draining lymph nodes in human invasive breast cancer. Analysis of harmonized single-cell RNA-sequencing data sets of human cancers identified a very small fraction of tumor-associated T cells, characterized by the expression of recombination/revision machinery transcripts, which on pseudotemporal ordering corresponded to differentiated effector T cells. We offer thought-provoking evidence of a TIL microniche marked by rare transcripts involved in TCR shaping.
Collapse
Affiliation(s)
- Gaia Morello
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Massimo La Rosa
- National Research Council of Italy, ICAR-CNR, Palermo, Italy
| | - Giovanni Germano
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Daniele Lecis
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Vito Amodio
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Federica Zanardi
- Bioinformatics Core Unit IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Fabio Iannelli
- Bioinformatics Core Unit IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Daniele Greco
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Laura La Paglia
- National Research Council of Italy, ICAR-CNR, Palermo, Italy
| | | | - Alfonso M Urso
- National Research Council of Italy, ICAR-CNR, Palermo, Italy
| | - Giulia Graziano
- Computational Genomics Laboratory, IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Francesco Ferrari
- Computational Genomics Laboratory, IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
- Institute of Molecular Genetics "Luigi Luca Cavalli Sforza," National Research Council; IFOM-The FIRC Institute of Molecular Oncology, Pavia, Italy
| | - Serenella M Pupa
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy.
| |
Collapse
|
3
|
Kalinina AA, Nesterenko LN, Bruter AV, Balunets DV, Chudakov DM, Izraelson M, Britanova OV, Khromykh LM, Kazansky DB. Adoptive Immunotherapy Based on Chain-Centric TCRs in Treatment of Infectious Diseases. iScience 2020; 23:101854. [PMID: 33313494 PMCID: PMC7721641 DOI: 10.1016/j.isci.2020.101854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 12/29/2022] Open
Abstract
Complications after vaccination, lack of vaccines against certain infections, and the emergence of antibiotic-resistant microorganisms point to the need for alternative ways of protection and treatment of infectious diseases. Here, we proposed a therapeutic approach to control salmonellosis based on adoptive cell therapy. We showed that the T cell receptor (TCR) repertoire of salmonella-specific memory cells contains 20% of TCR variants with the dominant-active α-chain. Transduction of intact T lymphocytes with the dominant salmonella-specific TCRα led to their enhanced in vitro proliferation in response to salmonella. Adoptive transfer of transduced T cells resulted in a significant decrease in bacterial loads in mice infected with salmonella before or after the adoptive transfer. We demonstrated that adoptive immunotherapy based on T cells, transduced with dominant-specific TCRα could be successfully applied for treatment and prevention of infectious diseases and represent a useful addition to vaccination and existing therapeutic strategies. A regular TCR repertoire of memory T cells contains alpha-chain-centric TCRs Dominant-active TCRα, paired with random TCRβ, recognizes specific microbial antigens Adoptive immunotherapy could be applied for treatment of infections
Collapse
Affiliation(s)
- Anastasiia A Kalinina
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" оf the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| | - Ludmila N Nesterenko
- "N. F. Gamaleya National Research Center of Epidemiology and Microbiology", the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Alexandra V Bruter
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" оf the Ministry of Health of the Russian Federation, 115478 Moscow, Russia.,Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Denis V Balunets
- "N. F. Gamaleya National Research Center of Epidemiology and Microbiology", the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Mark Izraelson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ludmila M Khromykh
