1
|
Rosario-Cruz R, Domínguez-García DI, Almazán C. Inclusion of Anti-Tick Vaccines into an Integrated Tick Management Program in Mexico: A Public Policy Challenge. Vaccines (Basel) 2024; 12:403. [PMID: 38675785 PMCID: PMC11053712 DOI: 10.3390/vaccines12040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Acaricides are the most widely used method to control the cattle tick Rhipicephalus microplus. However, its use increases production costs, contaminates food and the environment, and directly affects animal and human health. The intensive use of chemical control has resulted in the selection of genes associated with resistance to acaricides, and consumers are increasingly less tolerant of food contamination. This scenario has increased the interest of different research groups around the world for anti-tick vaccine development, in order to reduce the environmental impact, the presence of residues in food, and the harmful effects on animal and human health. There is enough evidence that vaccination with tick antigens induces protection against tick infestations, reducing tick populations and acaricide treatments. Despite the need for an anti-tick vaccine in Mexico, vaccination against ticks has been limited to one vaccine that is used in some regions. The aim of this review is to contribute to the discussion on tick control issues and provide a reference for readers interested in the importance of using anti-tick vaccines encouraging concerted action on the part of Mexican animal health authorities, livestock organizations, cattle producers, and academics. Therefore, it is suggested that an anti-tick vaccine should be included as a part of an integrated tick management program in Mexico.
Collapse
Affiliation(s)
- Rodrigo Rosario-Cruz
- Biotechnology in Health and Environmental Sciences Research Laboratory, Natural Sciences College, Autónomous Guerrero State University, Chilpancingo 39105, Guerrero, Mexico;
| | - Delia Inés Domínguez-García
- Biotechnology in Health and Environmental Sciences Research Laboratory, Natural Sciences College, Autónomous Guerrero State University, Chilpancingo 39105, Guerrero, Mexico;
| | - Consuelo Almazán
- Immunology and Vaccines Laboratory, College of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76230, Queretaro, Mexico;
| |
Collapse
|
2
|
Achuthkumar A, Uchamballi S, Arvind K, Vasu DA, Varghese S, Ravindran R, Grace T. Transcriptome Profiling of Rhipicephalus annulatus Reveals Differential Gene Expression of Metabolic Detoxifying Enzymes in Response to Acaricide Treatment. Biomedicines 2023; 11:biomedicines11051369. [PMID: 37239047 DOI: 10.3390/biomedicines11051369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023] Open
Abstract
Ticks are hematophagous ectoparasites of economic consequence by virtue of being carriers of infectious diseases that affect livestock and other sectors of the agricultural industry. A widely prevalent tick species, Rhipicephalus (Boophilus) annulatus, has been recognized as a prime vector of tick-borne diseases in South Indian regions. Over time, the use of chemical acaricides for tick control has promoted the evolution of resistance to these widely used compounds through metabolic detoxification. Identifying the genes related to this detoxification is extremely important, as it could help detect valid insecticide targets and develop novel strategies for effective insect control. We performed an RNA-sequencing analysis of acaricide-treated and untreated R. (B.) annulatus and mapped the detoxification genes expressed due to acaricide exposure. Our results provided high-quality RNA-sequenced data of untreated and amitraz-treated R. (B.) annulatus, and then the data were assembled into contigs and clustered into 50,591 and 71,711 uni-gene sequences, respectively. The expression levels of the detoxification genes across different developmental stages of R. (B.) annulatu identified 16,635 transcripts as upregulated and 15,539 transcripts as downregulated. The annotations of the differentially expressed genes (DEGs) revealed the significant expression of 70 detoxification genes in response to the amitraz treatment. The qRT-PCR revealed significant differences in the gene expression levels across different life stages of R. (B.) annulatus.
