1
|
Kjer KM, Simon C, Yavorskaya M, Beutel RG. Progress, pitfalls and parallel universes: a history of insect phylogenetics. J R Soc Interface 2016; 13:20160363. [PMID: 27558853 PMCID: PMC5014063 DOI: 10.1098/rsif.2016.0363] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/19/2016] [Indexed: 11/12/2022] Open
Abstract
The phylogeny of insects has been both extensively studied and vigorously debated for over a century. A relatively accurate deep phylogeny had been produced by 1904. It was not substantially improved in topology until recently when phylogenomics settled many long-standing controversies. Intervening advances came instead through methodological improvement. Early molecular phylogenetic studies (1985-2005), dominated by a few genes, provided datasets that were too small to resolve controversial phylogenetic problems. Adding to the lack of consensus, this period was characterized by a polarization of philosophies, with individuals belonging to either parsimony or maximum-likelihood camps; each largely ignoring the insights of the other. The result was an unfortunate detour in which the few perceived phylogenetic revolutions published by both sides of the philosophical divide were probably erroneous. The size of datasets has been growing exponentially since the mid-1980s accompanied by a wave of confidence that all relationships will soon be known. However, large datasets create new challenges, and a large number of genes does not guarantee reliable results. If history is a guide, then the quality of conclusions will be determined by an improved understanding of both molecular and morphological evolution, and not simply the number of genes analysed.
Collapse
Affiliation(s)
- Karl M Kjer
- Department of Entomology and Nematology, University of California-Davis, 1282 Academic Surge, Davis, CA 95616, USA
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Margarita Yavorskaya
- Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena, 07743 Jena, Germany
| | - Rolf G Beutel
- Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena, 07743 Jena, Germany
| |
Collapse
|
2
|
Guo W, Wu Z, Song J, Jiang F, Wang Z, Deng S, Walker VK, Zhou S. Juvenile hormone-receptor complex acts on mcm4 and mcm7 to promote polyploidy and vitellogenesis in the migratory locust. PLoS Genet 2014; 10:e1004702. [PMID: 25340846 PMCID: PMC4207617 DOI: 10.1371/journal.pgen.1004702] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/23/2014] [Indexed: 11/18/2022] Open
Abstract
Juvenile hormone (JH), a sesquiterpenoid produced by the corpora allata, coordinates insect growth, metamorphosis, and reproduction. While JH action for the repression of larval metamorphosis has been well studied, the molecular basis of JH in promoting adult reproduction has not been fully elucidated. Methoprene-tolerant (Met), the JH receptor, has been recently shown to mediate JH action during metamorphosis as well as in vitellogenesis, but again, the precise mechanism underlying the latter has been lacking. We have now demonstrated using Met RNAi to phenocopy a JH-deprived condition in migratory locusts, that JH stimulates DNA replication and increases ploidy in preparation for vitellogenesis. Mcm4 and Mcm7, two genes in the DNA replication pathway were expressed in the presence of JH and Met. Depletion of Mcm4 or Mcm7 inhibited de novo DNA synthesis and polyploidization, and resulted in the substantial reduction of vitellogenin mRNA levels as well as severely impaired oocyte maturation and ovarian growth. By using luciferase reporter and electrophoretic mobility shift assays, we have shown that Met directly regulates the transcription of Mcm4 and Mcm7 by binding to upstream consensus sequences with E-box or E-box-like motifs. Our work suggests that the JH-receptor complex acts on Mcm4 and Mcm7 to regulate DNA replication and polyploidy for vitellogenesis and oocyte maturation.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhongxia Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jiasheng Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Zhiming Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shun Deng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | - Shutang Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
3
|
Durica DS, Das S, Najar F, Roe B, Phillips B, Kappalli S, Anilkumar G. Alternative splicing in the fiddler crab cognate ecdysteroid receptor: variation in receptor isoform expression and DNA binding properties in response to hormone. Gen Comp Endocrinol 2014; 206:80-95. [PMID: 25025945 DOI: 10.1016/j.ygcen.2014.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/19/2014] [Accepted: 05/16/2014] [Indexed: 01/07/2023]
Abstract
RXR cDNA cloning from three Uca species led to the identification of 4 conserved isoforms, indicative of alternative splicing in the hinge and ligand binding domains (LBD). Sequencing of overlapping clones from a Ucapugilator genomic library identified EcR isoforms matching previously identified cDNA variants; in addition, a cryptic exon in the LBD was detected and evidence for expression of this new isoform was obtained from next-generation sequencing. RNA-seq analysis also identified a new amino terminal EcR variant. EcR and RXR transcript abundance increases throughout ovarian maturation in U. pugilator, while cognate receptor transcript abundance remains constant in a related Indo-Pacific species with a different reproductive strategy. To examine if crab RXR LBD isoforms have different physical properties in vitro, electromobility shift assays were performed with different EcR isoforms. The cognate crab and fruit fly receptors differ in their responses to hormone. Ecdysteroids did not increase DNA binding for the crab heterodimers, while ecdysteroids stimulate binding for Drosophilamelanogaster EcR/USP heterodimers. In swapping experiments, UpEcR/USP heterodimers did not show ligand-responsive differences in DNA binding; both crab RXR LBD isoforms, however, conferred ligand-responsive increases in DNA binding with DmEcRs. These data indicate that both UpRXR LBD isoforms can heterodimerize with the heterologous DmEcR receptors and promote ligand and DNA binding. Unresponsiveness of the cognate receptors to ecdysteroid, however, suggest additional factors may be required to mediate endogenous, perhaps isoform-specific, differences in EcR conformation, consistent with previously reported effects of UpRXR isoforms on UpEcR ligand-binding affinities.