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" оf the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| | - Dmitry B Kazansky
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" оf the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| |
Collapse
|
4
|
Steele EJ, Lindley RA. Regulatory T cells and co-evolution of allele-specific MHC recognition by the TCR. Scand J Immunol 2019; 91:e12853. [PMID: 31793005 PMCID: PMC7064991 DOI: 10.1111/sji.12853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
What is the evolutionary mechanism for the TCR-MHC-conserved interaction? We extend Dembic's model (Dembic Z. In, Scand J Immunol e12806, 2019) of thymus positive selection for high-avidity anti-self-MHC Tregs among double (CD4 + CD8+)-positive (DP) developing thymocytes. This model is based on competition for self-MHC (+ Pep) complexes presented on cortical epithelium. Such T cells exit as CD4 + CD25+FoxP3 + thymic-derived Tregs (tTregs). The other positively selected DP T cells are then negatively selected on medulla epithelium removing high-avidity anti-self-MHC + Pep as T cells commit to CD4 + or CD8 + lineages. The process is likened to the competitive selection and affinity maturation in Germinal Centre for the somatic hypermutation (SHM) of rearranged immunoglobulin (Ig) variable region (V[D]Js) of centrocytes bearing antigen-specific B cell receptors (BCR). We now argue that the same direct SHM processes for TCRs occur in post-antigenic Germinal Centres, but now occurring in peripheral pTregs. This model provides a potential solution to a long-standing problem previously recognized by Cohn and others (Cohn M, Anderson CC, Dembic Z. In, Scand J Immunol e12790, 2019) of how co-evolution occurs of species-specific MHC alleles with the repertoire of their germline TCR V counterparts. We suggest this is not by 'blind', slow, and random Darwinian natural selection events, but a rapid structured somatic selection vertical transmission process. The pTregs bearing somatic TCR V mutant genes then, on arrival in reproductive tissues, can donate their TCR V sequences via soma-to-germline feedback as discussed in this journal earlier. (Steele EJ, Lindley RA. In, Scand J Immunol e12670, 2018) The high-avidity tTregs also participate in the same process to maintain a biased, high-avidity anti-self-MHC germline V repertoire.
Collapse
Affiliation(s)
- Edward J Steele
- Melville Analytics Pty Ltd, Melbourne, Vic, Australia.,CYO'Connor ERADE Village Foundation, Perth, WA, Australia
| | - Robyn A Lindley
- GMDxCo Pty Ltd, Melbourne, Vic, Australia.,Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
5
|
Uzhachenko RV, Shanker A. CD8 + T Lymphocyte and NK Cell Network: Circuitry in the Cytotoxic Domain of Immunity. Front Immunol 2019; 10:1906. [PMID: 31456803 PMCID: PMC6700470 DOI: 10.3389/fimmu.2019.01906] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
Multiple effector layers in the immune system ensure an optimal temporal and spatial distribution of immune defense. Cytotoxic innate lymphoid natural killers (NK) and adaptive CD8+ T lymphocytes (CTL) interact to elicit specific cytolytic outcomes. The CTL carry antigen-specific T cell receptors (TCR) to recognize cognate peptides bound with major histocompatibility complex class-I (MHC-I) or human leukocyte antigen (HLA) molecules on target cells. Upon TCR engagement with MHC-I:peptide at a threshold of avidity, T cell intracellular programs converge into cytolytic activity. By contrast, NK cells lack antigen-specific receptors but express a repertoire of highly polymorphic and polygenic inhibitory and activating receptors that bind various ligands including MHC and like molecules. A highly calibrated maturation enables NK cells to eliminate target cells with lowered or absent MHC-I or induced MHC-I-related molecules while maintaining their tolerance toward self-MHC. Both CTL and mature NK cells undergo membranous reorganization and express various effector molecules to eliminate aberrant cells undergoing a stress of transformation, infection or other pathological noxa. Here, we present the cellular modules that underlie the CTL–NK circuitry to maximize their effector cooperativity against stressed or cancerous cells.
