1
|
Tran TCM, Tran TNA, Le HBN, Nguyen VH, Tran MD, Vu CD, Greaves RF. Validation of steroid ratios for random urine by mass spectrometry to detect 5α-reductase deficiency in Vietnamese children. Clin Chem Lab Med 2022; 60:1225-1233. [PMID: 35607271 DOI: 10.1515/cclm-2022-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The 5α-reductase-type-2 deficiency (5ARD2) is a rare autosomal recessive 46,XY disorder of sex development caused by the mutated 5α-reductase type 2 (SRD5A2) gene. In this disease, defective conversion of testosterone to dihydrotestosterone leads to variable presentations of male ambiguous genitalia during fetal development. We aimed to examine characteristics of patients presenting with 5ARD2 over a 4 year period. METHODS Random urine samples of control and patients with suspected 5ARD2 were collected and urine steroidomic metabolites were measured by Gas chromatography-mass spectrometry (GC-MS) in the period from 2017 to 2021 at National Children's Hospital, Hanoi Vietnam. 5α- to 5β-reduced steroid metabolite ratio, 5a-tetrahydrocortisol to tetrahydrocortisol (5α-THF/THF), was reviewed by receive operator characteristics (ROC) curve analysis. Molecular testing was offered to 25 patients who were diagnosed with 5ARD2 by GC-MS urinary steroid analysis. RESULTS Urine steroidomic profiling was conducted for 104 male controls and 25 patients between the ages of 6 months and 13 years old. Twelve of the twenty-five 5ARD2 patients agreed to undertake genetic analysis, and two mutations of the SRD5A2 gene were detected in each patient, confirming the diagnosis. All patients showed a characteristically low ratio of 5α-THF/THF. There was no overlap of 5α-THF/THF ratio values between control and 5ARD2 groups. The ROC of 5α-THF/THF ratio at 0.19 showed 100% sensitivity and 100% specificity for boys between 6 months and 13 years of age. CONCLUSIONS Analysis of the urine steroid metabolome by GC-MS can be used to assist in the diagnosis of 5ARD2. We recommend consideration of random urine steroid analysis as a first-line test in the diagnosis of 5ARD2.
Collapse
Affiliation(s)
- Thi Chi Mai Tran
- Hanoi Medical University, Hanoi, Vietnam.,National Children's Hospital, Hanoi, Vietnam
| | | | | | | | | | - Chi Dung Vu
- National Children's Hospital, Hanoi, Vietnam
| | - Ronda F Greaves
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Parkville, VIC, Australia
| |
Collapse
|
2
|
Marzuki NS, Idris FP, Kartapradja H, Renata S, Harahap A, Batubara JRL. Accuracy of Urinary Etiocholanolone/Androsterone Ratio as Alternative to Serum Testosterone/Dihydrotestosterone Ratio for Diagnosis of 5 Alpha-reductase Type 2 Deficiency Patients and Carriers in Indonesia. Int J Endocrinol Metab 2021; 19:e109510. [PMID: 34149847 PMCID: PMC8198621 DOI: 10.5812/ijem.109510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/03/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The 5 Alpha-reductase type 2 deficiency (5ARD2) is an inherited condition, which clinically presents as variable degrees of under virilization in affected 46,XY individuals. In the diagnostic pathway of 5ARD2, the testosterone/dihydrotestosterone (T/DHT) ratio is broadly employed before molecular analysis of the SRD5A2 gene. However, due to cost-benefit considerations, the DHT test in our country is routinely lacking in clinical settings; therefore, we considered applying the urinary etiocholanolone/androsterone (Et/An) ratio as an alternative test. OBJECTIVES We aimed to determine the diagnostic value of the urinary Et/An ratio versus the T/DHT ratio in diagnosing 5ARD2 patients and carriers. METHODS Sixty-six suspected 5ARD2 46,XY disorders of sex development (DSD) individuals and 95 family members were recruited in the study. Their clinical manifestations, T/DHT and urinary Et/An ratios, and SRD5A2 genes were analyzed. Using molecular analysis of the SRD5A2 gene as the gold standard, we compared the accuracy of both ratios in diagnosing 5ARD2 patients and carriers with receiver operating characteristic (ROC) curve analysis. RESULTS Thirty-seven patients were confirmed molecularly to have 5ARD2, and the rest (n = 29) were assessed as normal controls, while in the carrier group, 53 were molecularly confirmed as carriers and 42 as controls. The AUCs (areas under the curve) of the T/DHT and urinary Et/An ratios were 57.7% (95% CI 43.0 - 72.4%, P > 0.05) and 79.7% (95% CI 69.0 - 90.4%, P < 0.001), respectively, in diagnosing 5ARD2 patients and 54.1% (95% CI 42.4 - 65.8%, P > 0.05) and 75.1% (95% CI 65.1 - 85.1%, P < 0.001), respectively, in diagnosing carriers. The cutoff value of the urinary Et/An ratio was set at ≥ 0.95 for detecting 5ARD2 patients and ≥ 0.99 for detecting carriers. CONCLUSIONS The testosterone/DHT ratio was inaccurate in diagnosing 5ARD2 patients. When molecular analysis for the SRD5A2 gene is lacking, the urinary Et/An ratio may be a useful test to diagnose 5ARD2 patients and carriers.