Collapse
Affiliation(s)
- Amritha Achuthkumar
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Shamjana Uchamballi
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Kumar Arvind
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Deepa Azhchath Vasu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| | - Sincy Varghese
- Department of Biochemistry, Pazhassiraja College, Pulpally 673579, Kerala, India
| | - Reghu Ravindran
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode 673576, Kerala, India
| | - Tony Grace
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671320, Kerala, India
| |
Collapse
|
3
|
Wang Y, Tian J, Han Q, Zhang Y, Liu Z. Genomic organization and expression pattern of cytochrome P450 genes in the wolf spider Pardosa pseudoannulata. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109118. [PMID: 34182095 DOI: 10.1016/j.cbpc.2021.109118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
As one of the dominant natural enemies for insect pests, the pond wolf spider, Pardosa pseudoannulata, plays important roles in pest control. Insecticide applications threaten P. pseudoannulata and consequently weaken its control effects. The roles of P450 monooxygenases in insecticide detoxifications have been richly reported in insects, but there are few reported in spiders. In this study, 120 transcripts encoding P. pseudoannulata P450s were identified based on whole genome sequencing. Compared to P450s of Aedes aegypti and Nilaparvata lugens, several novel P450 families were found, such as CYP3310. KEGG analysis of the CYP3310 family indicated that the family might be involved in the synthesis and metabolism of polyunsaturated fatty acids and hydrocarbons. The potential P450s involved in insecticide metabolism were obtained according to the high FPKM values in fat bodies based on transcriptome sequencing. However, none of the selected P450 genes was significantly upregulated by the treatments of deltamethrin or imidacloprid. The present study provides genomic and transcriptomic information of spider P450s, especially for their roles in the synthesis and metabolism of endogenous and exogenous compounds, such as polyunsaturated fatty acids, hydrocarbons and insecticides.
Collapse
Affiliation(s)
- Yunchao Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Jiahua Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Qianqian Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
4
|
Kumar R. Molecular markers and their application in the monitoring of acaricide resistance in Rhipicephalus microplus. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:149-172. [PMID: 31190248 DOI: 10.1007/s10493-019-00394-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Monitoring acaricide resistance and understanding the underlying mechanisms are critically important in developing strategies for resistance management and tick control. Identification of single nucleotide polymorphisms in the acaricide-resistant associated gene of Rhipicephalus microplus has enabled the development of molecular markers for detection and monitoring of resistance against different types of acaricide. There are many molecular markers developed for resistance monitoring, including mutations on target genes such as sodium channel, acetylcholinesterase, carboxylesterase, β-adrenergic octopamine receptor, octopamine-tyramine etc. Molecular genotyping through molecular markers can detect the presence of resistance-associated genes in a tick population before it reaches high frequency. This review aims to provide an update on the various molecular markers discovered to date from different regions of the world.
Collapse
Affiliation(s)
- Rinesh Kumar
- College of Veterinary Science and Animal Husbandry, Rewa, Madhya Pradesh, India.
| |
Collapse
|
5
|
Fular A, Sharma AK, Kumar S, Nagar G, Chigure G, Ray D, Ghosh S. Establishment of a multi-acaricide resistant reference tick strain (IVRI-V) of Rhipicephalus microplus. Ticks Tick Borne Dis 2018; 9:1184-1191. [DOI: 10.1016/j.ttbdis.2018.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/18/2018] [Accepted: 04/21/2018] [Indexed: 10/17/2022]
|
6
|
Barrero RA, Guerrero FD, Black M, McCooke J, Chapman B, Schilkey F, Pérez de León AA, Miller RJ, Bruns S, Dobry J, Mikhaylenko G, Stormo K, Bell C, Tao Q, Bogden R, Moolhuijzen PM, Hunter A, Bellgard MI. Gene-enriched draft genome of the cattle tick Rhipicephalus microplus: assembly by the hybrid Pacific Biosciences/Illumina approach enabled analysis of the highly repetitive genome. Int J Parasitol 2017; 47:569-583. [PMID: 28577881 DOI: 10.1016/j.ijpara.2017.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
The genome of the cattle tick Rhipicephalus microplus, an ectoparasite with global distribution, is estimated to be 7.1Gbp in length and consists of approximately 70% repetitive DNA. We report the draft assembly of a tick genome that utilized a hybrid sequencing and assembly approach to capture the repetitive fractions of the genome. Our hybrid approach produced an assembly consisting of 2.0Gbp represented in 195,170 scaffolds with a N50 of 60,284bp. The Rmi v2.0 assembly is 51.46% repetitive with a large fraction of unclassified repeats, short interspersed elements, long interspersed elements and long terminal repeats. We identified 38,827 putative R. microplus gene loci, of which 24,758 were protein coding genes (≥100 amino acids). OrthoMCL comparative analysis against 11 selected species including insects and vertebrates identified 10,835 and 3,423 protein coding gene loci that are unique to R. microplus or common to both R. microplus and Ixodes scapularis ticks, respectively. We identified 191 microRNA loci, of which 168 have similarity to known miRNAs and 23 represent novel miRNA families. We identified the genomic loci of several highly divergent R. microplus esterases with sequence similarity to acetylcholinesterase. Additionally we report the finding of a novel cytochrome P450 CYP41 homolog that shows similar protein folding structures to known CYP41 proteins known to be involved in acaricide resistance.