Collapse
Affiliation(s)
- Roman V Uzhachenko
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, United States
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, United States.,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, United States.,Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, United States.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
6
|
Jia X, Wang B, Zhai T, Yao Q, Li Q, Zhang JA. WITHDRAWN: T cell receptor revision and immune repertoire changes in autoimmune diseases. Clin Immunol 2018:S1521-6616(18)30724-1. [PMID: 30543918 DOI: 10.1016/j.clim.2018.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Bing Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Tianyu Zhai
- Department of Endocrinology, Zhongshan Hospital of Fudan University, Shanghai 201508, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
7
|
Steele EJ, Lindley RA. Germline V repertoires: Origin, maintenance, diversification. Scand J Immunol 2018; 87:e12670. [PMID: 29706014 DOI: 10.1111/sji.12670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/23/2018] [Indexed: 01/10/2023]
Abstract
In our view, Melvin Cohn (Scand J Immunol. 2018;87:e12640) has set out the logical guidelines towards a resolution of the very real enigma of the selectability of vertebrate germline Ig V repertoires under the current evolutionary paradigm…" A somatically derived repertoire scrambles this (germline VL + VH) substrate so that its specificities are lost, making it un-selectable in the germline. Consequently, evolution faced an incompatibility." It is argued here in Reply that a reverse transcriptase-based soma-to-germline process (S->G) targeting germline V segment arrays goes some considerable way to resolving fundamental contradictions on the origin, maintenance and then real-time adaptive diversification of these limited sets of V segments encoded within various V repertoire arrays.
Collapse
Affiliation(s)
- E J Steele
- CYO'Connor ERADE Village Foundation, Perth, WA, Australia.,Melville Analytics Pty Ltd, Melbourne, Vic., Australia
| | - R A Lindley
- GMDxCo Pty Ltd, Melbourne, Vic., Australia.,Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
8
|
Rydahl MG, Krac Un SK, Fangel JU, Michel G, Guillouzo A, Génicot S, Mravec J, Harholt J, Wilkens C, Motawia MS, Svensson B, Tranquet O, Ralet MC, Jørgensen B, Domozych DS, Willats WGT. Development of novel monoclonal antibodies against starch and ulvan - implications for antibody production against polysaccharides with limited immunogenicity. Sci Rep 2017; 7:9326. [PMID: 28839196 PMCID: PMC5570955 DOI: 10.1038/s41598-017-04307-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/12/2017] [Indexed: 02/06/2023] Open
Abstract
Monoclonal antibodies (mAbs) are widely used and powerful research tools, but the generation of mAbs against glycan epitopes is generally more problematic than against proteins. This is especially significant for research on polysaccharide-rich land plants and algae (Viridiplantae). Most antibody production is based on using single antigens, however, there are significant gaps in the current repertoire of mAbs against some glycan targets with low immunogenicity. We approached mAb production in a different way and immunised with a complex mixture of polysaccharides. The multiplexed screening capability of carbohydrate microarrays was then exploited to deconvolute the specificities of individual mAbs. Using this strategy, we generated a set of novel mAbs, including one against starch (INCh1) and one against ulvan (INCh2). These polysaccharides are important storage and structural polymers respectively, but both are generally considered as having limited immunogenicity. INCh1 and INCh2 therefore represent important new molecular probes for Viridiplantae research. Moreover, since the α-(1-4)-glucan epitope recognised by INCh1 is also a component of glycogen, this mAb can also be used in mammalian systems. We describe the detailed characterisation of INCh1 and INCh2, and discuss the potential of a non-directed mass-screening approach for mAb production against some glycan targets.
Collapse
Affiliation(s)
- Maja G Rydahl
- Department of Plant and Environmental Sciences, DK-1871, Frederiksberg, Denmark.
| | - Stjepan K Krac Un
- Department of Plant and Environmental Sciences, DK-1871, Frederiksberg, Denmark
| | - Jonatan U Fangel
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | - Gurvan Michel
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - Alexia Guillouzo
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - Sabine Génicot
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, DK-1871, Frederiksberg, Denmark
| | - Jesper Harholt
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | - Casper Wilkens
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | | | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Olivier Tranquet
- UR1268 Biopolymeres, Interactions et Assemblages, Institut National de la Recherche Agronomique, Rue de la Géraudière, BP 71627, F-44316, Nantes, France
| | - Marie-Christine Ralet
- UR1268 Biopolymeres, Interactions et Assemblages, Institut National de la Recherche Agronomique, Rue de la Géraudière, BP 71627, F-44316, Nantes, France
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, DK-1871, Frederiksberg, Denmark
| | - David S Domozych
- Biology Department, Skidmore College, Saratoga Springs, NY, 12866, USA
| | - William G T Willats
- School of Agriculture, Food and Rural Development, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK.
