1
|
|
2
|
Kazutaka S, Winnall WR, Muir JA, Hedger MP. Regulation of Sertoli cell activin A and inhibin B by tumour necrosis factor α and interleukin 1α: interaction with follicle-stimulating hormone/adenosine 3',5'-cyclic phosphate signalling. Mol Cell Endocrinol 2011; 335:195-203. [PMID: 21256182 DOI: 10.1016/j.mce.2011.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
Abstract
Regulation of crucial events during spermatogenesis involves dynamic changes in cytokine production and interactions across the cycle of the seminiferous epithelium. Regulation of activin A and inhibin B production by the inflammatory cytokines, tumour necrosis factor α (TNFα) and interleukin 1α (IL1α), alone and in conjunction with FSH or a cAMP analogue (dibutyryl cAMP), was examined in cultures of Sertoli cells from 20-day old rats. Both TNFα and IL1α stimulated activin A secretion and expression of its subunit (β(A)) mRNA, and suppressed inhibin B secretion and expression of its subunit (α and β(B)) mRNAs. The actions of TNFα and IL1α were opposed by FSH and dibutyryl cAMP. Both cytokines inhibited FSH/dibutyryl cAMP-stimulated inhibin B secretion and mRNA expression as well as stem cell factor mRNA expression. Both cytokines also inhibited FSH-induced cAMP production, and reduced baseline FSH receptor mRNA expression. These data highlight the reciprocal relationship that exists between FSH/cAMP signalling and inflammatory cytokine signalling pathways in the control of Sertoli cell function, and production of activin A/inhibin B in particular. It is anticipated that these interactions play important roles in the fine control of events during the cycle of the seminiferous epithelium and in the inhibition of spermatogenesis during inflammation.
Collapse
Affiliation(s)
- Saito Kazutaka
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
3
|
Hedger MP. Toll-like receptors and signalling in spermatogenesis and testicular responses to inflammation--a perspective. J Reprod Immunol 2011; 88:130-41. [PMID: 21333360 PMCID: PMC7127151 DOI: 10.1016/j.jri.2011.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 01/16/2011] [Accepted: 01/19/2011] [Indexed: 02/06/2023]
Abstract
It is self-evident that infection and inflammation in the reproductive tract can inhibit male fertility, but the observation that fertility may also be compromised by systemic inflammation and disease is more difficult to explain. Recent studies implicating microbial pattern-recognition receptors, such as the Toll-like receptors (TLRs), as well as inflammatory cytokines and their signalling pathways, in testicular function have cast new light on this mysterious link between infection/inflammation and testicular dysfunction. It is increasingly evident that signalling pathways normally involved in controlling inflammation play fundamental roles in regulating Sertoli cell activity and responses to reproductive hormones, in addition to promoting immune responses within the testis. Many of the negative effects of inflammation on spermatogenesis may be attributed to elevated production of inflammation-related gene products within the circulation and the testis, which subsequently exert disruptive effects on spermatogenic cell development and survival, as well as the ability of the Sertoli cells to provide support for spermatogenesis. These interactions have important implications for testicular dysfunction and disease, and may eventually provide new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Mark P Hedger
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Melbourne, Victoria 3168, Australia.
| |
Collapse
|
4
|
Abstract
A large body of evidence points to the existence of a close, dynamic relationship between the immune system and the male reproductive tract, which has important implications for our understanding of both systems. The testis and the male reproductive tract provide an environment that protects the otherwise highly immunogenic spermatogenic cells and sperm from immunological attack. At the same time, secretions of the testis, including androgens, influence the development and mature functions of the immune system. Activation of the immune system has negative effects on both androgen and sperm production, so that systemic or local infection and inflammation compromise male fertility. The mechanisms underlying these interactions have begun to receive the attention from reproductive biologists and immunologists that they deserve, but many crucial details remain to be uncovered. A complete picture of male reproductive tract function and its response to toxic agents is contingent upon continued exploration of these interactions and the mechanisms involved.
