1
|
Mouka A, Arkoun B, Moison P, Drévillon L, Jarray R, Brisset S, Mayeur A, Bouligand J, Boland-Auge A, Deleuze JF, Yates F, Lemonnier T, Callier P, Duffourd Y, Nitschke P, Ollivier E, Bourdin A, De Vos J, Livera G, Tachdjian G, Maouche-Chrétien L, Tosca L. iPSCs derived from infertile men carrying complex genetic abnormalities can generate primordial germ-like cells. Sci Rep 2022; 12:14302. [PMID: 35995809 PMCID: PMC9395518 DOI: 10.1038/s41598-022-17337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Despite increasing insight into the genetics of infertility, the developmental disease processes remain unclear due to the lack of adequate experimental models. The advent of induced pluripotent stem cell (iPSC) technology has provided a unique tool for in vitro disease modeling enabling major advances in our understanding of developmental disease processes. We report the full characterization of complex genetic abnormalities in two infertile patients with either azoospermia or XX male syndrome and we identify genes of potential interest implicated in their infertility. Using the erythroblasts of both patients, we generated primed iPSCs and converted them into a naive-like pluripotent state. Naive-iPSCs were then differentiated into primordial germ-like cells (PGC-LCs). The expression of early PGC marker genes SOX17, CD-38, NANOS3, c-KIT, TFAP2C, and D2-40, confirmed progression towards the early germline stage. Our results demonstrate that iPSCs from two infertile patients with significant genetic abnormalities are capable of efficient production of PGCs. Such in vitro model of infertility will certainly help identifying causative factors leading to early germ cells development failure and provide a valuable tool to explore novel therapeutic strategies.
Collapse
Affiliation(s)
- Aurélie Mouka
- AP-HP, Université Paris-Saclay-Hôpital Antoine Béclère, Service d'Histologie, Embryologie et Cytogénétique, 92140, Clamart, France
- Faculté de Médecine, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| | - Brahim Arkoun
- Inserm U1287, Laboratoire Cellules Souches Hématopoïétiques et Hémopathies Myeloïdes, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94800, Villejuif, France
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Commissariat à l'Energie Atomique et Aux Énergies Alternatives, Institut de Biologie François Jacob, 92265, Fontenay-aux-Roses, France
- Université de Paris, Paris, France
- Université Paris-Saclay, 91400, Orsay, France
| | - Pauline Moison
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Commissariat à l'Energie Atomique et Aux Énergies Alternatives, Institut de Biologie François Jacob, 92265, Fontenay-aux-Roses, France
- Université de Paris, Paris, France
- Université Paris-Saclay, 91400, Orsay, France
| | - Loïc Drévillon
- AP-HP Sorbonne Université-La Pitié Salpêtrière, SiRIC Curamus, 75013, Paris, France
| | - Rafika Jarray
- Sup'Biotech/ Laboratoire CEA-IBFJ-SEPIA, 92265, Fontenay-aux-Roses, France
| | - Sophie Brisset
- AP-HP, Université Paris-Saclay-Hôpital Antoine Béclère, Service d'Histologie, Embryologie et Cytogénétique, 92140, Clamart, France
- Faculté de Médecine, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| | - Anne Mayeur
- AP-HP, Université Paris-Saclay - Hôpital Antoine Béclère, Biologie de la Reproduction, 92140, Clamart, France
| | - Jérôme Bouligand
- INSERM UMR_S U1185, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, Paris, France
| | - Anne Boland-Auge
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, CEA, 91057, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, CEA, 91057, Evry, France
| | - Frank Yates
- Sup'Biotech/ Laboratoire CEA-IBFJ-SEPIA, 92265, Fontenay-aux-Roses, France
| | - Thomas Lemonnier
- Sup'Biotech/ Laboratoire CEA-IBFJ-SEPIA, 92265, Fontenay-aux-Roses, France
| | - Patrick Callier
- Département de Génétique Humaine, Hôpital Universitaire de Dijon, Dijon, France
| | - Yannis Duffourd
- Inserm UMR 1231 GAD, Faculté des Sciences de la Santé, Université de Bourgogne et de Franche-Comté, Dijon, France
| | - Patrick Nitschke
- Plateforme Bio-Informatique, IMAGINE Institute, Université Paris Descartes, Paris, France
| | - Emmanuelle Ollivier
- Plateforme Bio-Informatique, IMAGINE Institute, Université Paris Descartes, Paris, France
| | - Arnaud Bourdin
- PhyMedExp, Université Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - John De Vos
- IRMB, Université Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Gabriel Livera
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Commissariat à l'Energie Atomique et Aux Énergies Alternatives, Institut de Biologie François Jacob, 92265, Fontenay-aux-Roses, France
- Université de Paris, Paris, France
- Université Paris-Saclay, 91400, Orsay, France
| | - Gérard Tachdjian
- AP-HP, Université Paris-Saclay-Hôpital Antoine Béclère, Service d'Histologie, Embryologie et Cytogénétique, 92140, Clamart, France
- Faculté de Médecine, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Commissariat à l'Energie Atomique et Aux Énergies Alternatives, Institut de Biologie François Jacob, 92265, Fontenay-aux-Roses, France
| | - Leïla Maouche-Chrétien
- Laboratoire des Mécanismes Moléculaires et Cellulaires des Maladies Hématologiques et leurs Implications Thérapeutiques; INSERM U 1163, Institut IMAGINE, Paris, France.