| |
Collapse
|
9
|
Wagner DH. Of the multiple mechanisms leading to type 1 diabetes, T cell receptor revision may play a prominent role (is type 1 diabetes more than a single disease?). Clin Exp Immunol 2016; 185:271-80. [PMID: 27271348 DOI: 10.1111/cei.12819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/20/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
A single determinant factor for autoimmunity does not exist; disease development probably involves contributions from genetics, the environment and immune dysfunction. Type 1 diabetes is no exception. Genomewide-associated studies (GWAS) analysis in T1D has proved disappointing in revealing contributors to disease prediction; the only reliable marker has been human leucocyte antigen (HLA). Specific HLAs include DR3/DR4/DQ2/DQ8, for example. Because HLA molecules present antigen to T cells, it is reasonable that certain HLA molecules have a higher affinity to present self-antigen. Recent studies have shown that additional polymorphisms in HLA that are restricted to autoimmune conditions are further contributory. A caveat is that not all individuals with the appropriate 'pro-autoimmune' HLA develop an autoimmune disease. Another crucial component is autoaggressive T cells. Finding a biomarker to discriminate autoaggressive T cells has been elusive. However, a subset of CD4 helper cells that express the CD40 receptor have been described as becoming pathogenic. An interesting function of CD40 on T cells is to induce the recombination-activating gene (RAG)1/RAG2 T cell receptor recombination machinery. This observation is contrary to immunology paradigms that changes in TCR molecules cannot take place outside the thymic microenvironment. Alteration in TCR, called TCR revision, not only occurs, but may help to account for the development of autoaggressive T cells. Another interesting facet is that type 1 diabetes (T1D) may be more than a single disease; that is, multiple cellular components contribute uniquely, but result ultimately in the same clinical outcome, T1D. This review considers the process of T cell maturation and how that could favor auto-aggressive T cell development in T1D. The potential contribution of TCR revision to autoimmunity is also considered.
Collapse
Affiliation(s)
- D H Wagner
- Department of Medicine, Department of Neurology, Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
10
|
Steele EJ, Lloyd SS. Soma-to-germline feedback is implied by the extreme polymorphism at IGHV relative to MHC: The manifest polymorphism of the MHC appears greatly exceeded at Immunoglobulin loci, suggesting antigen-selected somatic V mutants penetrate Weismann's Barrier. Bioessays 2015; 37:557-69. [PMID: 25810320 DOI: 10.1002/bies.201400213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 01/22/2023]
Abstract
Soma-to-germline feedback is forbidden under the neo-Darwinian paradigm. Nevertheless, there is a growing realization it occurs frequently in immunoglobulin (Ig) variable (V) region genes. This is a surprising development. It arises from a most unlikely source in light of the exposure of co-author EJS to the haplotype data of RL Dawkins and others on the polymorphism of the Major Histocompatibility Complex, which is generally assumed to be the most polymorphic region in the genome (spanning ∼4 Mb). The comparison between the magnitude of MHC polymorphism with estimates for the human heavy chain immunoglobulin V locus (spanning ∼1 Mb), suggests IGHV could be many orders of magnitude more polymorphic than the MHC. This conclusion needs airing in the literature as it implies generational churn and soma-to-germline gene feedback. Pedigree-based experimental strategies to resolve the IGHV issue are outlined.
Collapse
Affiliation(s)
- Edward J Steele
- C.Y. O'Connor ERADE Village Foundation, Piara Waters, WA, Australia
| | | |
Collapse
|
11
|
Martin SF. Adaptation in the innate immune system and heterologous innate immunity. Cell Mol Life Sci 2014; 71:4115-30. [PMID: 24997561 PMCID: PMC11113124 DOI: 10.1007/s00018-014-1676-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/18/2014] [Accepted: 06/30/2014] [Indexed: 01/05/2023]
Abstract
The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.