Collapse
Key Words
- cytokines
- immunity
- immunoregulation
- inflammation
- leydig cell
- lymphocytes
- macrophages
- nitric oxide
- prostanoids
- seminal plasma
- sertoli cell
- sperm
- spermatogenesis
- steroidogenesis
- toll-like receptors
- 16:0a-lpc, 1-palmitoyl-sn-glycero-3-phosphocholine
- 18:1a-lpc, 1-oleoyl-sn-glycero-3-phosphocholine
- 18:2a-lpc, 1-linoleoyl-sn-glycero-3-phosphocholine
- 20:4a-lpc, 1-arachidonyl-sn-glycero-3-phosphocholine
- aid, acquired immune deviation
- aire, autoimmune regulator
- ap1, activated protein 1
- apc, antigen-presenting cell
- bambi, bmp and activin membrane-bound inhibitor
- bmp, bone morphogenetic protein
- cox, cyclooxygenase
- crry, complement receptor-related protein
- ctl, cytotoxic t lymphocyte
- eao, experimental autoimmune orchitis
- eds, ethane dimethane sulfonate
- enos, endothelial nos
- fadd, fas-associated death domain protein
- fasl, fas ligand
- fsh, follicle-stimulating hormone
- gc, glucocorticoid
- hcg, human chorionic gonadotropin
- hla, human leukocyte antigen
- hmgb1, high mobility group box chromosomal protein 1
- ice, il1 converting enzyme
- ifn, interferon
- ifnar, ifnα receptor
- il, interleukin
- il1r, interleukin 1 receptor
- il1ra, il1 receptor antagonist
- inos, inducible nitric oxide synthase
- irf, interferon regulatory factor
- jak/stat, janus kinase/signal transducers and activators of transcription
- jnk, jun n-terminal kinase
- lh, luteinizing hormone
- lpc, lysoglycerophosphatidylcholine
- lps, lipopolysaccharide
- map, mitogen-activated protein
- mhc, major histocompatibility complex
- mif, macrophage migration inhibitory factor
- myd88, myeloid differentiation primary response protein 88
- nfκb, nuclear factor kappa b
- nk, cell natural killer cell
- nkt cell, natural killer t cell
- nlr, nod-like receptor
- nnos, neuronal nos
- nod, nucleotide binding oligomerization domain
- p450c17, 17α-hydroxylase/c17-c20 lyase
- p450scc, cholesterol side-chain cleavage complex
- paf, platelet-activating factor
- pamp, pathogen-associated molecular pattern
- pc, phosphocholine
- pg, prostaglandin
- pges, pge synthase
- pgi, prostacyclin
- pla2, phospholipase a2
- pmn, polymorphonuclear phagocyte
- pparγ, peroxisome proliferator-activated receptor γ
- rig, retinoic acid-inducible gene
- rlh, rig-like helicase
- ros, reactive oxygen species
- star, steroidogenic acute regulatory
- tcr, t cell receptor
- tgf, transforming growth factor
- th cell, helper t cell
- tir, toll/il1r
- tlr, toll-like receptor
- tnf, tumor necrosis factor
- tnfr, tnf receptor
- tr1, t regulatory 1
- tradd, tnfr-associated death domain protein
- traf, tumor necrosis factor receptor-associated factor
- treg, regulatory t cell
- trif, tir domain-containing adaptor protein inducing interferon β
- tx, thromboxane
- txas, thromboxane a synthase
Collapse
|
5
|
O'Bryan MK, Hedger MP. Inflammatory networks in the control of spermatogenesis : chronic inflammation in an immunologically privileged tissue? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 636:92-114. [PMID: 19856164 DOI: 10.1007/978-0-387-09597-4_6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Spermatogenesis is a complex, organized process involving intimate interactions between the developing germ cells and supporting Sertoli cells. The process is also highly regulated. Studies suggest that regulation in the seminiferous epithelium involves molecules normally associated with either immune or inflammatory processes; in particular, interleukin 1a (IL1a), IL6, tumor necrosis factor (TNFa), activin A and nitric oxide (NO). While there is considerable evidence that these inflammatory mediators have effects on spermatogonial and spermatocyte development as well as critical supportive functions of the Sertoli cells, which are undoubtedly of considerable importance during testicular inflammation, there remains some skepticism regarding the significance of these molecules with respect to normal testicular function. Nonetheless, it is evident that expression of these regulators varies across the cycle of the seminiferous epithelium in a consistent manner, with major changes in production coinciding with key events within the cycle. This review summarizes the evidence supporting the hypothesis that inflammatory cytokines play a role in normal testicular spermatogenesis, as well as in the etiology of inflammation induced sub-fertility. The balance of data leads to the striking conclusion that the cycle of the seminiferous epithelium resembles a chronic inflammatory event. This appears to be a somewhat paradoxical assertion, since the testis is an immunologically privileged tissue based on its well-established ability to support grafts with minimal rejection responses. However, it may be argued that local immunoregulatory mechanisms, which confer protection from immunity on both transplanted tissues and the developing spermatogenic cells, are equally necessary to prevent local inflammation responses associated with the spermatogenic process from activating the adaptive immune response.