Collapse
Affiliation(s)
- David S Durica
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA.
| | - Sunetra Das
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Fares Najar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Bruce Roe
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Barret Phillips
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | | | - Gopinathan Anilkumar
- School of Biotechnology, Chemical and Biomedical Engineering, VIT University, Vellore 632 014, India
| |
Collapse
|
4
|
Zotti MJ, De Geyter E, Swevers L, Braz ASK, Scott LPB, Rougé P, Coll J, Grutzmacher AD, Lenardão EJ, Smagghe G. A cell-based reporter assay for screening for EcR agonist/antagonist activity of natural ecdysteroids in Lepidoptera (Bm5) and Diptera (S2) cell cultures, followed by modeling of ecdysteroid-EcR interactions and normal mode analysis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 107:309-320. [PMID: 24267692 DOI: 10.1016/j.pestbp.2013.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Ecdysteroid signal transduction is a key process in insect development and therefore an important target for insecticide development. We employed an in vitro cell-based reporter bioassay for the screening of potential ecdysone receptor (EcR) agonistic and antagonistic compounds. Natural ecdysteroids were assayed with ecdysteroid-responsive cell line cultures that were transiently transfected with the reporter plasmid ERE-b.act.luc. We used the dipteran Schneider S2 cells of Drosophila melanogaster and the lepidopteran Bm5 cells of Bombyx mori, representing important pest insects in medicine and agriculture. Measurements showed an EcR agonistic activity only for cyasterone both in S2 (EC50=3.3μM) and Bm5 cells (EC50=5.3μM), which was low compared to that of the commercial dibenzoylhydrazine-based insecticide tebufenozide (EC50=0.71μM and 0.00089μM, respectively). Interestingly, a strong antagonistic activity was found for castasterone in S2 cells with an IC50 of 0.039μM; in Bm5 cells this effect only became visible at much higher concentrations (IC50=18μM). To gain more insight in the EcR interaction, three-dimensional modeling of dipteran and lepidopteran EcR-LBD was performed. In conclusion, we showed that the EcR cell-based reporter bioassay tested here is a useful and practical tool for the screening of candidate EcR agonists and antagonists. The docking experiments as well as the normal mode analysis provided evidence that the antagonist activity of castasterone may be through direct binding with the receptor with specific changes in protein flexibility. The search for new ecdysteroid-like compounds may be particularly relevant for dipterans because the activity of dibenzoylhydrazines appears to be correlated with an extension of the EcR-LBD binding pocket that is prominent in lepidopteran receptors but less so in the modeled dipteran structure.
Collapse
Affiliation(s)
- Moisés J Zotti
- Department of Crop Protection, Ghent University, Coupure links 653, 9000 Ghent, Belgium; Department of Phytosanitary, FAEM, Federal University of Pelotas, P.O. Box 354, CEP, 96010-900 Pelotas, RS, Brazil; Department of Crop Protection, Federal University of Santa Maria, Santa Maria, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wang Y, Engel MS, Rafael JA, Dang K, Wu H, Wang Y, Xie Q, Bu W. A unique box in 28S rRNA is shared by the enigmatic insect order Zoraptera and Dictyoptera. PLoS One 2013; 8:e53679. [PMID: 23301099 PMCID: PMC3536744 DOI: 10.1371/journal.pone.0053679] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/03/2012] [Indexed: 01/30/2023] Open
Abstract
The position of the Zoraptera remains one of the most challenging and uncertain concerns in ordinal-level phylogenies of the insects. Zoraptera have been viewed as having a close relationship with five different groups of Polyneoptera, or as being allied to the Paraneoptera or even Holometabola. Although rDNAs have been widely used in phylogenetic studies of insects, the application of the complete 28S rDNA are still scattered in only a few orders. In this study, a secondary structure model of the complete 28S rRNAs of insects was reconstructed based on all orders of Insecta. It was found that one length-variable region, D3-4, is particularly distinctive. The length and/or sequence of D3-4 is conservative within each order of Polyneoptera, but it can be divided into two types between the different orders of the supercohort, of which the enigmatic order Zoraptera and Dictyoptera share one type, while the remaining orders of Polyneoptera share the other. Additionally, independent evidence from phylogenetic results support the clade (Zoraptera+Dictyoptera) as well. Thus, the similarity of D3-4 between Zoraptera and Dictyoptera can serve as potentially valuable autapomorphy or synapomorphy in phylogeny reconstruction. The clades of (Plecoptera+Dermaptera) and ((Grylloblattodea+Mantophasmatodea)+(Embiodea+Phasmatodea)) were also recovered in the phylogenetic study. In addition, considering the other studies based on rDNAs, this study reached the highest congruence with previous phylogenetic studies of Holometabola based on nuclear protein coding genes or morphology characters. Future comparative studies of secondary structures across deep divergences and additional taxa are likely to reveal conserved patterns, structures and motifs that can provide support for major phylogenetic lineages.