Collapse
Affiliation(s)
- Stefan F Martin
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, 79104, Freiburg, Germany,
| |
Collapse
|
12
|
Clambey ET, Davenport B, Kappler JW, Marrack P, Homann D. Molecules in medicine mini review: the αβ T cell receptor. J Mol Med (Berl) 2014; 92:735-41. [PMID: 24848996 DOI: 10.1007/s00109-014-1145-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 01/01/2023]
Abstract
As an integral part of the mammalian immune system, a distributed network of tissues, cells, and extracellular factors, T lymphocytes perform and control a multitude of activities that collectively contribute to the effective establishment, maintenance, and restoration of tissue and organismal integrity. Development and function of T cells is controlled by the T cell receptor (TCR), a heterodimeric cell surface protein uniquely expressed on T cells. During T cell development, the TCR undergoes extensive somatic diversification that generates a diverse T cell repertoire capable of recognizing an extraordinary range of protein and nonprotein antigens presented in the context of major histocompatibility complex molecules (MHC). In this review, we provide an introduction to the TCR, describing underlying principles that position this molecule as a central regulator of the adaptive immune system involved in responses ranging from tissue protection and preservation to pathology and autoimmunity.
Collapse
Affiliation(s)
- Eric T Clambey
- Department of Anesthesiology, Mucosal Inflammation Program, University of Colorado School of Medicine, Mail Stop B112, Research Complex 2, 12700 East 19th Avenue, Aurora, CO, 80045, USA,
| | | | | | | | | |
Collapse
|
13
|
Receptor revision in CD4 T cells is influenced by follicular helper T cell formation and germinal-center interactions. Proc Natl Acad Sci U S A 2014; 111:5652-7. [PMID: 24706795 DOI: 10.1073/pnas.1321803111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peripheral CD4 T cells in Vβ5 transgenic (Tg) C57BL/6J mice undergo tolerance to an endogenous superantigen encoded by mouse mammary tumor virus 8 (Mtv-8) by either deletion or T-cell receptor (TCR) revision. Revision is a process by which surface expression of the Vβ5(+) TCR is down-regulated in response to Mtv-8 and recombination activating genes are expressed to drive rearrangement of the endogenous TCRβ locus, effecting cell rescue through the expression of a newly generated, non-self-reactive TCR. In an effort to identify the microenvironment in which revision takes place, we show here that the proportion of T follicular helper cells (Tfh) and production of high-affinity antibody during a primary response are increased in Vβ5 Tg mice in an Mtv-8-dependent manner. Revising T cells have a Tfh-like surface phenotype and transcription factor profile, with elevated expression of B-cell leukemia/lymphoma 6 (Bcl-6), CXC chemokine receptor 5, programmed death-1, and other Tfh-associated markers. Efficient revision requires Bcl-6 and is inhibited by B lymphocyte-induced maturation protein-1. Revision completes less efficiently in the absence of signaling lymphocytic activation molecule-associated protein although initiation proceeds normally. These data indicate that Tfh formation is required for the initiation of revision and germinal-center interactions for its completion. The germinal center is known to provide a confined space in which B-cell antigen receptors undergo selection. Our data extend the impact of this selective microenvironment into the arena of T cells, suggesting that this fluid structure also provides a regulatory environment in which TCR revision can safely take place.