Collapse
Affiliation(s)
- Moira K O'Bryan
- Monash Institute of Medical Research, Monash University, Clayton, 3168, Australia.
| | | |
Collapse
|
6
|
Warita K, Okamoto K, Mutoh KI, Hasegawa Y, Yue ZP, Yokoyama T, Matsumoto Y, Miki T, Takeuchi Y, Kitagawa H, Sugawara T, Hoshi N. Activin A and equine chorionic gonadotropin recover reproductive dysfunction induced by neonatal exposure to an estrogenic endocrine disruptor in adult male mice. Biol Reprod 2007; 78:59-67. [PMID: 17928631 DOI: 10.1095/biolreprod.106.059857] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We aimed to elucidate the mechanism of action of estrogenic endocrine disruptors and the rescue of reproductive function, particularly the responsiveness of testes to eCG and/or activin A (ACT) after establishing reproductive disorders. Newborn male mice (n = 29) were randomly divided into an untreated group and three treatment groups that received diethylstilbestrol (DES; 100 mug per animal) subcutaneously on Postnatal Day 3 to establish reproductive disorders and daily treatment with PBS (controls: DES + PBS), eCG (eCG group: DES + eCG), or eCG + ACT (eCG + ACT group: DES + eCG + ACT) at 6-8 wk of age prior to mating. After treatment, the controls showed diminished Leydig cells in the testes and thin germ cell layers containing pyknotic germ cells and multinucleated cells. In the eCG and eCG + ACT groups, spermatids and Leydig cells increased markedly. The immunoexpression of androgen receptors in the eCG group and steroidogenic acute regulatory (STAR) protein in the eCG and eCG + ACT groups recovered to approximately the levels in the untreated group; plasma LH and testosterone levels also increased relative to those in the controls. In addition, the cell proliferation index, which is estimated from 5-bromo-2'-deoxyuridine immunoexpression in spermatogonia, increased significantly under eCG treatment, and even more with eCG + ACT. However, the numbers of germ and Leydig cells decreased at 12 wk of age. Thus, ACT and eCG help the testes to recover from the dysfunction induced by neonatal DES administration. Furthermore, the permanent male reproductive disorder induced by neonatal exposure to estrogenic agents may be more likely to result from dysfunction of the hypothalamic-pituitary axis than from dysfunction of the lower reproductive organs.