Collapse
Affiliation(s)
- Yanhui Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Michael S. Engel
- Division of Entomology (Paleoentomology), Natural History Museum, London, England
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Jose A. Rafael
- Instituto Nacional de Pesquisas da Amazônia, INPA, Manaus, Amazonas, Brazil
| | - Kai Dang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Haoyang Wu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ying Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qiang Xie
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Chaumot A, Da Lage JL, Maestro O, Martin D, Iwema T, Brunet F, Belles X, Laudet V, Bonneton F. Molecular adaptation and resilience of the insect's nuclear receptor USP. BMC Evol Biol 2012; 12:199. [PMID: 23039844 PMCID: PMC3520820 DOI: 10.1186/1471-2148-12-199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/25/2012] [Indexed: 01/14/2023] Open
Abstract
Background The maintenance of biological systems requires plasticity and robustness. The function of the ecdysone receptor, a heterodimer composed of the nuclear receptors ECR (NR1H1) and USP (NR2B4), was maintained in insects despite a dramatic divergence that occurred during the emergence of Mecopterida. This receptor is therefore a good model to study the evolution of plasticity. We tested the hypothesis that selection has shaped the Ligand-Binding Domain (LBD) of USP during evolution of Mecopterida. Results We isolated usp and cox1 in several species of Drosophilidae, Tenebrionidae and Blattaria and estimated non-synonymous/synonymous rate ratios using maximum-likelihood methods and codon-based substitution models. Although the usp sequences were mainly under negative selection, we detected relaxation at residues located on the surface of the LBD within Mecopterida families. Using branch-site models, we also detected changes in selective constraints along three successive branches of the Mecopterida evolution. Residues located at the bottom of the ligand-binding pocket (LBP) underwent strong positive selection during the emergence of Mecopterida. This change is correlated with the acquisition of a large LBP filled by phospholipids that probably allowed the stabilisation of the new Mecopterida structure. Later, when the two subgroups of Mecopterida (Amphiesmenoptera: Lepidoptera, Trichoptera; Antliophora: Diptera, Mecoptera, Siphonaptera) diverged, the same positions became under purifying selection. Similarly, several positions of the heterodimerisation interface experienced positive selection during the emergence of Mecopterida, rapidly followed by a phase of constrained evolution. An enlargement of the heterodimerisation surface is specific for Mecopterida and was associated with a reinforcement of the obligatory partnership between ECR and USP, at the expense of homodimerisation. Conclusions In order to explain the episodic mode of evolution of USP, we propose a model in which the molecular adaptation of this protein is seen as a process of resilience for the maintenance of the ecdysone receptor functionality.
Collapse
|
7
|
Zotti MJ, Christiaens O, Rougé P, Grutzmacher AD, Zimmer PD, Smagghe G. Structural changes under low evolutionary constraint may decrease the affinity of dibenzoylhydrazine insecticides for the ecdysone receptor in non-lepidopteran insects. INSECT MOLECULAR BIOLOGY 2012; 21:488-501. [PMID: 22808992 DOI: 10.1111/j.1365-2583.2012.01154.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Understanding how variations in genetic sequences are conveyed into structural and biochemical properties is of increasing interest in the field of molecular evolution. In order to gain insight into this process, we studied the ecdysone receptor (EcR), a transcription factor that controls moulting and metamorphosis in arthropods. Using an in silico homology model, we identified a region in the lepidopteran EcR that has no direct interaction with the natural hormone but is under strong evolutionary constraint. This region causes a small indentation in the three-dimensional structure of the protein which facilitates the binding of tebufenozide. Non-Mecopterida are considered much older, evolutionarily, than Lepidoptera and they do not have this extended cavity. This location shows differences in evolutionary constraint between Lepidoptera and other insects, where a much lower constraint is observed compared with the Lepidoptera. It is possible that the higher flexibility seen in the EcR of Lepidoptera is an entirely new trait and the higher constraint could then be an indication that this region does have another important function. Finally, we suggest that Try123, which is evolutionarily constrained and is up to now exclusively present in Lepidoptera EcRs, could play a critical role in discriminating between steroidal and non-steroidal ligands.
Collapse
Affiliation(s)
- M J Zotti
- Department of Crop Protection, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
8
|
The evolution of novelty in conserved gene families. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:490894. [PMID: 22779028 PMCID: PMC3388334 DOI: 10.1155/2012/490894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/23/2012] [Indexed: 12/05/2022]
Abstract
One of the major aims of contemporary evolutionary biology is the understanding of the current pattern of biological diversity. This involves, first, the description of character distribution at various nodes of the phylogenetic tree of life and, second, the functional explanation of such changes. The analysis of character distribution is a powerful tool at both the morphological and molecular levels. Recent high-throughput sequencing approaches provide new opportunities to study the genetic architecture of organisms at the genome-wide level. In eukaryotes, one overarching finding is the absence of simple correlations of gene count and biological complexity. Instead, the domain architecture of proteins is becoming a central focus for large-scale evolutionary innovations. Here, we review examples of the evolution of novelty in conserved gene families in insects and nematodes. We highlight how in the absence of whole-genome duplications molecular novelty can arise, how members of gene families have diversified at distinct mechanistic levels, and how gene expression can be maintained in the context of multiple innovations in regulatory mechanisms.
Collapse
|
9
|
Zotti MJ, Christiaens O, Rougé P, Grutzmacher AD, Zimmer PD, Smagghe G. Sequencing and structural homology modeling of the ecdysone receptor in two chrysopids used in biological control of pest insects. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:906-918. [PMID: 22270356 DOI: 10.1007/s10646-012-0852-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2012] [Indexed: 05/31/2023]
Abstract
In insects, the process of molting and metamorphosis are mainly regulated by a steroidal hormone 20-hydroxyecdysone (20E) and its analogs (ecdysteroids) that specifically bind to the ecdysone receptor ligand-binding domain (EcR-LBD). Currently, several synthetic non-steroidal ecdysone agonists, including tebufenozide, are commercially available as insecticides. Tebufenozide exerts its activity by binding to the 20E-binding site and thus activating EcR permanently. It appears that subtle differences in the architecture among LBDs may underpin the differential binding affinity of tebufenozide across taxonomic orders. In brief, first we demonstrated the harmlessness of tebufenozide towards Chrysoperla externa (Ce). Then, a molecular analysis of EcR-LBD of two neuropteran insects Chrysoperla carnea and Ce was presented. Finally, we constructed a chrysopid in silico homology model docked ponasterone A (PonA) and tebufenozide into the binding pocket and analyzed the amino acids indentified as critical for binding to PonA and tebufenozide. Due to a restrict extent in the cavity at the bottom of the ecdysone-binding pocket a steric clash occurred upon docking of tebufenozide. The absence of harm biological effect and the docking results suggest that tebufenozide is prevented of any deleterious effects on chrysopids.