- Division des Thérapies Innovantes, CEA, Institut de Biologie François Jacob, 92260, Fontenay-aux-Roses, France.
| | - Lucie Tosca
- AP-HP, Université Paris-Saclay-Hôpital Antoine Béclère, Service d'Histologie, Embryologie et Cytogénétique, 92140, Clamart, France
- Faculté de Médecine, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Commissariat à l'Energie Atomique et Aux Énergies Alternatives, Institut de Biologie François Jacob, 92265, Fontenay-aux-Roses, France
| |
Collapse
|
2
|
Abstract
The properties of the human Y chromosome - namely, male specificity, haploidy and escape from crossing over - make it an unusual component of the genome, and have led to its genetic variation becoming a key part of studies of human evolution, population history, genealogy, forensics and male medical genetics. Next-generation sequencing (NGS) technologies have driven recent progress in these areas. In particular, NGS has yielded direct estimates of mutation rates, and an unbiased and calibrated molecular phylogeny that has unprecedented detail. Moreover, the availability of direct-to-consumer NGS services is fuelling a rise of 'citizen scientists', whose interest in resequencing their own Y chromosomes is generating a wealth of new data.
Collapse
|
3
|
Azoospermia and trisomy 18p syndrome: a fortuitous association? A patient report and a review of the literature. Mol Cytogenet 2015; 8:34. [PMID: 26042156 PMCID: PMC4453045 DOI: 10.1186/s13039-015-0141-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/01/2015] [Indexed: 11/26/2022] Open
Abstract
Complete, isolated trisomy of the short arm of chromosome 18 is very rare. To date, only 24 cases of trisomy 18p have been reported in the literature, making it difficult to define a potentially associated phenotype. However, the available evidence suggests that few clinical features are shared by these patients: only variable intellectual disability, variable facial dysmorphism and epilepsy are reported in a few patients. Although three inherited cases of trisomy 18p have already been reported, all were of maternal origin. We report on a patient carrying an isolated complete trisomy 18p translocated to the short arm of chromosome 14 and presenting with facial dysmorphism, mild intellectual disability and non-obstructive azoospermia. Chromosomal abnormalities are more frequent in infertile men with poor sperm quality than the general population. Both numerical and structural chromosomal aberrations have been already reported within the context of azoospermia. To our knowledge, this is the first patient with trisomy 18p to present a fertility impairment due to totally altered spermatogenesis and azoospermia. Although fertility disorders were not mentioned in the four previous reports of men with trisomy 18p, none of the latter had children. We suggest that azoospermia is a previously uncharacterized feature of trisomy 18p syndrome. We further hypothesize that two mechanisms could be responsible of the fertility impairment: a meiotic synapsis defect due to the additional 18p arm that blocks meiosis, and/or overexpression of a gene located on the 18p chromosome involved in the normal testicular development.
