1
|
Zhu Q, Wang X, Chen D, Wu X, Zhang C, Zou W, Shen J. Highly Porous Carbon Xerogels Doped with Cuprous Chloride for Effective CO Adsorption. ACS OMEGA 2019; 4:6138-6143. [PMID: 31459758 PMCID: PMC6649181 DOI: 10.1021/acsomega.8b03647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/22/2019] [Indexed: 06/10/2023]
Abstract
Carbon monoxide (CO) has long been recognized as a metabolic waste and toxic gas and is also the most common asphyxiating poison that seriously endangers human health. Thus, an adsorption material with high CO adsorption capability is urgently needed. In this study, carbon xerogels (CXs) doped with CuCl were prepared via a sol-gel method and a facile soaking process. The CuCl-doped CXs show the highest CO adsorption capacity of 12.04 cc/g, which is much higher than those of the undoped CXs and activated carbon. Such a high adsorption capacity of the CuCl-doped CXs is not only because of their high porosity but also because of the chemical adsorption induced by CuCl. Moreover, these CuCl-doped CXs exhibit high desorption rate (∼79%), which is beneficial for repeatability.
Collapse
|
2
|
Anstead CA, Perry T, Richards S, Korhonen PK, Young ND, Bowles VM, Batterham P, Gasser RB. The Battle Against Flystrike - Past Research and New Prospects Through Genomics. ADVANCES IN PARASITOLOGY 2017; 98:227-281. [PMID: 28942770 DOI: 10.1016/bs.apar.2017.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Flystrike, or cutaneous myiasis, is caused by blow fly larvae of the genus Lucilia. This disease is a major problem in countries with large sheep populations. In Australia, Lucilia cuprina (Wiedemann, 1830) is the principal fly involved in flystrike. While much research has been conducted on L. cuprina, including physical, chemical, immunological, genetic and biological investigations, the molecular biology of this fly is still poorly understood. The recent sequencing, assembly and annotation of the draft genome and analyses of selected transcriptomes of L. cuprina have given a first global glimpse of its molecular biology and insights into host-fly interactions, insecticide resistance genes and intervention targets. The present article introduces L. cuprina, flystrike and associated issues, details past control efforts and research foci, reviews salient aspects of the L. cuprina genome project and discusses how the new genomic and transcriptomic resources for this fly might accelerate fundamental molecular research of L. cuprina towards developing new methods for the treatment and control of flystrike.
Collapse
Affiliation(s)
| | - Trent Perry
- The University of Melbourne, Parkville, VIC, Australia
| | | | | | - Neil D Young
- The University of Melbourne, Parkville, VIC, Australia
| | | | | | | |
Collapse
|
3
|
Anstead CA, Batterham P, Korhonen PK, Young ND, Hall RS, Bowles VM, Richards S, Scott MJ, Gasser RB. A blow to the fly — Lucilia cuprina draft genome and transcriptome to support advances in biology and biotechnology. Biotechnol Adv 2016; 34:605-620. [DOI: 10.1016/j.biotechadv.2016.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/08/2016] [Accepted: 02/20/2016] [Indexed: 02/07/2023]
|
4
|
Sandeman RM, Levot GW, Heath ACG, James PJ, Greeff JC, Scott MJ, Batterham P, Bowles VM. Control of the sheep blowfly in Australia and New Zealand--are we there yet? Int J Parasitol 2014; 44:879-91. [PMID: 25240442 DOI: 10.1016/j.ijpara.2014.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 01/18/2023]
Abstract
The last 50 years of research into infections in Australia and New Zealand caused by larvae of the sheep blowfly, Lucilia cuprina, have significantly advanced our understanding of this blowfly and its primary host, the sheep. However, apart from some highly effective drugs it could be argued that no new control methodologies have resulted. This review addresses the major areas of sheep blowfly research over this period describing the significant outcomes and analyses, and what is still required to produce new commercial control technologies. The use of drugs against this fly species has been very successful but resistance has developed to almost all current compounds. Integrated pest management is becoming basic to control, especially in the absence of mulesing, and has clearly benefited from computer-aided technologies. Biological control has more challenges but natural and perhaps transformed biopesticides offer possibilities for the future. Experimental vaccines have been developed but require further analysis of antigens and formulations to boost protection. Genetic technologies may provide potential for long-term control through more rapid indirect selection of sheep less prone to flystrike. Finally in the future, genetic analysis of the fly may allow suppression and perhaps eradication of blowfly populations or identification of new and more viable targets for drug and vaccine intervention. Clearly all these areas of research offer potential new controls but commercial development is perhaps inhibited by the success of current chemical insecticides and certainly requires a significant additional injection of resources.
Collapse
Affiliation(s)
- R M Sandeman
- School of Applied and Biomedical Sciences, Federation University, Churchill, Gippsland, Vic. 3842, Australia.