Collapse
Affiliation(s)
- Moises João Zotti
- Laboratory of Agrozoology, Department of Crop Protection, Ghent University, 9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
10
|
Yeates DK, Cameron SL, Trautwein M. A view from the edge of the forest: recent progress in understanding the relationships of the insect orders. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1440-6055.2012.00857.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Trautwein MD, Wiegmann BM, Beutel R, Kjer KM, Yeates DK. Advances in insect phylogeny at the dawn of the postgenomic era. ANNUAL REVIEW OF ENTOMOLOGY 2012; 57:449-468. [PMID: 22149269 DOI: 10.1146/annurev-ento-120710-100538] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Most species on Earth are insects and thus, understanding their evolutionary relationships is key to understanding the evolution of life. Insect relationships are increasingly well supported, due largely to technological advances in molecular sequencing and phylogenetic computational analysis. In this postgenomic era, insect systematics will be furthered best by integrative methods aimed at hypothesis corroboration from molecular, morphological, and paleontological evidence. This review of the current consensus of insect relationships provides a foundation for comparative study and offers a framework to evaluate incoming genomic evidence. Notable recent phylogenetic successes include the resolution of Holometabola, including the identification of the enigmatic Strepsiptera as a beetle relative and the early divergence of Hymenoptera; the recognition of hexapods as a crustacean lineage within Pancrustacea; and the elucidation of Dictyoptera orders, with termites placed as social cockroaches. Regions of the tree that require further investigation include the earliest winged insects (Palaeoptera) and Polyneoptera (orthopteroid lineages).
Collapse
Affiliation(s)
- Michelle D Trautwein
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | | | | | |
Collapse
|
12
|
Talavera G, Vila R. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny. BMC Evol Biol 2011; 11:315. [PMID: 22032248 PMCID: PMC3213125 DOI: 10.1186/1471-2148-11-315] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Efforts to solve higher-level evolutionary relationships within the class Insecta by using mitochondrial genomic data are hindered due to fast sequence evolution of several groups, most notably Hymenoptera, Strepsiptera, Phthiraptera, Hemiptera and Thysanoptera. Accelerated rates of substitution on their sequences have been shown to have negative consequences in phylogenetic inference. In this study, we tested several methodological approaches to recover phylogenetic signal from whole mitochondrial genomes. As a model, we used two classical problems in insect phylogenetics: The relationships within Paraneoptera and within Holometabola. Moreover, we assessed the mitochondrial phylogenetic signal limits in the deeper Eumetabola dataset, and we studied the contribution of individual genes. RESULTS Long-branch attraction (LBA) artefacts were detected in all the datasets. Methods using Bayesian inference outperformed maximum likelihood approaches, and LBA was avoided in Paraneoptera and Holometabola when using protein sequences and the site-heterogeneous mixture model CAT. The better performance of this method was evidenced by resulting topologies matching generally accepted hypotheses based on nuclear and/or morphological data, and was confirmed by cross-validation and simulation analyses. Using the CAT model, the order Strepsiptera was recovered as sister to Coleoptera for the first time using mitochondrial sequences, in agreement with recent results based on large nuclear and morphological datasets. Also the Hymenoptera-Mecopterida association was obtained, leaving Coleoptera and Strepsiptera as the basal groups of the holometabolan insects, which coincides with one of the two main competing hypotheses. For the Paraneroptera, the currently accepted non-monophyly of Homoptera was documented as a phylogenetic novelty for mitochondrial data. However, results were not satisfactory when exploring the entire Eumetabola, revealing the limits of the phylogenetic signal that can be extracted from Insecta mitogenomes. Based on the combined use of the five best topology-performing genes we obtained comparable results to whole mitogenomes, highlighting the important role of data quality. CONCLUSION We show for the first time that mitogenomic data agrees with nuclear and morphological data for several of the most controversial insect evolutionary relationships, adding a new independent source of evidence to study relationships among insect orders. We propose that deeper divergences cannot be inferred with the current available methods due to sequence saturation and compositional bias inconsistencies. Our exploratory analysis indicates that the CAT model is the best dealing with LBA and it could be useful for other groups and datasets with similar phylogenetic difficulties.
Collapse
Affiliation(s)
- Gerard Talavera
- Institut de Biologia Evolutiva (CSIC-UPF), Pg. Marítim de la Barceloneta 37, 08003 Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Pg. Marítim de la Barceloneta 37, 08003 Barcelona, Spain
| |
Collapse
|
13
|
Hult EF, Tobe SS, Chang BSW. Molecular evolution of ultraspiracle protein (USP/RXR) in insects. PLoS One 2011; 6:e23416. [PMID: 21901121 PMCID: PMC3162005 DOI: 10.1371/journal.pone.0023416] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/16/2011] [Indexed: 12/20/2022] Open
Abstract
Ultraspiracle protein/retinoid X receptor (USP/RXR) is a nuclear receptor and transcription factor which is an essential component of a heterodimeric receptor complex with the ecdysone receptor (EcR). In insects this complex binds ecdysteroids and plays an important role in the regulation of growth, development, metamorphosis and reproduction. In some holometabolous insects, including Lepidoptera and Diptera, USP/RXR is thought to have experienced several important shifts in function. These include the acquisition of novel ligand-binding properties and an expanded dimerization interface with EcR. In light of these recent hypotheses, we implemented codon-based likelihood methods to investigate if the proposed shifts in function are reflected in changes in site-specific evolutionary rates across functional and structural motifs in insect USP/RXR sequences, and if there is any evidence for positive selection at functionally important sites. Our results reveal evidence of positive selection acting on sites within the loop connecting helices H1 and H3, the ligand-binding pocket, and the dimer interface in the holometabolous lineage leading to the Lepidoptera/Diptera/Trichoptera. Similar analyses conducted using EcR sequences did not indicate positive selection. However, analyses allowing for variation across sites demonstrated elevated non-synonymous/synonymous rate ratios (d(N)/d(S)), suggesting relaxed constraint, within the dimerization interface of both USP/RXR and EcR as well as within the coactivator binding groove and helix H12 of USP/RXR. Since the above methods are based on the assumption that d(S) is constant among sites, we also used more recent models which relax this assumption and obtained results consistent with traditional random-sites models. Overall our findings support the evolution of novel function in USP/RXR of more derived holometabolous insects, and are consistent with shifts in structure and function which may have increased USP/RXR reliance on EcR for cofactor recruitment. Moreover, these findings raise important questions regarding hypotheses which suggest the independent activation of USP/RXR by its own ligand.