Collapse
Affiliation(s)
- Roberto A Barrero
- Centre for Comparative Genomics, Murdoch University, WA 6151, Australia
| | - Felix D Guerrero
- USDA-ARS Knipling-Bushland US Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, 2700 Fredericksburg Rd., Kerrville, TX 78028, USA
| | - Michael Black
- Centre for Comparative Genomics, Murdoch University, WA 6151, Australia
| | - John McCooke
- Centre for Comparative Genomics, Murdoch University, WA 6151, Australia
| | - Brett Chapman
- Centre for Comparative Genomics, Murdoch University, WA 6151, Australia
| | - Faye Schilkey
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Adalberto A Pérez de León
- USDA-ARS Knipling-Bushland US Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, 2700 Fredericksburg Rd., Kerrville, TX 78028, USA
| | - Robert J Miller
- USDA-ARS Cattle Fever Tick Research Laboratory, 22675 North Moorefield Rd., Edinburg, TX 78541, USA
| | | | | | | | | | - Callum Bell
- National Center for Genome Resources, Santa Fe, NM, USA
| | | | | | - Paula M Moolhuijzen
- Centre for Crop Disease and Management, Curtin University, Bentley, WA 6102, Australia
| | - Adam Hunter
- Centre for Comparative Genomics, Murdoch University, WA 6151, Australia
| | - Matthew I Bellgard
- Centre for Comparative Genomics, Murdoch University, WA 6151, Australia.
| |
Collapse
|
7
|
Reck J, Klafke GM, Webster A, Dall'Agnol B, Scheffer R, Souza UA, Corassini VB, Vargas R, dos Santos JS, Martins JRDS. First report of fluazuron resistance in Rhipicephalus microplus: a field tick population resistant to six classes of acaricides. Vet Parasitol 2014; 201:128-36. [PMID: 24560364 DOI: 10.1016/j.vetpar.2014.01.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/07/2014] [Accepted: 01/19/2014] [Indexed: 11/26/2022]
Abstract
The control of the cattle tick Rhipicephalus microplus is based mainly on the use of chemical acaricides, which has contributed to the emerging problem of selection of resistant tick populations. Currently, there are six main classes of acaricides commercially available in Brazil to control cattle ticks, with fluazuron, a tick growth regulator with acaricidal properties, being the only active ingredient with no previous reports of resistance. Ticks (designated the Jaguar strain) were collected in a beef cattle ranch located at Rio Grande do Sul state, Southern Brazil, after a complaint of fluazuron treatment failure. To characterise the resistance of this strain against acaricides, larval tests were performed and showed that the Jaguar strain was resistant to all of the drugs tested: cypermethrin (resistance ratio, RR=31.242), chlorpyriphos (RR=103.926), fipronil (RR=4.441), amitraz (RR=11.907) and ivermectin (3.081). A field trial was conducted to evaluate the efficacy of fluazuron treatment in heifers that had been experimentally infested with the Jaguar or a susceptible strain. Between 14 and 28 days after treatment, the average efficacy in cattle experimentally infested with the susceptible strain was 96%, while for the Jaguar strain the efficacy was zero. Additionally, the Jaguar strain response to fluazuron was evaluated in vitro using a modified adult immersion test (AIT) and the artificial feeding assay (AFA). With the AIT, 50 ppm of fluazuron inhibited 99% of larvae hatching in the susceptible strain (POA) and less than 50% in the Jaguar strain. Results of the AFA showed a larval hatching rate of 67% at 2.5 ppm of fluazuron with the Jaguar strain; conversely, only 3% of larvae of the susceptible strain hatched at the same fluazuron concentration. The results showed here demonstrated the first case of fluazuron resistance in R. microplus and the first tick population resistant to six classes of acaricides in Brazil.
Collapse
Affiliation(s)
- José Reck
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil
| | - Guilherme Marcondes Klafke
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil.