Collapse
Affiliation(s)
- Katsuhiko Warita
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Girling JE, Hedger MP. Toll‐like receptors in the gonads and reproductive tract: emerging roles in reproductive physiology and pathology. Immunol Cell Biol 2007; 85:481-9. [PMID: 17592495 DOI: 10.1038/sj.icb.7100086] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interactions between the immune system and reproductive system have important consequences for fertility and reproductive health in general. There is increasing evidence that many of the interactions between the immune and reproductive systems involve the Toll-like receptors (TLRs). While there is no doubt that TLRs are important in providing protection against infection in the reproductive tract, there is increasing evidence for the involvement of TLRs in more basic pathology and physiology of reproduction. In the female, TLRs have been implicated in critical aspects of ovarian, endometrial and placental function, as well as in ovarian cancer, pelvic inflammatory disease, intrauterine growth restriction, pre-eclampsia and preterm birth. In the male, TLRs appear to play a role in the control of testicular steroidogenesis and spermatogenesis in disease and, potentially, during normal function, as well. Recent studies also have begun to highlight the role of various TLRs in the aetiology of prostatitis and prostatic cancer. Given the nascent state of knowledge concerning this important area, it is clear that more studies are needed, which should provide valuable new insights into the biology of the TLRs and reproductive function in general.
Collapse
Affiliation(s)
- Jane E Girling
- Centre for Women's Health Research, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
8
|
de Kretser DM, Buzzard JJ, Okuma Y, O'Connor AE, Hayashi T, Lin SY, Morrison JR, Loveland KL, Hedger MP. The role of activin, follistatin and inhibin in testicular physiology. Mol Cell Endocrinol 2004; 225:57-64. [PMID: 15451568 DOI: 10.1016/j.mce.2004.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The role of the inhibins, activins and follistatins in testicular function are being more clearly defined following studies describing the cellular localisation of these proteins to the testis and the availability of specific assay systems enabling measurement of these proteins. Taken together with the results of targetted gene inactivation experiments, several concepts emerge. Inhibin B is predominantly produced by the Sertoli cell in many adult male mammals whereas there is a perinatal peak of inhibin A in the rat. In contrast, activin A has its highest concentrations in the immediate post-natal period during which it is involved in the developmental regulation of both germ cells and Sertoli cells being modulated by follistatin. Activin A levels are considerably lower in the adult testis but Sertoli cell production is stimulated by interleukin-1 and inhibited by FSH. Little is known about the production of activin B due to the absence of a suitable assay but the beta(B) subunit mRNA is expressed in germ cells and Sertoli cells and is stage-dependent. This pattern of expression suggest that it may be involved in autocrine or paracrine actions within the seminiferous epithelium.
Collapse
Affiliation(s)
- D M de Kretser
- Monash Institute of Reproduction and Development and the ARC Centre of Excellence in Biotechnology and Development, Monash University, Clayton, Melbourne, Vic. 3168, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fiszer D, Rozwadowska N, Lukaszyk A, Słomski R, Kurpisz M. Quantitative mRNA Analysis of IL-1 Gene System in Human Testis. Am J Reprod Immunol 2003; 50:389-98. [PMID: 14750698 DOI: 10.1034/j.1600-0897.2003.00100.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PROBLEM There is a growing body of evidence that interleukins exhibit modulatory activity on development of reproductive cells. In this context, there appears to be a role for IL-1, which is also produced in human testis. We have analysed transcripts of IL-1 gene system (IL-1alpha, IL-1beta, IL-1RI, IL-1RII and IL-1RA) to evaluate the possible link between the level of gene(s) transcription and their function. METHOD OF STUDY To determine the activity of gene transcription, a quantitative PCR with isotopic and/or nonisotopic detection was applied. RESULTS AND CONCLUSIONS We have detected differential expression of IL-1alpha and IL-1beta genes in separate functional compartments of a male gonad. A strong expression of IL-1alpha gene in an intratubular cell fraction was shown, while the IL-1beta expression seemed to be dominant in extratubular compartment of the male gonad. Abundant amounts of IL-1RA mRNA in gametogenic cells fraction slightly higher than in interstitium have also been found. IL-1RA is the most important regulatory molecule in IL-1 system, which down-regulates activity of both interleukins. Looking more closely at gene(s) differential expression it appears that IL-1alpha can be preferentially down-regulated by IL-1RA gene in intratubular fraction while the IL-1beta, through the "false" IL-1RII receptor in the interstitium. Genes coding for both receptors (IL-1RI and IL-1RII) showed, however, relatively low levels of transcription in both studied compartments. IL-1 genes system creates a complex intragonadal environment and the function of these genes is reflected by their respective distribution in the two main functional compartments of the testis.