Collapse
Affiliation(s)
- Ekaterina F. Hult
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen S. Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Belinda S. W. Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Ishiwata K, Sasaki G, Ogawa J, Miyata T, Su ZH. Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Mol Phylogenet Evol 2010; 58:169-80. [PMID: 21075208 DOI: 10.1016/j.ympev.2010.11.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 10/20/2010] [Accepted: 11/06/2010] [Indexed: 10/18/2022]
Abstract
Many attempts to resolve the phylogenetic relationships of higher groups of insects have been made based on both morphological and molecular evidence; nonetheless, most of the interordinal relationships of insects remain unclear or are controversial. As a new approach, in this study we sequenced three nuclear genes encoding the catalytic subunit of DNA polymerase delta and the two largest subunits of RNA polymerase II from all insect orders. The predicted amino acid sequences (In total, approx. 3500 amino acid sites) of these proteins were subjected to phylogenetic analyses based on the maximum likelihood and Bayesian analysis methods with various models. The resulting trees strongly support the monophyly of Palaeoptera, Neoptera, Polyneoptera, and Holometabola, while within Polyneoptera, the groupings of Isoptera/"Blattaria"/Mantodea (Superorder Dictyoptera), Dictyoptera/Zoraptera, Dermaptera/Plecoptera, Mantophasmatodea/Grylloblattodea, and Embioptera/Phasmatodea are supported. Although Paraneoptera is not supported as a monophyletic group, the grouping of Phthiraptera/Psocoptera is robustly supported. The interordinal relationships within Holometabola are well resolved and strongly supported that the order Hymenoptera is the sister lineage to all other holometabolous insects. The other orders of Holometabola are separated into two large groups, and the interordinal relationships of each group are (((Siphonaptera, Mecoptera), Diptera), (Trichoptera, Lepidoptera)) and ((Coleoptera, Strepsiptera), (Neuroptera, Raphidioptera, Megaloptera)). The sister relationship between Strepsiptera and Diptera are significantly rejected by all the statistical tests (AU, KH and wSH), while the affinity between Hymenoptera and Mecopterida are significantly rejected only by AU and KH tests. Our results show that the use of amino acid sequences of these three nuclear genes is an effective approach for resolving the relationships of higher groups of insects.
Collapse
Affiliation(s)
- Keisuke Ishiwata
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
15
|
Soin T, Swevers L, Kotzia G, Iatrou K, Janssen CR, Rougé P, Harada T, Nakagawa Y, Smagghe G. Comparison of the activity of non-steroidal ecdysone agonists between dipteran and lepidopteran insects, using cell-based EcR reporter assays. PEST MANAGEMENT SCIENCE 2010; 66:1215-1229. [PMID: 20672340 DOI: 10.1002/ps.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND Diacylhydrazine (DAH) analogues have been developed successfully as a new group of insect growth regulators, called ecdysone agonists or moulting accelerating compounds. These DAHs have been shown to manifest their toxicity via interaction with the ecdysone receptor (EcR) in susceptible insects, as does the natural insect moulting hormone 20-hydroxyecdysone (20E). A notable feature is their high activity and specificity, particularly against lepidopteran insects, raising the question as to whether non-lepidopteran-specific analogues can be isolated. However, for the discovery of ecdysone agonists that target other important insect groups such as Diptera, efficient screening systems that are based on the activation of the EcR are needed. RESULTS In this study, a dipteran-specific reporter-based screening system with transfected S2 cells of Drosophila melanogaster Meig. was developed in order to discover and evaluate compounds that have ecdysone agonistic or antagonistic activity. A library of non-steroidal ecdysone agonists containing different mother structures with DAH and other related analogues such as acylaminoketone (AAK) and tetrahydroquinoline (THQ) was tested. None of the compounds tested was as active as 20E. This is in contrast to the very high activity of several DAH and AAK congeners in lepidopteran cells (Bombyx mori L.-derived Bm5 cells). The latter agrees with a successful docking of a DAH, tebufenozide, in the binding pocket of the lepidopteran EcR (B. mori), while this was not the case with the dipteran EcR (D. melanogaster). Of note was the identification of two THQ compounds with activity in S2 but not in Bm5 cells. Although marked differences in activity exist with respect to the activation of EcR between dipterans and lepidopterans, there exists a positive correlation (R = 0.724) between the pLC(50) values in S2 and Bm5 cells. In addition, it was found through protein modelling that a second lobe was present in the ligand-binding pocket of lepidopteran BmEcR but was lacking in the dipteran DmEcR protein, suggesting that this difference in structure of the binding pocket is a major factor for preferential activation of the lepidopteran over the dipteran receptors by DAH ligands. CONCLUSIONS The present study confirmed the marked specificity of DAH and AAK analogues towards EcRs from lepidopteran insects. THQ compounds did not show this specificity, indicating that dipteran-specific ecdysone-agonist-based insecticides based on the THQ mother structure can be developed. The differences in activity of ecdysone agonists in dipteran and lepidopteran ecdysone-reporter-based screening systems are discussed.