| | - G W Levot
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Woodbridge Road, Menangle, NSW 2568, Australia
| | - A C G Heath
- AgResearch Ltd., c/o MPI, National Centre for Biosecurity and Infectious Disease, P.O. Box 4072, Upper Hutt 5018, New Zealand
| | - P J James
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Dutton Park, Qld 4102, Australia
| | - J C Greeff
- Department of Agriculture and Food Western Australia, 3 Baron Hay Court, South Perth, WA 6151, Australia
| | - M J Scott
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA
| | - P Batterham
- Department of Genetics, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Vic. 3010, Australia
| | - V M Bowles
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Vic. 3010, Australia
| |
Collapse
|
5
|
Ready PD, Testa JM, Wardhana AH, Al-Izzi M, Khalaj M, Hall MJR. Phylogeography and recent emergence of the Old World screwworm fly, Chrysomya bezziana, based on mitochondrial and nuclear gene sequences. MEDICAL AND VETERINARY ENTOMOLOGY 2009; 23 Suppl 1:43-50. [PMID: 19335829 DOI: 10.1111/j.1365-2915.2008.00771.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A previous study had identified an African and an Asian race of the Old World screwworm fly, Chrysomya bezziana Villeneuve (Diptera: Calliphoridae), based on the 3' terminal 279 basepairs (bp) of the mitochondrial cytochrome b gene. The current study improved the phylogeographic resolution of cytochrome b for this species by characterizing more of the gene (the 3' terminal 715 bp) and by sampling more geographical populations, including Oman, Iran, Hong Kong and the Indonesian islands of Sulawesi and East Sumba. Strong support was found for recognizing an African race, but not for a monophyletic Asian race. The cladistic and genealogical relationships among the Asian populations were complex. There was sufficient genetic homogeneity throughout separate regions (mainland Asia and each Indonesian island) to suggest that there are no reproductive barriers within each region that might necessitate the production of more than one strain for control by the sterile insect technique (SIT). Primers were designed for the amplification by polymerase chain reaction of two nuclear loci, the highly conserved elongation factor-1alphagene and the less conserved white gene, and the preliminary results indicated that these genes showed the same pattern of small-scale regional variation as cytochrome b. The cytochrome b haplotypes are useful markers for identifying the geographical origins of any emerging infestations of the species: the absence of Indonesian and African haplotypes in the Middle East demonstrates that the large-scale transport of livestock is not spreading Old World screwworm.
Collapse
Affiliation(s)
- P D Ready
- Department of Entomology, Natural History Museum, London, U.K.
| | | | | | | | | | | |
Collapse
|
6
|
Sumitani M, Yamamoto DS, Lee JM, Hatakeyama M. Isolation of white gene orthologue of the sawfly, Athalia rosae (Hymenoptera) and its functional analysis using RNA interference. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:231-240. [PMID: 15705502 DOI: 10.1016/j.ibmb.2004.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Revised: 12/03/2004] [Accepted: 12/06/2004] [Indexed: 05/24/2023]
Abstract
We isolated and characterized the white gene orthologue of the sawfly, Athalia rosae (Hymenoptera). The A. rosae white (Ar white) cDNA cloned was 2058-bp long encoding 685 amino acids in a single open reading frame (ORF). Comparison of the cDNA sequence with the genomic DNA sequence revealed that the ORF was derived from 11 exons. Ar white was a single copy gene as evidenced by genomic Southern blotting and its cytological localization on the metaphase chromosomes. The deduced amino acid sequence aligned well with known insect white orthologous gene products sharing conserved regions such as the ATP-binding motif and the six transmembrane-spanning segments. Expression of Ar white was detected at embryonic and pupal stages by Northern blotting. In situ hybridization detected the embryonic expression in a pair of the lateral tips of protocephalic placodes from where optic organs are formed. Ar white function was examined using double-stranded RNA (dsRNA)-mediated interference. The synthesized dsRNA targeting Ar white transcripts caused a decrease in the level of the original mRNAs, and resulted in the white phenocopy in the embryonic eye pigmentation when microinjected into eggs from wild-type females. The effects occurred in a dose-dependent manner.
Collapse
Affiliation(s)
- Megumi Sumitani
- Division of Bioscience, Graduate School of Science and Technology, Kobe University, Nada, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
7
|
Krzywinski J, Besansky NJ. Frequent intron loss in the white gene: a cautionary tale for phylogeneticists. Mol Biol Evol 2002; 19:362-6. [PMID: 11861897 DOI: 10.1093/oxfordjournals.molbev.a004091] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Gomulski LM, Pitts RJ, Costa S, Saccone G, Torti C, Polito LC, Gasperi G, Malacrida AR, Kafatos FC, Zwiebel LJ. Genomic organization and characterization of the white locus of the Mediterranean fruitfly, Ceratitis capitata. Genetics 2001; 157:1245-55. [PMID: 11238408 PMCID: PMC1461546 DOI: 10.1093/genetics/157.3.1245] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An approximately 14-kb region of genomic DNA encoding the wild-type white eye (w+) color gene from the medfly, Ceratitis capitata has been cloned and characterized at the molecular level. Comparison of the intron-exon organization of this locus among several dipteran insects reveals distinct organizational patterns that are consistent with the phylogenetic relationships of these flies and the dendrogram of the predicted primary amino acid sequence of the white loci. An examination of w+ expression during medfly development has been carried out, displaying overall similarity to corresponding studies for white gene homologues in Drosophila melanogaster and other insects. Interestingly, we have detected two phenotypically neutral allelic forms of the locus that have arisen as the result of an apparently novel insertion or deletion event located in the large first intron of the medfly white locus. Cloning and sequencing of two mutant white alleles, w1 and w2, from the we,wp and M245 strains, respectively, indicate that the mutant conditions in these strains are the result of independent events--a frameshift mutation in exon 6 for w1 and a deletion including a large part of exon 2 in the case of w2.
Collapse
Affiliation(s)
- L M Gomulski
- European Molecular Biology Laboratory, D-69117, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ashburner M, Hoy MA, Peloquin JJ. Prospects for the genetic transformation of arthropods. INSECT MOLECULAR BIOLOGY 1998; 7:201-213. [PMID: 9662469 DOI: 10.1046/j.1365-2583.1998.00084.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- M Ashburner
- Department of Genetics, University of Cambridge, UK.
| | | | | |
Collapse
|