Collapse
|
4
|
Two Y chromosomes with duplication of the distal long arm including the entire AZFc region. Gene 2014; 536:444-8. [DOI: 10.1016/j.gene.2013.11.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 11/07/2013] [Accepted: 11/27/2013] [Indexed: 12/17/2022]
|
5
|
Kuan LC, Su MT, Kuo PL, Kuo TC. Direct duplication of the Y chromosome with normal phenotype - incidental finding in two cases. Andrologia 2012; 45:140-4. [DOI: 10.1111/j.1439-0272.2012.01320.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- L.-C. Kuan
- Department of Obstetrics and Gynecology; Kuo General Hospital; Tainan; Taiwan
| | - M.-T. Su
- Department of Obstetrics and Gynecology; National Cheng Kung University Hospital and College of Medicine; Tainan; Taiwan
| | - P.-L. Kuo
- Department of Obstetrics and Gynecology; National Cheng Kung University Hospital and College of Medicine; Tainan; Taiwan
| | - T.-C. Kuo
- Department of Obstetrics and Gynecology; Kuo General Hospital; Tainan; Taiwan
| |
Collapse
|
6
|
Shi YC, Cui YX, Zhou YC, Wei L, Jiang HT, Xia XY, Lu HY, Wang HY, Shang XJ, Zhu WM, Li XJ, Huang YF. A rare Y chromosome constitutional rearrangement: a partial AZFb deletion and duplication within chromosome Yp in an infertile man with severe oligoasthenoteratozoospermia. ACTA ACUST UNITED AC 2012; 34:461-9. [PMID: 21950337 DOI: 10.1111/j.1365-2605.2010.01098.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a case of an infertile man with severe oligoasthenoteratozoospermia with a partial azoospermia factor b (AZFb) deletion and duplication region within chromosome Yp11.2. The hormonal profile was normal for serum concentrations of follicle-stimulating hormone, luteinizing hormone, testosterone and oestradiol. The patient, who showed a 46,XY karyotype, had an approximate 2.4 Mb inherited duplication region in Yp11.2 and a de novo partial AZFb deletion, which spanned 5.25 Mb including eight protein coding genes and four non-coding transcripts, but did not remove the RBMY gene family. Both proximal and distal breakpoints of the deletion were outside any palindromic region or inverted repeat sequence and intra-chromosomal non-allelic homologous recombination could not have been the deletion mechanism. The partial AZFb deletion in our case diminished sperm production, but did not completely extinguish spermatogenesis. Considering severe oligozoospermia, spermatozoa in the patient's ejaculate were used for intracytoplasmic sperm injection, resulting in two twin pregnancies.
Collapse
Affiliation(s)
- Y C Shi
- Department of Reproduction and Genetics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mutations in the TSPYL1 gene associated with 46,XY disorder of sex development and male infertility. Fertil Steril 2009; 92:1347-1350. [DOI: 10.1016/j.fertnstert.2009.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/03/2009] [Accepted: 04/03/2009] [Indexed: 11/19/2022]
|
8
|
De l’étude des gènes de l’infertilité à la génétique des populations. Basic Clin Androl 2009. [DOI: 10.1007/s12610-009-0017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Li Z, Haines CJ, Han Y. "Micro-deletions" of the human Y chromosome and their relationship with male infertility. J Genet Genomics 2009; 35:193-9. [PMID: 18439975 DOI: 10.1016/s1673-8527(08)60027-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 04/30/2007] [Accepted: 04/30/2007] [Indexed: 11/28/2022]
Abstract
The Y chromosome evolves from an autochromosome and accumulates male-related genes including sex-determining region of Y-chromosome (SRY) and several spermatogenesis-related genes. The human Y chromosome (60 Mb long) is largely composed of repetitive sequences that give it a heterochromatic appearance, and it consists of pseudoautosomal, euchromatic, and heterochromatic regions. Located on the two extremities of the Y chromosome, pseudoautosomal regions 1 and 2 (PAR1 and PAR2, 2.6 Mb and 320 bp long, respectively) are homologs with the termini of the X chromosome. The euchromatic region and some of the repeat-rich heterochromatic parts of the Y chromosome are called "male-specific Y" (MSY), which occupy more than 95% of the whole Y chromosome. After evolution, the Y chromosome becomes the smallest in size with the least number of genes but with the most number of copies of genes that are mostly spermatogenesis-related. The Y chromosome is characterized by highly repetitive sequences (including direct repeats, inverted repeats, and palindromes) and high polymorphism. Several gene rearrangements on the Y chromosome occur during evolution owing to its specific gene structure. The consequences of such rearrangements are not only loss but also gain of specific genes. One hundred and fifty three haplotypes have been discovered in the human Y chromosome. The structure of the Y chromosome in the GenBank belongs to haplotype R1. There are 220 genes (104 coding genes, 111 pseudogenes, and 5 other uncategorized genes) according to the most recent count. The 104 coding genes encode a total of about 48 proteins/protein families (including putative proteins/protein families). Among them, 16 gene products have been discovered in the azoospermia factor region (AZF) and are related to spermatogenesis. It has been discovered that one subset of gene rearrangements on the Y chromosome, "micro-deletions", is a major cause of male infertility in some populations. However, controversies exist about different Y chromosome haplotypes. Six AZFs of the Y chromosome have been discovered including AZFa, AZFb, AZFc, and their combinations AZFbc, AZFabc, and partial AZFc called AZFc/gr/gr. Different deletions in AZF lead to different content spermatogenesis loss from teratozoospermia to infertility in different populations depending on their Y haplotypes. This article describes the structure of the human Y chromosome and investigates the causes of micro-deletions and their relationship with male infertility from the view of chromosome evolution. After analysis of the relationship between AZFc and male infertility, we concluded that spermatogenesis is controlled by a network of genes, which may locate on the Y chromosome, the autochromosomes, or even on the X chromosome. Further investigation of the molecular mechanisms underlying male fertility/infertility will facilitate our knowledge of functional genomics.