Collapse
|
16
|
Lukhtanov VA, Kuznetsova VG. What genes and chromosomes say about the origin and evolution of insects and other arthropods. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410090279] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
McKenna DD, Farrell BD. 9-genes reinforce the phylogeny of holometabola and yield alternate views on the phylogenetic placement of Strepsiptera. PLoS One 2010; 5:e11887. [PMID: 20686704 PMCID: PMC2912379 DOI: 10.1371/journal.pone.0011887] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 06/29/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The extraordinary morphology, reproductive and developmental biology, and behavioral ecology of twisted wing parasites (order Strepsiptera) have puzzled biologists for centuries. Even today, the phylogenetic position of these enigmatic "insects from outer space" [1] remains uncertain and contentious. Recent authors have argued for the placement of Strepsiptera within or as a close relative of beetles (order Coleoptera), as sister group of flies (order Diptera), or even outside of Holometabola. METHODOLOGY/PRINCIPAL FINDINGS Here, we combine data from several recent studies with new data (for a total of 9 nuclear genes and approximately 13 kb of aligned data for 34 taxa), to help clarify the phylogenetic placement of Strepsiptera. Our results unequivocally support the monophyly of Neuropteroidea (=Neuropterida+Coleoptera)+Strepsiptera, but recover Strepsiptera either derived from within polyphagan beetles (order Coleoptera), or in a position sister to Neuropterida. All other supra-ordinal- and ordinal-level relationships recovered with strong nodal support were consistent with most other recent studies. CONCLUSIONS/SIGNIFICANCE These results, coupled with the recent proposed placement of Strepsiptera sister to Coleoptera, suggest that while the phylogenetic neighborhood of Strepsiptera has been identified, unequivocal placement to a specific branch within Neuropteroidea will require additional study.
Collapse
Affiliation(s)
- Duane D McKenna
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America.
| | | |
Collapse
|
18
|
Ribosomal protein genes of holometabolan insects reject the Halteria, instead revealing a close affinity of Strepsiptera with Coleoptera. Mol Phylogenet Evol 2010; 55:846-59. [PMID: 20348001 DOI: 10.1016/j.ympev.2010.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 02/18/2010] [Accepted: 03/19/2010] [Indexed: 11/23/2022]
Abstract
The phylogenetic relationships among holometabolan insect orders remain poorly known, despite a wealth of previous studies. In particular, past attempts to clarify the sister-group of the enigmatic order Strepsiptera with rRNA genes have led to intense debate about long-branch attraction (the 'Strepsiptera problem'), without resolving the taxonomic question at hand. Here, we appealed to alternative nuclear sequences of 27 ribosomal proteins (RPs) to generate a data matrix of 10,731 nucleotides for 22 holometabolan taxa, including two strepsipteran species. Phylogenetic relationships among holometabolan insects were analyzed under several nucleotide-coding schemes to explore differences in signal and systematic biases. Saturation and compositional bias particularly affected third positions, which greatly differed in AT content (18-72%). Such confounding factors were best reduced by R-Y coding and removal of third codon positions, resulting in more strongly supported topologies, whereas amino acid coding gave poor resolution. The placement of Strepsiptera with Coleoptera (the Coleopterida) was recovered under most coding schemes and analytical methods, if often with modest support and ambiguity. In contrast, an alternative sister-group with Diptera (the Halteria) was only found in one analysis using parsimony, and weakly supported. The topologies here generally support a Coleoptera+Strepsiptera as sister-group to Mecopterida (Siphonaptera+Mecoptera+Diptera+Lepidoptera+Trichoptera), while Hymenoptera were always recovered as sister-group to the remaining Holometabola.
Collapse
|
19
|
Friedrich F, Beutel RG. The thoracic morphology ofNannochorista(Nannochoristidae) and its implications for the phylogeny of Mecoptera and Antliophora. J ZOOL SYST EVOL RES 2010. [DOI: 10.1111/j.1439-0469.2009.00535.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Abstract
The molting process in arthropods is regulated by steroid hormones acting via nuclear receptor proteins. The most common molting hormone is the ecdysteroid, 20-hydroxyecdysone. The receptors of 20-hydroxyecdysone have also been identified in many arthropod species, and the amino acid sequences determined. The functional molting hormone receptors consist of two members of the nuclear receptor superfamily, namely the ecdysone receptor and the ultraspiracle, although the ecdysone receptor may be functional, in some instances, without the ultraspiracle. Generally, the ecdysone receptor/ultraspiracle heterodimer binds to a number of ecdysone response elements, sequence motifs that reside in the promoter of various ecdysteroid-responsive genes. In the ensuing transcriptional induction, the ecdysone receptor/ultraspiracle complex binds to 20-hydroxyecdysone or to a cognate ligand that, in turn, leads to the release of a corepressor and the recruitment of coactivators. 3D structures of the ligand-binding domains of the ecdysone receptor and the ultraspiracle have been solved for a few insect species. Ecdysone agonists bind to ecdysone receptors specifically, and ligand-ecdysone receptor binding is enhanced in the presence of the ultraspiracle in insects. The basic mode of ecdysteroid receptor action is highly conserved, but substantial functional differences exist among the receptors of individual species. Even though the transcriptional effects are apparently similar for ecdysteroids and nonsteroidal compounds such as diacylhydrazines, the binding shapes are different between them. The compounds having the strongest binding affinity to receptors ordinarily have strong molting hormone activity. The ability of the ecdysone receptor/ultraspiracle complex to manifest the effects of small lipophilic agonists has led to their use as gene switches for medical and agricultural applications.