Collapse
Affiliation(s)
- D Fiszer
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | | | | | | |
Collapse
|
10
|
Legué F, Guitton N, Brouazin-Jousseaume V, Colleu-Durel S, Nourgalieva K, Chenal C. IL-6 a key cytokine in in vitro and in vivo response of Sertoli cells to external gamma irradiation. Cytokine 2001; 16:232-8. [PMID: 11884027 DOI: 10.1006/cyto.2001.0970] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin 1(IL-1) and IL-6 are cytokines involved in the response to radiation and are known for their radioprotective properties with respect to total-body irradiation. We previously showed that after gamma irradiation of Sertoli cells (SC), we observed an increase in the activity of IL-6 but not of IL-1. The aim of this study was to see whether this response is a function of the differentiation of SC, to analyse the mechanisms responsible for this induction, and to test whether this cytokine has a radioprotective role on germ cells. Unlike IL-1, a dose-dependent increase of IL-6 activity in SC following gamma irradiation at high doses was observed at all ages studied. On the other hand, radio-induction observed at low doses (<1Gy) was dose-independent. IL-6 up-regulation resulted from transcriptional activation as shown by the use of specific inhibitors. The injection of IL-1 and IL-6 in mice prior to whole-body irradiation resulted in an increased survival rate. Moreover, cytokines protected DNA from remaining cells following irradiation as shown by comet assay on germ cells. In conclusion, IL-6 seems to constitute a good marker of exposure to gamma irradiation, both at low and high doses. In addition, we showed that IL-1 and IL-6 have a radioprotective effect at testicular level.
Collapse
Affiliation(s)
- F Legué
- UPRES EA 2231, Université de Rennes I, Centre Eugène Marquis, CS 44229, 35042 Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|
11
|
Plant TM, Marshall GR. The functional significance of FSH in spermatogenesis and the control of its secretion in male primates. Endocr Rev 2001; 22:764-86. [PMID: 11739331 DOI: 10.1210/edrv.22.6.0446] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this review is to provide an integrative analysis of the role of FSH in the control of testicular function in higher primates, including man. Attention is focused on the action of FSH during neonatal development, puberty, and adulthood. Whether FSH is the major determinant of the adult complement of Sertoli cells and whether FSH is obligatory for the initiation, maintenance, and restoration of spermatogenesis is evaluated. The mechanism whereby the circulating concentration of FSH regulates spermatogonial proliferation to dictate the sperm production rate under physiological conditions in the adult is discussed in detail. Inhibin B is the major component of the testicular negative feedback signal governing FSH beta gene expression and FSH secretion, and the evidence for this view is presented. The review concludes with the presentation of a model for the operation of the FSH-inhibin B feedback control system regulating sperm production postpubertally in monkey and man, and with speculation on issues of clinical interest.
Collapse
Affiliation(s)
- T M Plant
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA. plant1+@pitt.edu
| | | |
Collapse
|
12
|
Jonsson CK, Zetterström RH, Holst M, Parvinen M, Söder O. Constitutive expression of interleukin-1alpha messenger ribonucleic acid in rat Sertoli cells is dependent upon interaction with germ cells. Endocrinology 1999; 140:3755-61. [PMID: 10433236 DOI: 10.1210/endo.140.8.6900] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interleukin-1 (IL-1), a proinflammatory cytokine originally isolated as a product of activated mononuclear phagocytes, consists of two distinct agonist proteins, IL-1alpha and IL-1beta, of which IL-1beta is the major inducible IL-1 protein produced by macrophages. We show here that mRNA of IL-1alpha, but not IL-1beta, is constitutively expressed by the intact rat testis and localize the transcript to Sertoli cells as confirmed by a novel squash technique. The expression is developmentally regulated and appears only after postnatal day 20 in the rat testis, corresponding to onset of puberty. IL-1alpha mRNA shows a stage-dependent expression pattern during the cycle of the seminiferous epithelium. It is low or absent in stage VII, but present in all other stages of the cycle. The same stage-dependent distribution was also observed at the protein level when bioactive IL-1 was measured in extracts of accurately defined one millimeter segments of seminiferous tubules. No IL-1alpha mRNA was detected in adult rat testes after germ cell depletion by fetal irradiation or cytostatic drug treatment. Because stage VII is the only segment of the seminiferous tubules lacking DNA replication, we propose that IL-1alpha is involved in this event during mitosis and meiosis of spermatogenesis and that its expression is dependent upon interactions between Sertoli cells and germ cells.