Collapse
|
14
|
Illegitimate V(D)J recombination-mediated deletions in Notch1 and Bcl11b are not sufficient for extensive clonal expansion and show minimal age or sex bias in frequency or junctional processing. Mutat Res 2014; 761:34-48. [PMID: 24530429 DOI: 10.1016/j.mrfmmm.2014.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/23/2013] [Accepted: 01/28/2014] [Indexed: 01/22/2023]
Abstract
Illegitimate V(D)J recombination at oncogenes and tumor suppressor genes is implicated in formation of several T cell malignancies. Notch1 and Bcl11b, genes involved in developing T cell specification, selection, proliferation, and survival, were previously shown to contain hotspots for deletional illegitimate V(D)J recombination associated with radiation-induced thymic lymphoma. Interestingly, these deletions were also observed in wild-type animals. In this study, we conducted frequency, clonality, and junctional processing analyses of Notch1 and Bcl11b deletions during mouse development and compared results to published analyses of authentic V(D)J rearrangements at the T cell receptor beta (TCRβ) locus and illegitimate V(D)J deletions observed at the human, nonimmune HPRT1 locus not involved in T cell malignancies. We detect deletions in Notch1 and Bcl11b in thymic and splenic T cell populations, consistent with cells bearing deletions in the circulating lymphocyte pool. Deletions in thymus can occur in utero, increase in frequency between fetal and postnatal stages, are detected at all ages examined between fetal and 7 months, exhibit only limited clonality (contrasting with previous results in radiation-sensitive mouse strains), and consistent with previous reports are more frequent in Bcl11b, partially explained by relatively high Recombination Signal Information Content (RIC) scores. Deletion junctions in Bcl11b exhibit greater germline nucleotide loss, while in Notch1 palindromic (P) nucleotides are more abundant, although average P nucleotide length is similar for both genes and consistent with results at the TCRβ locus. Non-templated (N) nucleotide insertions appear to increase between fetal and postnatal stages for Notch1, consistent with normal terminal deoxynucleotidyl transferase (TdT) activity; however, neonatal Bcl11b junctions contain elevated levels of N insertions. Finally, contrasting with results at the HPRT1 locus, we find no obvious age or gender bias in junctional processing, and inverted repeats at recessed coding ends (Pr nucleotides) correspond mostly to single-base additions consistent with normal TdT activity.
Collapse
|
15
|
Cohn M. A stepwise model of polyreactivity of the T cell antigen-receptor (TCR): its impact on the self–nonself discrimination and on related observations (receptor editing, anergy, dual receptor cells). Cell Mol Life Sci 2013; 71:2033-45. [DOI: 10.1007/s00018-013-1540-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/06/2013] [Accepted: 12/02/2013] [Indexed: 12/01/2022]
|
16
|
Martin A, Tisch RM, Getts DR. Manipulating T cell-mediated pathology: Targets and functions of monoclonal antibody immunotherapy. Clin Immunol 2013; 148:136-47. [DOI: 10.1016/j.clim.2013.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 12/16/2022]
|
17
|
Tuulasvaara A, Baussand J, Laine P, Paulin L, Salminen J, Auvinen P, Gorochov G, Arstila TP. High-sequence diversity and structural conservation in the human T-cell receptor β junctional region during thymic development. Eur J Immunol 2013; 43:2185-93. [DOI: 10.1002/eji.201343360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/28/2013] [Accepted: 05/08/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Anni Tuulasvaara
- Department of Bacteriology and Immunology; Haartman Institute; University of Helsinki; Helsinki; Finland
| | | | - Pia Laine
- Institute of Biotechnology; University of Helsinki; Helsinki; Finland
| | - Lars Paulin
- Institute of Biotechnology; University of Helsinki; Helsinki; Finland
| | - Jukka Salminen
- Department of Surgery; Hospital for Children and Adolescents; Helsinki University Hospital; Helsinki; Finland
| | - Petri Auvinen
- Institute of Biotechnology; University of Helsinki; Helsinki; Finland
| | | | - T. Petteri Arstila
- Department of Bacteriology and Immunology; Haartman Institute; University of Helsinki; Helsinki; Finland
| |
Collapse
|
18
|
Simmons KB, Wubeshet M, Ames KT, McMahan CJ, Hale JS, Fink PJ. Modulation of TCRβ surface expression during TCR revision. Cell Immunol 2011; 272:124-9. [PMID: 22138498 DOI: 10.1016/j.cellimm.2011.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/31/2011] [Indexed: 01/04/2023]
Abstract
TCR revision is a tolerance mechanism by which self-reactive TCRs expressed by mature CD4(+) peripheral T cells are replaced by receptors encoded by genes generated by post-thymic DNA rearrangement. The downmodulation of surface TCR expression initiates TCR revision, and serves as a likely trigger for the induction of the recombinase machinery. We show here in a Vβ5 transgenic mouse model system that downregulation of the self-reactive transgene-encoded TCR is not maintained by transgene loss or diminished transcription or translation. The downregulation of surface TCR expression likely occurs in two stages, only one of which requires tolerogen expression.