Collapse
Affiliation(s)
- Zheng Li
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Institute of Andrology, Shanghai 200001, China
| | | | | |
Collapse
|
10
|
Balaresque P, Bowden GR, Parkin EJ, Omran GA, Heyer E, Quintana-Murci L, Roewer L, Stoneking M, Nasidze I, Carvalho-Silva DR, Tyler-Smith C, de Knijff P, Jobling MA. Dynamic nature of the proximal AZFc region of the human Y chromosome: multiple independent deletion and duplication events revealed by microsatellite analysis. Hum Mutat 2008; 29:1171-80. [PMID: 18470947 PMCID: PMC2689608 DOI: 10.1002/humu.20757] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human Y chromosome shows frequent structural variants, some of which are selectively neutral, while others cause impaired fertility due to the loss of spermatogenic genes. The large-scale use of multiple Y-chromosomal microsatellites in forensic and population genetic studies can reveal such variants, through the absence or duplication of specific markers in haplotypes. We describe Y chromosomes in apparently normal males carrying null and duplicated alleles at the microsatellite DYS448, which lies in the proximal part of the azoospermia factor c (AZFc) region, important in spermatogenesis, and made up of "ampliconic" repeats that act as substrates for nonallelic homologous recombination (NAHR). Physical mapping in 26 DYS448 deletion chromosomes reveals that only three cases belong to a previously described class, representing independent occurrences of an approximately 1.5-Mb deletion mediated by recombination between the b1 and b3 repeat units. The remainder belong to five novel classes; none appears to be mediated through homologous recombination, and all remove some genes, but are likely to be compatible with normal fertility. A combination of deletion analysis with binary-marker and microsatellite haplotyping shows that the 26 deletions represent nine independent events. Nine DYS448 duplication chromosomes can be explained by four independent events. Some lineages have risen to high frequency in particular populations, in particular a deletion within haplogroup (hg) C(*)(xC3a,C3c) found in 18 Asian males. The nonrandom phylogenetic distribution of duplication and deletion events suggests possible structural predisposition to such mutations in hgs C and G.
Collapse
|
11
|
Abstract
The azoospermia factor (AZF) locus in Yq11 is now functionally subdivided in three distinct spermatogenesis loci: AZFa, AZFb and AZFc. After knowledge of the complete genomic Y sequence in Yq11, 14 Y genes encoding putatively functional proteins and expressed in human testis are found to be located in one of the three AZF intervals. Therefore, a major question for each infertility clinic performing molecular screening for AZF deletions has now raised concerning the functional contribution of the encoded AZF proteins to human spermatogenesis. Additionally, it has been shown that distinct chromatin regions in Yq11 overlapping with the genomic AZFb and AZFc intervals are probably involved in the pre-meiotic X and Y chromosome pairing process. An old hypothesis on the germ line function of AZF becomes therefore revitalized. It proposed a specific chromatin folding code in Yq11, which controls the condensation cycle of the Y chromosome in the male germ line. Thus, with the exception of AZF proteins functionally expressed during the pre-meiotic differentiation and proliferation of spermatogonia, the need for AZF proteins functionally expressed at meiosis or during the post-meiotic spermatid maturation process is difficult to assess before the identification of specific mutations in the corresponding AZF gene causing male infertility.