Collapse
Affiliation(s)
- Yoshiaki Nakagawa
- Division of Applied Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-Ku, Kyoto 606-8502, Japan.
| | | |
Collapse
|
21
|
Wiegmann BM, Trautwein MD, Kim JW, Cassel BK, Bertone MA, Winterton SL, Yeates DK. Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 2009; 7:34. [PMID: 19552814 PMCID: PMC2709105 DOI: 10.1186/1741-7007-7-34] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/24/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionary relationships among the 11 extant orders of insects that undergo complete metamorphosis, called Holometabola, remain either unresolved or contentious, but are extremely important as a context for accurate comparative biology of insect model organisms. The most phylogenetically enigmatic holometabolan insects are Strepsiptera or twisted wing parasites, whose evolutionary relationship to any other insect order is unconfirmed. They have been controversially proposed as the closest relatives of the flies, based on rDNA, and a possible homeotic transformation in the common ancestor of both groups that would make the reduced forewings of Strepsiptera homologous to the reduced hindwings of Diptera. Here we present evidence from nucleotide sequences of six single-copy nuclear protein coding genes used to reconstruct phylogenetic relationships and estimate evolutionary divergence times for all holometabolan orders. RESULTS Our results strongly support Hymenoptera as the earliest branching holometabolan lineage, the monophyly of the extant orders, including the fleas, and traditionally recognized groupings of Neuropteroidea and Mecopterida. Most significantly, we find strong support for a close relationship between Coleoptera (beetles) and Strepsiptera, a previously proposed, but analytically controversial relationship. Exploratory analyses reveal that this relationship cannot be explained by long-branch attraction or other systematic biases. Bayesian divergence times analysis, with reference to specific fossil constraints, places the origin of Holometabola in the Carboniferous (355 Ma), a date significantly older than previous paleontological and morphological phylogenetic reconstructions. The origin and diversification of most extant insect orders began in the Triassic, but flourished in the Jurassic, with multiple adaptive radiations producing the astounding diversity of insect species for which these groups are so well known. CONCLUSION These findings provide the most complete evolutionary framework for future comparative studies on holometabolous model organisms and contribute strong evidence for the resolution of the 'Strepsiptera problem', a long-standing and hotly debated issue in insect phylogenetics.
Collapse
Affiliation(s)
- Brian M Wiegmann
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, USA
| | - Michelle D Trautwein
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jung-Wook Kim
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, USA
| | - Brian K Cassel
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew A Bertone
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, USA
| | - Shaun L Winterton
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - David K Yeates
- Commonwealth Scientific and Research Organization – Entomology, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
22
|
Beck Y, Delaporte C, Moras D, Richards G, Billas IM. The ligand-binding domains of the three RXR-USP nuclear receptor types support distinct tissue and ligand specific hormonal responses in transgenic Drosophila. Dev Biol 2009; 330:1-11. [DOI: 10.1016/j.ydbio.2008.12.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 11/18/2008] [Accepted: 12/22/2008] [Indexed: 11/16/2022]
|
23
|
Cruz J, Sieglaff DH, Arensburger P, Atkinson PW, Raikhel AS. Nuclear receptors in the mosquito Aedes aegypti. FEBS J 2009; 276:1233-54. [DOI: 10.1111/j.1742-4658.2008.06860.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Iwema T, Chaumot A, Studer RA, Robinson-Rechavi M, Billas IML, Moras D, Laudet V, Bonneton F. Structural and evolutionary innovation of the heterodimerization interface between USP and the ecdysone receptor ECR in insects. Mol Biol Evol 2009; 26:753-68. [PMID: 19126866 DOI: 10.1093/molbev/msn302] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Understanding how the variability of protein structure arises during evolution and leads to new structure-function relationships ultimately promoting evolutionary novelties is a major goal of molecular evolution and is critical for interpreting genome sequences. We addressed this issue using the ecdysone receptor (ECR), a major developmental factor that controls development and reproduction of arthropods. The functional ECR is a heterodimer of two nuclear receptors: ECR, which binds ecdysteroids, and its obligatory partner ultraspirade (USP), which is orthologous to the retinoid X receptor of vertebrates. Both genes underwent a dramatic increase of evolutionary rate in Mecopterida, the major insect terminal group containing Dipteras and Lepidopteras. We therefore questioned the implication of this event in terms of coevolution of their dimerization interface. A structural comparison revealed a 30% larger ligand-binding domain (LBD) heterodimerization surface in the Lepidoptera Heliothis when compared with basal insects, associated with a symmetrization of the interface, which is exceptional for nuclear receptors. Reconstruction of ancestral sequences and homology modeling of the ancestral Mecopterida ECR-USP reveal that this enlarged dimerization surface is a synapomorphy for Mecopterida. Furthermore, we show that the residues implicated in the new dimerization surface underwent specific evolutionary constraints in Mecopterida indicative of their new and conserved role in the dimerization interface. Most of all, the novel surface originates from a 15 degrees torsion of a subdomain of USP LBD toward its partner ECR, which is a long-range consequence of the peculiar position of a Mecopterida-specific insertion in loop L1-3, located outside of the interaction surface, in a less crucial domain of the partner protein. These results indicate that the coevolution between ECR and USP occurred through a novel mechanism of intramolecular epistasis that will undoubtedly be generalized for other molecules because it uses flexibility of a less-constrained region of a protein to modify the structure of another, critical part of the molecule.
Collapse
Affiliation(s)
- Thomas Iwema
- Département de Biologie et de Génomique Structurales, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch, France.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hopkins PM, Durica D, Washington T. RXR isoforms and endogenous retinoids in the fiddler crab, Uca pugilator. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:602-14. [DOI: 10.1016/j.cbpa.2008.07.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/15/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
|
26
|
Markov GV, Paris M, Bertrand S, Laudet V. The evolution of the ligand/receptor couple: a long road from comparative endocrinology to comparative genomics. Mol Cell Endocrinol 2008; 293:5-16. [PMID: 18634845 DOI: 10.1016/j.mce.2008.06.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 05/14/2008] [Accepted: 06/11/2008] [Indexed: 12/16/2022]
Abstract
Comparative endocrinology considers the evolution of bioregulatory systems and the anatomical structures and molecules that constitute the neuroendocrine and endocrine systems. One aim of comparative endocrinology is to trace the origins of the main endocrine systems. The understanding of the evolution of the ligand/receptor couple is central to this objective. One classical approach to tackle this question is the characterization of receptors and ligands in various types of non-model organisms using as a starting point the knowledge accumulated on classical models such as mammals (mainly human and mouse) and arthropods (with Drosophila among other insects). In this review we discuss the potential caveats associated to this two-by-two comparison between a classical model and non-model organisms. We suggest that the use of an evolutionary approach involving comparisons of several organisms in a coherent framework permits reconstruction of the most probable scenarios. The use of the vast amount of genomic data now available, coupled to functional experiments, offers unprecedented possibilities to trace back the origins of the main ligand/receptor couples.