Collapse
Affiliation(s)
- Kalynn B Simmons
- Department of Immunology, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
19
|
Möröy T, Khandanpour C. Growth factor independence 1 (Gfi1) as a regulator of lymphocyte development and activation. Semin Immunol 2011; 23:368-78. [PMID: 21920773 DOI: 10.1016/j.smim.2011.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
T- and B-lymphocytes are important elements in the immune defense repertoire of higher organisms. The development and function of lymphoid cells is regulated at many levels one being the control of gene expression by transcription factors. The zinc finger transcriptional repressor Gfi1 has emerged as a factor that is critically implicated in the commitment of precursor cells for the lymphoid lineage. In addition, Gfi1 controls distinct stages of early T- or B-lymphoid development and is also critical for their maturation, activation and effector function. From many years of work, a picture emerges in which Gfi1 is part of a complicated, but well orchestrated network of interdependent regulators, most of which impinge on lymphoid development and activation by transcriptional regulation. Biochemical studies show that Gfi1 is part of a large DNA binding multi-protein complex that enables histone modifications, but may also control alternative pre mRNA splicing. Many insights into the biological role of Gfi1 have been gained through the study of gene deficient mice that have defects in B- and T-cell differentiation, in T-cell selection and polarization processes and in the response of mature B- and T-cells towards antigen. Most importantly, the defects seen in Gfi1 deficient mice also point to roles of Gfi1 in diseases of the immune system that involve auto-immune responses and acute lymphoid leukemia and lymphoma.
Collapse
Affiliation(s)
- Tarik Möröy
- Institut de recherches cliniques de Montréal - IRCM, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
| | | |
Collapse
|
20
|
Orlando L, Accomasso L, Circosta P, Turinetto V, Lantelme E, Porcedda P, Minieri V, Pautasso M, Willemsen RA, Cignetti A, Giachino C. TCR transfer induces TCR-mediated tonic inhibition of RAG genes in human T cells. Mol Immunol 2011; 48:1369-76. [PMID: 21481940 DOI: 10.1016/j.molimm.2011.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 11/24/2022]
Abstract
Induction of the TCR signaling pathway terminates the expression of RAG genes, and a link between this pathway and their transcriptional control is evident from the recent demonstration of their re-expression if the TCR is subsequently lost or down-regulated. Since unstimulated T cells display a steady-state level of "tonic" TCR signaling, i.e. in the absence of any antigenic stimulus, it was uncertain whether this control was exerted through ligand-dependent or ligand-independent TCR signaling. Here we demonstrate for the first time that exogenous TCR α and β chains transferred into the human immature RAG(+) T cell line Sup-T1 by lentiviral transduction inhibit RAG expression through tonic signaling, and that this inhibition could itself be reverted by pharmacological tonic pathway inhibitors. We also suggest that mature T cells already expressing an endogenous TCR on their surface maintain some levels of plasticity at the RAG locus when their basal TCR signaling is interfered with. Lastly, we show that the TCR constructs employed in TCR gene therapy do not possess the same basal signaling transduction capability, a feature that may have therapeutic implications.
Collapse
Affiliation(s)
- Luca Orlando
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hale JS, Nelson LT, Simmons KB, Fink PJ. Bcl-2-interacting mediator of cell death influences autoantigen-driven deletion and TCR revision. THE JOURNAL OF IMMUNOLOGY 2010; 186:799-806. [PMID: 21148799 DOI: 10.4049/jimmunol.1002933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peripheral CD4(+)Vβ5(+) T cells are tolerized to an endogenous mouse mammary tumor virus superantigen either by deletion or TCR revision. Through TCR revision, RAG reexpression mediates extrathymic TCRβ rearrangement and results in a population of postrevision CD4(+)Vβ5(-) T cells expressing revised TCRβ chains. We have hypothesized that cell death pathways regulate the selection of cells undergoing TCR revision to ensure the safety and utility of the postrevision population. In this study, we investigate the role of Bcl-2-interacting mediator of cell death (Bim)-mediated cell death in autoantigen-driven deletion and TCR revision. Bim deficiency and Bcl-2 overexpression in Vβ5 transgenic (Tg) mice both impair peripheral deletion. Vβ5 Tg Bim-deficient and Bcl-2 Tg mice exhibit an elevated frequency of CD4(+) T cells expressing both the transgene-encoded Vβ5 chain and a revised TCRβ chain. We now show that these dual-TCR-expressing cells are TCR revision intermediates and that the population of RAG-expressing, revising CD4(+) T cells is increased in Bim-deficient Vβ5 Tg mice. These findings support a role for Bim and Bcl-2 in regulating the balance of survival versus apoptosis in peripheral T cells undergoing RAG-dependent TCR rearrangements during TCR revision, thereby ensuring the utility of the postrevision repertoire.