| | - Anelise Webster
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil
| | - Bruno Dall'Agnol
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil
| | - Ramon Scheffer
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil
| | - Ugo Araújo Souza
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil
| | - Vivian Bamberg Corassini
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil
| | - Rafael Vargas
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil
| | - Julsan Silveira dos Santos
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil
| | - João Ricardo de Souza Martins
- Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS, Brazil
| |
Collapse
|
8
|
Guerrero FD, Lovis L, Martins JR. Acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2012; 21:1-6. [PMID: 22534937 DOI: 10.1590/s1984-29612012000100002] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 03/05/2012] [Indexed: 11/21/2022]
Abstract
Acaricide resistance has become widespread in countries where cattle ticks, Rhipicephalus (Boophilus) microplus, are a problem. Resistance arises through genetic changes in a cattle tick population that causes modifications to the target site, increased metabolism or sequestration of the acaricide, or reduced ability of the acaricide to penetrate through the outer protective layers of the tick's body. We review the molecular and biochemical mechanisms of acaricide resistance that have been shown to be functional in R. (B.) microplus. From a mechanistic point of view, resistance to pyrethroids has been characterized to a greater degree than any other acaricide class. Although a great deal of research has gone into discovery of the mechanisms that cause organophosphate resistance, very little is defined at the molecular level and organophosphate resistance seems to be maintained through a complex and multifactorial process. The resistance mechanisms for other acaricides are less well understood. The target sites of fipronil and the macrocyclic lactones are known and resistance mechanism studies are in the early stages. The target site of amitraz has not been definitively identified and this is hampering mechanistic studies on this acaricide.
Collapse
Affiliation(s)
- Felix David Guerrero
- Knipling-Bushland U.S. Livestock Insects Research Lab, United States Department of Agriculture, Fredericksburg Rd., 78006, Kerrville, TX, USA.
| | | | | |
Collapse
|
9
|
Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:563-72. [PMID: 20685616 DOI: 10.1016/j.ibmb.2010.05.008] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/27/2010] [Accepted: 05/31/2010] [Indexed: 05/07/2023]
Abstract
The two-spotted spider mite Tetranychus urticae Koch is one of the economically most important pests in a wide range of outdoor and protected crops worldwide. Its control has been and still is largely based on the use of insecticides and acaricides. However, due to its short life cycle, abundant progeny and arrhenotokous reproduction, it is able to develop resistance to these compounds very rapidly. As a consequence, it has the dubious reputation to be the"most resistant species" in terms of the total number of pesticides to which populations have become resistant, and its control has become problematic in many areas worldwide. Insecticide and acaricide resistance has also been reported in the ectoparasite Sarcoptes scabiei, the causative organism of scabies, and other economically important Acari, such as the Southern cattle tick Rhipicephalus microplus, one of the biggest arthropod threats to livestock, and the parasitic mite Varroa destructor, a major economic burden for beekeepers worldwide. Although resistance research in Acari has not kept pace with that in insects, a number of studies on the molecular mechanisms responsible for the resistant phenotype has been conducted recently. In this review, state-of-the-art information on T. urticae resistance, supplemented with data on other important Acari has been brought together. Considerable attention is given to the underlying resistance mechanisms that have been elucidated at the molecular level. The incidence of bifenazate resistance in T. urticae is expanded as an insecticide resistance evolutionary paradigm in arthropods.
Collapse
Affiliation(s)
- Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
10
|
Guerrero FD, Moolhuijzen P, Peterson DG, Bidwell S, Caler E, Bellgard M, Nene VM, Djikeng A. Reassociation kinetics-based approach for partial genome sequencing of the cattle tick, Rhipicephalus (Boophilus) microplus. BMC Genomics 2010; 11:374. [PMID: 20540747 PMCID: PMC2893602 DOI: 10.1186/1471-2164-11-374] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 06/11/2010] [Indexed: 11/10/2022] Open
Abstract
Background The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence fiscally and technically problematic. To selectively obtain gene-enriched regions of this tick's genome, Cot filtration was performed, and Cot-filtered DNA was sequenced via 454 FLX pyrosequencing. Results The sequenced Cot-filtered genomic DNA was assembled with an EST-based gene index of 14,586 unique entries where each EST served as a potential "seed" for scaffold formation. The new sequence assembly extended the lengths of 3,913 of the 14,586 gene index entries. Over half of the extensions corresponded to extensions of over 30 amino acids. To survey the repetitive elements in the tick genome, the complete sequences of five BAC clones were determined. Both Class I and II transposable elements were found. Comparison of the BAC and Cot filtration data indicates that Cot filtration was highly successful in filtering repetitive DNA out of the genomic DNA used in 454 sequencing. Conclusion Cot filtration is a very useful strategy to incorporate into genome sequencing projects on organisms with large genome sizes and which contain high percentages of repetitive, difficult to assemble, genomic DNA. Combining the Cot selection approach with 454 sequencing and assembly with a pre-existing EST database as seeds resulted in extensions of 27% of the members of the EST database.