Collapse
Affiliation(s)
- C K Jonsson
- Department of Woman and Child Health, Astrid Lindgren Children's Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
13
|
Lähdetie J, Peltonen K, Sjöblom T. Germ cell mutagenicity of three metabolites of 1,3-butadiene in the rat: induction of spermatid micronuclei by butadiene mono-, di-, and diolepoxides in vivo. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1997; 29:230-239. [PMID: 9142165 DOI: 10.1002/(sici)1098-2280(1997)29:3<230::aid-em2>3.0.co;2-g] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Three metabolites of the industrial chemical 1,3-butadiene (BD), namely butadiene monoepoxide (BMO, 3,4-epoxy-1-butene), diepoxide (DEB, 1,2;3,4-diepoxybutane), and diolepoxide (DE, 3,4- epoxybutane-1,2-diol) were studied for germ cell mutagenicity using the rat spermatid micronucleus (MN) test. All three epoxides increased slightly, but significantly, the frequency of spermatid MN. The most sensitive stage to the action of BMO and DEB was preleptotene (meiotic S phase) harvested at 18-day time intervals after treatment. The dose-response for BMO followed a second order curve at this time interval, with maximum MN induction at the dose of 186 mumol/kg and lower induction of higher doses. Late stages of the meiotic prophase (late pachytene-diplotene-diakinesis) also showed some sensitivity to the three epoxides. Stem cell spermatogonia were affected by DEB as observed by a slight induction of spermatid micronuclei 50 days after treatment. No clear cytotoxic effects were observed by measuring testicular weight or cell numbers of seminiferous epithelial stage 1 18 days after the treatments. DEB at the dose 387 mumol/kg caused a slight inhibition of spermatogonial DNA synthesis in stage I and a delay of meiotic DNA replication observed in stage XII 72 hr after treatment. Since BMO is able to induce spermatid MN in the rat, the present results, together with previous data, indicate that rat bone marrow MN results that are negative for both BD and BMO cannot directly predict mutagenicity in male germ cells. The results also emphasize that tissue; species, and strain-specific differences in metabolism have to be taken into account when the genetic risks of human butadiene exposure are evaluated. The results support the conclusion that 1,3-butadiene is a germ cell mutagen-possibly also in humans.
Collapse
Affiliation(s)
- J Lähdetie
- Department of Medical Genetics, University of Turku, Finland.
| | | | | |
Collapse
|
14
|
Janitz M, Fiszer D, Lukaszyk A, Skorupski W, Kurpisz M. Analysis of mRNA expression for interleukin-1 genes on human testicular cells. Immunol Lett 1995; 48:139-43. [PMID: 8719113 DOI: 10.1016/0165-2478(95)02458-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have investigated mRNA expression for IL-1 alpha and IL-1 beta gene on fractionated human testicular cells. Using RT-PCR and Northern blot hybridization technique we detected the presence of IL-1 alpha transcripts, predominantly in the intratubular compartment of the testis, comprising gametogenic and Sertoli cells. We were also able to detect mRNA for IL-1 alpha on the testicular interstitium, but at significantly lower levels. The intertubular compartment of the testis, mainly consisting of macrophages and Leydig cells, appeared however, to be a site for IL-1 beta gene expression. Our experimental data confirm previous results obtained in animal models indicating that the testis is capable of producing interleukin-1 under physiological conditions. Testicular IL-1 may function as a tissue-specific factor modulating both spermato- and steroidogenic activity of human testis.