Collapse
Affiliation(s)
- P H Vogt
- Molecular Genetics and Infertility Unit, Department of Gynecology, Endocrinology and Infertility, University Women Hospital, Heidelberg, Germany.
| | | | | | | |
Collapse
|
12
|
Yu YH, Lin YW, Yu JF, Schempp W, Yen PH. Evolution of the DAZ gene and the AZFc region on primate Y chromosomes. BMC Evol Biol 2008; 8:96. [PMID: 18366765 PMCID: PMC2322974 DOI: 10.1186/1471-2148-8-96] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 03/26/2008] [Indexed: 12/13/2022] Open
Abstract
Background The Azoospermia Factor c (AZFc) region of the human Y chromosome is a unique product of segmental duplication. It consists almost entirely of very long amplicons, represented by different colors, and is frequently deleted in subfertile men. Most of the AZFc amplicons have high sequence similarity with autosomal segments, indicating recent duplication and transposition to the Y chromosome. The Deleted in Azoospermia (DAZ) gene within the red-amplicon arose from an ancestral autosomal DAZ-like (DAZL) gene. It varies significantly between different men regarding to its copy number and the numbers of RNA recognition motif and DAZ repeat it encodes. We used Southern analyses to study the evolution of DAZ and AZFc amplicons on the Y chromosomes of primates. Results The Old World monkey rhesus macaque has only one DAZ gene. In contrast, the great apes have multiple copies of DAZ, ranging from 2 copies in bonobos and gorillas to at least 6 copies in orangutans, and these DAZ genes have polymorphic structures similar to those of their human counterparts. Sequences homologous to the various AZFc amplicons are present on the Y chromosomes of some but not all primates, indicating that they arrived on the Y chromosome at different times during primate evolution. Conclusion The duplication and transposition of AZFc amplicons to the human Y chromosome occurred in three waves, i.e., after the branching of the New World monkey, the gorilla, and the chimpanzee/bonobo lineages, respectively. The red-amplicon, one of the first to arrive on the Y chromosome, amplified by inverted duplication followed by direct duplication after the separation of the Old World monkey and the great ape lineages. Subsequent duplication/deletion in the various lineages gave rise to a spectrum of DAZ gene structure and copy number found in today's great apes.
Collapse
Affiliation(s)
- Yueh-Hsiang Yu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Navarro-Costa P, Pereira L, Alves C, Gusmão L, Proença C, Marques-Vidal P, Rocha T, Correia SC, Jorge S, Neves A, Soares AP, Nunes J, Calhaz-Jorge C, Amorim A, Plancha CE, Gonçalves J. Characterizing partial AZFc deletions of the Y chromosome with amplicon-specific sequence markers. BMC Genomics 2007; 8:342. [PMID: 17903263 PMCID: PMC2151955 DOI: 10.1186/1471-2164-8-342] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 09/28/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The AZFc region of the human Y chromosome is a highly recombinogenic locus containing multi-copy male fertility genes located in repeated DNA blocks (amplicons). These AZFc gene families exhibit slight sequence variations between copies which are considered to have functional relevance. Yet, partial AZFc deletions yield phenotypes ranging from normospermia to azoospermia, thwarting definite conclusions on their real impact on fertility. RESULTS The amplicon content of partial AZFc deletion products was characterized with novel amplicon-specific sequence markers. Data indicate that partial AZFc deletions are a male infertility risk [odds ratio: 5.6 (95% CI: 1.6-30.1)] and although high diversity of partial deletion products and sequence conversion profiles were recorded, the AZFc marker profiles detected in fertile men were also observed in infertile men. Additionally, the assessment of rearrangement recurrence by Y-lineage analysis indicated that while partial AZFc deletions occurred in highly diverse samples, haplotype diversity was minimal in fertile men sharing identical marker profiles. CONCLUSION Although partial AZFc deletion products are highly heterogeneous in terms of amplicon content, this plasticity is not sufficient to account for the observed phenotypical variance. The lack of causative association between the deletion of specific gene copies and infertility suggests that AZFc gene content might be part of a multifactorial network, with Y-lineage evolution emerging as a possible phenotype modulator.