Collapse
Affiliation(s)
- J Scott Hale
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
22
|
Hale JS, Wubeshet M, Fink PJ. TCR revision generates functional CD4+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6528-6534. [PMID: 20971922 PMCID: PMC3233755 DOI: 10.4049/jimmunol.1002696] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
CD4(+)Vβ5(+) peripheral T cells in C57BL/6 mice respond to encounter with a peripherally expressed endogenous superantigen by undergoing either deletion or TCR revision. In this latter process, cells lose surface Vβ5 expression and undergo RAG-dependent rearrangement of endogenous TCRβ genes, driving surface expression of novel TCRs. Although postrevision CD4(+)Vβ5(-)TCRβ(+) T cells accumulate with age in Vβ5 transgenic mice and bear a diverse TCR Vβ repertoire, it is unknown whether they respond to homeostatic and antigenic stimuli and thus may benefit the host. We demonstrate in this study that postrevision cells are functional. These cells have a high rate of steady-state homeostatic proliferation in situ, and they undergo extensive MHC class II-dependent lymphopenia-induced proliferation. Importantly, postrevision cells do not proliferate in response to the tolerizing superantigen, implicating TCR revision as a mechanism of tolerance induction and demonstrating that TCR-dependent activation of postrevision cells is not driven by the transgene-encoded receptor. Postrevision cells proliferate extensively to commensal bacterial Ags and can generate I-A(b)-restricted responses to Ag by producing IFN-γ following Listeria monocytogenes challenge. These data show that rescued postrevision T cells are responsive to homeostatic signals and recognize self- and foreign peptides in the context of self-MHC and are thus useful to the host.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/microbiology
- CD4-Positive T-Lymphocytes/pathology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Proliferation
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/physiology
- Immune Tolerance/genetics
- Immunoglobulin Variable Region/genetics
- Listeriosis/genetics
- Listeriosis/immunology
- Listeriosis/pathology
- Lymphopenia/immunology
- Lymphopenia/microbiology
- Lymphopenia/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/microbiology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- J Scott Hale
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
23
|
Hale JS, Ames KT, Boursalian TE, Fink PJ. Cutting Edge: Rag deletion in peripheral T cells blocks TCR revision. THE JOURNAL OF IMMUNOLOGY 2010; 184:5964-8. [PMID: 20435935 DOI: 10.4049/jimmunol.1000876] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mature CD4(+)Vbeta5(+) T cells that recognize a peripherally expressed endogenous superantigen are tolerized either by deletion or TCR revision. In Vbeta5 transgenic mice, this latter tolerance pathway results in the appearance of CD4(+)Vbeta5(-)TCRbeta(+) T cells, coinciding with Rag1, Rag2, and TdT expression and the accumulation of V(beta)-DJ(beta) recombination intermediates in peripheral CD4(+) T cells. Because postthymic RAG-dependent TCR rearrangement has remained controversial, we sought to definitively determine whether TCR revision is an extrathymic process that occurs in mature peripheral T cells. We show in this study that Rag deletion in post-positive selection T cells in Vbeta5 transgenic mice blocks TCR revision in vivo and that mature peripheral T cells sorted to remove cells bearing endogenous TCRbeta-chains can express newly generated TCRbeta molecules in adoptive hosts. These findings unambiguously demonstrate postthymic, RAG-dependent TCR rearrangement and define TCR revision as a tolerance pathway that targets mature peripheral CD4(+) T cells.
Collapse
Affiliation(s)
- J Scott Hale
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|