Collapse
Affiliation(s)
- Nanis Sacharina Marzuki
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Corresponding Author: Eijkman Institute for Molecular Biology, Jakarta, Indonesia.
| | | | | | - Shirley Renata
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Alida Harahap
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | | |
Collapse
|
3
|
Ramos L, Vilchis F, Chávez B, Mares L. Mutational analysis of SRD5A2: From gene to functional kinetics in individuals with steroid 5α-reductase 2 deficiency. J Steroid Biochem Mol Biol 2020; 200:105691. [PMID: 32380235 DOI: 10.1016/j.jsbmb.2020.105691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Human steroid 5α-reductase 2 (SRD5A2) plays a determinative role in the masculinization of external genitalia. To date, approximately 114 different mutations of the SRD5A2 gene have been reported; however, little information is available about their impact on catalytic function or their three-dimensional (3D) structures. We determined the effect of point mutations on the testosterone-depend kinetic constants (Km,app and Vmax,app) and structural characteristics of SRD5A2 from Mexican patients with 46,XY-steroid 5α-reductase 2 deficiency. PCR-SSCP assays identified ten distinct gene variants and sequencing analysis identified missense mutations [p.V3I, p.S14R, p.A52T, p.F118L, p.R145W, p.R171S, p.L226P, p.F229S, p.S245Y, and p.A248V]. Mutations were re-created by site-directed mutagenesis and expressed in HEK293 cells. Functional studies demonstrated that 8 variants led to partial (Km,app = 0.16-2.6 μM; Vmax,app = 224-2640 pmol/mg P/min) or complete losses of activity compared to the wild-type enzyme (Km,app = 0.7 μM; Vmax,app = 4044 pmol/mg P/min). All the mutations were assessed using multiple software tools and the results predicted that all of the mutations were associated with disease or damage. Mapping mutations on the model of a 3D structure of SRD5A2 demonstrated alterations in contact sites with their proximal amino acids. Our data show that mutations affect the catalytic efficiency (Vmax/Km) or result in residual enzymatic activity, which could be due to erroneous interactions between amino acid residues, the substrate testosterone, or NADPH.
Collapse
Affiliation(s)
- L Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - F Vilchis
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - B Chávez
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - L Mares
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico.
| |
Collapse
|
4
|
Wisniewski AB, Batista RL, Costa EMF, Finlayson C, Sircili MHP, Dénes FT, Domenice S, Mendonca BB. Management of 46,XY Differences/Disorders of Sex Development (DSD) Throughout Life. Endocr Rev 2019; 40:1547-1572. [PMID: 31365064 DOI: 10.1210/er.2019-00049] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Differences/disorders of sex development (DSD) are a heterogeneous group of congenital conditions that result in discordance between an individual's sex chromosomes, gonads, and/or anatomic sex. Advances in the clinical care of patients and families affected by 46,XY DSD have been achieved since publication of the original Consensus meeting in 2006. The aims of this paper are to review what is known about morbidity and mortality, diagnostic tools and timing, sex of rearing, endocrine and surgical treatment, fertility and sexual function, and quality of life in people with 46,XY DSD. The role for interdisciplinary health care teams, importance of establishing a molecular diagnosis, and need for research collaborations using patient registries to better understand long-term outcomes of specific medical and surgical interventions are acknowledged and accepted. Topics that require further study include prevalence and incidence, understanding morbidity and mortality as these relate to specific etiologies underlying 46,XY DSD, appropriate and optimal options for genitoplasty, long-term quality of life, sexual function, involvement with intimate partners, and optimizing fertility potential.