Collapse
Affiliation(s)
- Felix D Guerrero
- USDA-ARS, Knipling-Bushland U,S, Livestock Insects Research Laboratory, 2700 Fredericksburg Rd,, Kerrville, TX 78028, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Saldivar L, Guerrero FD, Miller RJ, Bendele KG, Gondro C, Brayton KA. Microarray analysis of acaricide-inducible gene expression in the southern cattle tick, Rhipicephalus (Boophilus) microplus. INSECT MOLECULAR BIOLOGY 2008; 17:597-606. [PMID: 18834453 DOI: 10.1111/j.1365-2583.2008.00831.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Acaricide-inducible differential gene expression was studied in larvae of Rhipicephalus (Boophilus) microplus using a microarray-based approach. The acaricides used were: coumaphos, permethrin, ivermectin, and amitraz. The microarrays contained over 13 000 probes, having been derived from a previously described R. microplus gene index (BmiGI Version 2; Wang et al., 2007). Relative quantitative reverse transcriptase-PCR, real time PCR, and serial analysis of gene expression data was used to verify microarray data. Among the differentially expressed genes with informative annotation were legumain, glutathione S-transferase, and a putative salivary gland-associated protein.
Collapse
Affiliation(s)
- L Saldivar
- USDA-ARS Knipling-Bushland US Livestock Insects Research Laboratory, Kerrville, TX 78028, USA
| | | | | | | | | | | |
Collapse
|
12
|
Rezen T, Contreras JA, Rozman D. Functional Genomics Approaches to Studies of the Cytochrome P450 Superfamily. Drug Metab Rev 2008; 39:389-99. [PMID: 17786628 DOI: 10.1080/03602530701498760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Functional genomics approaches are widely implemented in current research and have found application in many areas of biology. This review will present research fields, novel findings and new tools developed in the cytochrome P450 field using the functional genomics techniques. The most widely used method is microarray technology, which has already greatly contributed to the understanding of the cytochromes P450 function and expression. Several focused CYP microarrays have been developed for genotyping, toxicogenomics and studies of CYP function of many different organisms. Our contribution to the CYP field by development of Steroltalk microarrays to study the cross-talk of cholesterol homeostasis and drug metabolism is also presented.
Collapse
Affiliation(s)
- Tadeja Rezen
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
13
|
Miller RJ, Li AY, Tijerina M, Davey RB, George JE. Differential response to diazinon and coumaphos in a strain of Boophilus microplus (Acari: Ixodidae) collected in Mexico. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:905-911. [PMID: 18826034 DOI: 10.1603/0022-2585(2008)45[905:drtdac]2.0.co;2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Boophilus microplus, collected from Nuevo Leon, Mexico, were found to be highly resistant to diazinon but not highly resistant to coumaphos, suggesting that different mechanisms of resistance were present in these ticks than other Mexican organophosphate (OP)-resistant ticks reported previously. When exposed to coumaphos and piperonyl butoxide or triphenylphosphate, the LCso estimate was reduced by 3.5- and 6.3-fold, respectively, suggesting that mono-oxygenases and/or esterases were involved in resistance to coumaphos. Additionally, it was determined that this strain had an Acetylycholinesterase (AChe) that was insensitive to the active form of coumaphos, coroxon, taking at least 24 min longer to reach 50% reduction in AChE activity compared with the susceptible strain. When exposed to diazinon, none of the synergists tested significantly lowered the LC50. However, it was determined that it took six times longer to reach 60% inhibition of AChE in the resistant strain compared with the susceptible strain when exposed to the active form of diazinon, diazoxon. Insensitive AChE seems to be very common in OP-resistant B. microplus. The potential benefits for the development of a field-portable AChE inhibition assay kit are discussed.
Collapse
Affiliation(s)
- Robert J Miller
- USDA-ARS, Cattle Fever Tick Research Laboratory, 22675 N. Moorefield Road, Edinburg, TX 78541, USA.
| | | | | | | | | |
Collapse
|
14
|
Rachinsky A, Guerrero FD, Scoles GA. Proteomic profiling of Rhipicephalus (Boophilus) microplus midgut responses to infection with Babesia bovis. Vet Parasitol 2008; 152:294-313. [PMID: 18243558 DOI: 10.1016/j.vetpar.2007.12.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/07/2007] [Accepted: 12/17/2007] [Indexed: 12/20/2022]
|
15
|
. RCB, . EMM, . AON, . SNO, . FOV. Cytochrome P-450 Monooxygenase Gene Expression Supports a Multifactorial Origin for Acaricide Resistance in Ripicephalus microplus. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/jp.2008.59.66] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|