Collapse
|
27
|
Bonneton F, Chaumot A, Laudet V. Annotation of Tribolium nuclear receptors reveals an increase in evolutionary rate of a network controlling the ecdysone cascade. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:416-429. [PMID: 18342247 DOI: 10.1016/j.ibmb.2007.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 10/10/2007] [Accepted: 10/12/2007] [Indexed: 05/26/2023]
Abstract
The Tribolium genome contains 21 nuclear receptors, representing all of the six known subfamilies. This first complete set for a coleopteran species reveals a strong conservation of the number and identity of nuclear receptors in holometabolous insects. Two novelties are observed: the atypical NR0 gene knirps is present only in brachyceran flies, while the NR2E6 gene is found only in Tribolium and in Apis. Using a quantitative analysis of the evolutionary rate, we discovered that nuclear receptors could be divided into two groups. In one group of 13 proteins, the rates follow the trend of the Mecopterida genome-wide acceleration. In a second group of five nuclear receptors, all acting early during the ecdysone cascade, we observed an even higher increase of the evolutionary rate during the early divergence of Mecopterida. We thus extended our analysis to the 12 classic ecdysone transcriptional regulators and found that six of them (ECR, USP, HR3, E75, HR4 and Kr-h1) underwent an increase in evolutionary rate at the base of the Mecopterida lineage. By contrast, E74, E93, BR, HR39, FTZ-F1 and E78 do not show this divergence. We suggest that coevolution occurred within a network of regulators that control the ecdysone cascade. The advent of Tribolium as a powerful model should allow a better understanding of this evolutionary event.
Collapse
Affiliation(s)
- François Bonneton
- Université de Lyon, Université Lyon 1, IFR Gerland Lyon Sud, IGFL, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France.
| | | | | |
Collapse
|
28
|
Misof B, Niehuis O, Bischoff I, Rickert A, Erpenbeck D, Staniczek A. Towards an 18S phylogeny of hexapods: Accounting for group-specific character covariance in optimized mixed nucleotide/doublet models. ZOOLOGY 2007; 110:409-29. [DOI: 10.1016/j.zool.2007.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 08/02/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
|
29
|
Iwema T, Billas IML, Beck Y, Bonneton F, Nierengarten H, Chaumot A, Richards G, Laudet V, Moras D. Structural and functional characterization of a novel type of ligand-independent RXR-USP receptor. EMBO J 2007; 26:3770-82. [PMID: 17673910 PMCID: PMC1952225 DOI: 10.1038/sj.emboj.7601810] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 07/02/2007] [Indexed: 11/08/2022] Open
Abstract
Retinoid X receptor (RXR) and Ultraspiracle (USP) play a central role as ubiquitous heterodimerization partners of many nuclear receptors. While it has long been accepted that a wide range of ligands can activate vertebrate/mollusc RXRs, the existence and necessity of specific endogenous ligands activating RXR-USP in vivo is still matter of intense debate. Here we report the existence of a novel type of RXR-USP with a ligand-independent functional conformation. Our studies involved Tribolium USP (TcUSP) as representative of most arthropod RXR-USPs, with high sequence homology to vertebrate/mollusc RXRs. The crystal structure of the ligand-binding domain of TcUSP was solved in the context of the functional heterodimer with the ecdysone receptor (EcR). While EcR exhibits a canonical ligand-bound conformation, USP adopts an original apo structure. Our functional data demonstrate that TcUSP is a constitutively silent partner of EcR, and that none of the RXR ligands can bind and activate TcUSP. These findings together with a phylogenetic analysis suggest that RXR-USPs have undergone remarkable functional shifts during evolution and give insight into receptor-ligand binding evolution and dynamics.
Collapse
Affiliation(s)
- Thomas Iwema
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), (UMR7104 CNRS, U596 INSERM, ULP), Département de Biologie et de Génomique Structurales, Illkirch, France
| | - Isabelle ML Billas
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), (UMR7104 CNRS, U596 INSERM, ULP), Département de Biologie et de Génomique Structurales, Illkirch, France
| | - Yannick Beck
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), (UMR7104 CNRS, U596 INSERM, ULP), Département de Biologie et de Génomique Structurales, Illkirch, France
| | - François Bonneton
- Université de Lyon, Université Lyon 1, Ecole Normale Supérieure de Lyon, IGFL, CNRS UMR5242, INRA UMR1237, IFR128, Lyon, France
| | - Hélène Nierengarten
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), (UMR7104 CNRS, U596 INSERM, ULP), Département de Biologie et de Génomique Structurales, Illkirch, France
| | - Arnaud Chaumot
- Université de Lyon, Université Lyon 1, Ecole Normale Supérieure de Lyon, IGFL, CNRS UMR5242, INRA UMR1237, IFR128, Lyon, France
- CEMAGREF, Laboratoire d'Ecotoxicologie, Lyon Cedex, France
| | - Geoff Richards
- HFSP (Human Frontier Science Program), Strasbourg, France
| | - Vincent Laudet
- Université de Lyon, Université Lyon 1, Ecole Normale Supérieure de Lyon, IGFL, CNRS UMR5242, INRA UMR1237, IFR128, Lyon, France
| | - Dino Moras
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), (UMR7104 CNRS, U596 INSERM, ULP), Département de Biologie et de Génomique Structurales, Illkirch, France
| |
Collapse
|