Collapse
Affiliation(s)
- M Janitz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | |
Collapse
|
15
|
Sjöblom T, Parvinen M, Lähdetie J. Stage-specific DNA synthesis of rat spermatogenesis as an indicator of genotoxic effects of vinblastine, mitomycin C and ionizing radiation on rat spermatogonia and spermatocytes. Mutat Res 1995; 331:181-90. [PMID: 7500976 DOI: 10.1016/0027-5107(95)00067-s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have studied the effects of three known mutagens: vinblastine sulphate, mitomycin C and local irradiation of testes on the stage-specific DNA synthesis in the rat testis by using transillumination assisted microdissection of rat seminiferous tubules. It enables us to investigate the sensitivity of different types of spermatogonia and preleptotene spermatocytes to the genotoxic effects of these agents. According to our results, spermatogonia and preleptotene spermatocytes are quite resistant to the action of vinblastine at the treatment times and the doses used. After treatment with mitomycin C, type A2, A3 and A4 spermatogonia seem to be the first cell types affected, which shows itself as a reduction in the DNA synthesis at stages I, II-III, XIII-XIV of the epithelial cycle two and/or three days after the treatment. It also seems that they are mostly affected during the S-phase of their cell cycles. In addition, preleptotene spermatocytes are also sensitive to the action of mitomycin C when they are treated in the G1 phase of the cell cycle. The local irradiation of 3 Gy has severe effects on the spermatogonia of rat testis which can be seen already 18 h after the treatment and becomes more evident 42 and 66 h after the treatment as a reduction of DNA synthesis at stages XII-V. Type A spermatogonia (A1-A4) seem to be the most sensitive cell types to the action of irradiation. This study indicates that the novel method of stage-specific DNA synthesis in rat spermatogenesis allows detailed studies of sensitivities in differentiating spermatogonia to genotoxic agents.
Collapse
Affiliation(s)
- T Sjöblom
- Department of Medical Genetics, University of Turku, Finland
| | | | | |
Collapse
|
16
|
Comhaire F, Bosmans E, Ombelet W, Punjabi U, Schoonjans F. Cytokines in semen of normal men and of patients with andrological diseases. Am J Reprod Immunol 1994; 31:99-103. [PMID: 8049031 DOI: 10.1111/j.1600-0897.1994.tb00853.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PROBLEM The potential value of assessment of cytokine concentrations for the diagnosis of certain pathological conditions of male reproduction has not been fully evaluated. METHOD The concentrations of interleukin 6 (IL-6, pg/mL), its soluble receptor (IL-6 sR, ng/mL), and of interleukin 1 beta (IL-1 beta, pg/mL) have been measured in semen samples of 114 men and 12 corresponding blood sera. RESULTS The concentration of IL-6 was unrelated to that of its receptor. Both IL-6 and IL-6 sR were higher in the first (mean: 69 and 31 resp.) than in the second fraction (39 and 13) of split ejaculates, and were within normal limits in vasectomised men. The Interleukin 1 beta concentration presented a strong positive correlated with that of IL-6 (r = 0.74, P < 0.001). The concentrations of IL-6 and IL-1 beta were unrelated to sperm concentration, motility and morphology, and they were within normal limits in immunological cases. Both IL-6 and IL-1 beta were higher (P < 0.01) in cases with accessory gland inflammation. CONCLUSIONS Measurement of in particular IL-6 in semen may contribute to the diagnosis of inflammatory disease of the accessory sex glands (positive predictive value = 98%, sensitivity = 72%, specificity = 94%), but it is not relevant for the diagnosis of immunological disease.
Collapse
Affiliation(s)
- F Comhaire
- University Hospital Ghent, Department of Internal Medicine, Belgium
| | | | | | | | | |
Collapse
|