Collapse
Affiliation(s)
- Paulo Navarro-Costa
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisboa, Portugal
- Unidade de Biologia da Reprodução, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - Luísa Pereira
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-465 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Cíntia Alves
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-465 Porto, Portugal
| | - Leonor Gusmão
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-465 Porto, Portugal
| | - Carmen Proença
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Pedro Marques-Vidal
- Unidade de Nutrição e Metabolismo, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - Tiago Rocha
- Unidade de Medicina da Reprodução, Maternidade Dr. Alfredo da Costa, 1069-089 Lisboa, Portugal
| | - Sónia C Correia
- Unidade de Medicina da Reprodução, Maternidade Dr. Alfredo da Costa, 1069-089 Lisboa, Portugal
| | - Sónia Jorge
- Unidade de Medicina da Reprodução, Maternidade Dr. Alfredo da Costa, 1069-089 Lisboa, Portugal
| | - António Neves
- Unidade de Medicina da Reprodução, Maternidade Dr. Alfredo da Costa, 1069-089 Lisboa, Portugal
| | - Ana P Soares
- Unidade Pluridisciplinar de Reprodução Humana, Hospital de Santa Maria, 1649-028 Lisboa, Portugal
| | - Joaquim Nunes
- Unidade Pluridisciplinar de Reprodução Humana, Hospital de Santa Maria, 1649-028 Lisboa, Portugal
| | - Carlos Calhaz-Jorge
- Unidade Pluridisciplinar de Reprodução Humana, Hospital de Santa Maria, 1649-028 Lisboa, Portugal
| | - António Amorim
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-465 Porto, Portugal
- Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Carlos E Plancha
- Unidade de Biologia da Reprodução, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - João Gonçalves
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisboa, Portugal
| |
Collapse
|
15
|
Pluzhnikov A, Nolan DK, Tan Z, McPeek MS, Ober C. Correlation of intergenerational family sizes suggests a genetic component of reproductive fitness. Am J Hum Genet 2007; 81:165-9. [PMID: 17564973 PMCID: PMC1950912 DOI: 10.1086/518446] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 03/27/2007] [Indexed: 11/03/2022] Open
Abstract
Reproductive fitness is a complex phenotype that is a direct measure of Darwinian selection. Estimation of the genetic contribution to this phenotype in human populations is confounded by within-family correlations of sociocultural, economic, and other nongenetic factors that influence family sizes. Here, we report an intergenerational correlation in reproductive success in the Hutterites, a human population that is relatively homogeneous with respect to sociocultural factors that influence fertility. We introduce an estimator of this correlation that takes into account the presence of multiple parent-offspring pairs from the same nuclear family. Statistical significance of the estimated correlation is assessed by a permutation test that maintains the overall structure of the pedigree. Further, temporal trends in fertility within this population are accounted for. Applying these methods to the S-Leut Hutterites yields a correlation in effective family size of 0.29 between couples and their sons and 0.18 between couples and their daughters, with empirical P<1x10-6 and P=.0041, respectively. Similar results were obtained for completed families (0.31 between couples and their sons and 0.23 between couples and their daughters; empirical P<1x10-6 and P=.00059, respectively). We interpret these results as indicating a significant genetic component to reproductive fitness in the Hutterites.
Collapse
Affiliation(s)
- Anna Pluzhnikov
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | | | | | | | | |
Collapse
|
16
|
Cram DS, Osborne E, McLachlan RI. Y chromosome microdeletions: implications for assisted conception. Med J Aust 2007; 185:433-4. [PMID: 17137433 DOI: 10.5694/j.1326-5377.2006.tb00641.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 09/12/2006] [Indexed: 11/17/2022]
|
17
|
Puscheck E, Jeyendran RS. Reply of the Authors. Fertil Steril 2006. [DOI: 10.1016/j.fertnstert.2006.07.1455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Ravel C, Chantot-Bastaraud S, McElreavey K, Siffroi JP. Polymorphismes du chromosome Y et fertilité masculine. ACTA ACUST UNITED AC 2006; 34:885-93. [PMID: 16979369 DOI: 10.1016/j.gyobfe.2006.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
Molecular anomalies of the Y chromosome leading to male infertility are mainly microdeletions of the long arm of the Y chromosome. Three recurrently deleted portions of the long arm are the AZFa, AZFb and AZFc (AZF: Azoospermia Factor) regions. Complete deletions of the AZFc region are found in 10% of cases of severe male infertility. In addition to the AZF deletions, certain classes of Y chromosome (haplogroups) may also predispose to male infertility and could be transmitted to future male descents by various Assisted Reproductive Techniques (ART). Since the first discovery of microdeletions, the sequence of the Y chromosome has become available, revealing the mechanisms underlying deletion formation and also resulting in a coherent screening strategy. Recently, partial deletions of the AZF regions have been described. The significance of these deletions in the clinical context remains to be defined.
Collapse
Affiliation(s)
- C Ravel
- Reproduction, fertility and populations, Institut Pasteur, 25, rue du Docteur-Roux, 75724 Paris cedex 15, France.
| | | | | | | |
Collapse
|