Collapse
Affiliation(s)
- Amy B Wisniewski
- Psychology Department, Oklahoma State University, Stillwater, Oklahoma
| | - Rafael L Batista
- Division of Endocrinology, Department of Internal Medicine, University of São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Elaine M F Costa
- Division of Endocrinology, Department of Internal Medicine, University of São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Courtney Finlayson
- Division of Endocrinology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Maria Helena Palma Sircili
- Division of Endocrinology, Department of Internal Medicine, University of São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Francisco Tibor Dénes
- Division of Urology, Department of Surgery, University of São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Sorahia Domenice
- Division of Endocrinology, Department of Internal Medicine, University of São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Berenice B Mendonca
- Division of Endocrinology, Department of Internal Medicine, University of São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Avendaño A, González-Coira M, Paradisi I, Rojas A, Da Silva G, Gómez-Pérez R, Ceballos JO. 5α-Reductase type 2 deficiency in families from an isolated Andean population in Venezuela. Ann Hum Genet 2019; 84:151-160. [PMID: 31613402 DOI: 10.1111/ahg.12358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/14/2019] [Accepted: 09/17/2019] [Indexed: 12/29/2022]
Abstract
5α-Reductase type 2 deficiency causes a 46,XY disorder of sex development (DSD) characterized by ambiguous external genitalia, rudimentary prostate, and normal internal genitalia. The disease prevalence worldwide is low, but in a small and isolated village of the Venezuelan Andes, a higher incidence has been found. DNA analysis of the SRD5A2 gene was performed in three inbred affected individuals clinically diagnosed with DSD. The entire coding regions, the p.L89V polymorphism (rs523349) and five intragenic SNPs (rs2300702, rs2268797, rs2268796, rs4952220, rs12470196) used to construct haplotypes were analyzed by Sanger sequencing. To assess the probable ethnic origin of the mutation in this geographic isolate, a population structure analysis was performed. Homozygosis for the p.N193S mutation was found in all patients, with a mutation carrier frequency of 1:80 chromosomes (0.0125) in the geographic focus, suggesting a founder phenomenon. The results of the population structure analysis suggested a mutation origin closer to the Spanish populations, according to the clusters grouping. The genotype-phenotype correlation in the patients was not absolute, being hypospadias and cryptorchidism the main traits that differentiate affected individuals.
Collapse
Affiliation(s)
- Andrea Avendaño
- Medical Genetics Unit, Medicine Faculty, Los Andes University, Mérida, Venezuela
| | | | - Irene Paradisi
- Venezuelan Institute for Scientific Research (IVIC), Laboratory of Human Genetics, Caracas, Venezuela
| | - Ascanio Rojas
- National Center for Scientific Calculation (CeCalcULA), Los Andes University, Mérida, Venezuela
| | - Gloria Da Silva
- Medical Genetics Unit, Medicine Faculty, Los Andes University, Mérida, Venezuela
| | - Roald Gómez-Pérez
- Endocrinology Service, Los Andes University Hospital (I.A.H.U.L.A.), Mérida, Venezuela
| | - Jesús Osuna Ceballos
- Andrology Laboratory, Los Andes University, Electronic Microscopic Center, Mérida, Venezuela
| |
Collapse
|
6
|
Gui B, Song Y, Su Z, Luo FH, Chen L, Wang X, Chen R, Yang Y, Wang J, Zhao X, Fan L, Liu X, Wang Y, Chen S, Gong C. New insights into 5α-reductase type 2 deficiency based on a multi-centre study: regional distribution and genotype-phenotype profiling of SRD5A2 in 190 Chinese patients. J Med Genet 2019; 56:685-692. [PMID: 31186340 DOI: 10.1136/jmedgenet-2018-105915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The 5α-reductase type 2 (5α-RD2) deficiency caused by mutations in the steroid 5α-reductase 2 (SRD5A2) gene results in variable degrees of undervirilisation in patients with 46,XY disorders of sex development. This study aims to profile the regional distribution and phenotype-genotype characteristics of SRD5A2 in a large Chinese 5α-RD2 deficiency cohort through multi-centre analysis. METHODS 190 subjects diagnosed with 5α-RD2 deficiency were consecutively enrolled from eight medical centres in China. Their clinical manifestations and genetic variants were analysed. RESULTS Hypospadias (isolated or combined with microphallus and/or cryptorchidism) was fairly common in the enrolled subjects (66.32%). 42 variants, including 13 novel variants, were identified in SRD5A2. Homozygous and compound heterozygous mutations presented in 38.42% and 61.58% of subjects, respectively, and predominated in exons 1, 4 and 5. The most prevalent variant was c.680G > A (52.37%), followed by c.16C > T, (10.79%), c.607G > A, (9.21%) and c.737G > A, (8.95%). However, their distributions were different: c.680G > A was more common in South China than in North China (62.62% vs 39.16%, p < 0.001), whereas the regional prevalence of c.16C > T was reversed (6.07% vs 16.87%, p = 0.001). Furthermore, c.680G > A prevailed in cases with normal meatus (68.75%) or distal hypospadias (66.28%), compared with those with proximal hypospadias (35.54%, p < 0.001). However, cases with proximal hypospadias showed a higher frequency of c.16C > T (20.48%) than those with normal meatus (3.13%) or distal hypospadias (3.49%, p < 0.001). CONCLUSIONS This study profiled variable phenotypic presentation and wide mutational spectrum of SRD5A2, revealing its distinctive regional distribution in Chinese patients and further shaping the founder effect and genotype-phenotype correlation of SRD5A2.
Collapse
Affiliation(s)
- Baoheng Gui
- Department of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yanning Song
- Center of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, The Capital Medical University, Beijing, China
| | - Zhe Su
- Department of Endocrinology and Metabolism, Shenzhen Children's Hospital, Shenzhen, China
| | - Fei-Hong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Shanghai Jiao Tong Univ, Shanghai, China
| | - Linqi Chen
- Department of Endocrinology, Metabolism, and Genetic Diseases, Children's Hospital of Soochow University, Suzhou, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruimin Chen
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian, Fujian Medical University Teaching Hospital, Fuzhou, China
| | - Yu Yang
- Department of Endocrine Genetics and Metabolism, Children's Hospital of Jiangxi Province, Nanchang, China
| | - Jin Wang
- Department of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiu Zhao
- Department of Endocrinology, Metabolism, and Genetic Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Lijun Fan
- Center of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, The Capital Medical University, Beijing, China
| | - Xia Liu
- Department of Endocrinology and Metabolism, Shenzhen Children's Hospital, Shenzhen, China
| | - Yi Wang
- Center of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, The Capital Medical University, Beijing, China
| | - Shaoke Chen
- Department of Pediatrics Endocrinology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chunxiu Gong
- Center of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, The Capital Medical University, Beijing, China .,Beijing Key Laboratory for Genetics of Birth Defects, Beijing Children's Hospital, The Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Abacı A, Çatlı G, Kırbıyık Ö, Şahin NM, Abalı ZY, Ünal E, Şıklar Z, Mengen E, Özen S, Güran T, Kara C, Yıldız M, Eren E, Nalbantoğlu Ö, Güven A, Çayır A, Akbaş ED, Kor Y, Çürek Y, Aycan Z, Baş F, Darcan Ş, Berberoğlu M. Genotype-phenotype correlation, gonadal malignancy risk, gender preference, and testosterone/dihydrotestosterone ratio in steroid 5-alpha-reductase type 2 deficiency: a multicenter study from Turkey. J Endocrinol Invest 2019; 42:453-470. [PMID: 30132287 DOI: 10.1007/s40618-018-0940-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/06/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Studies regarding genetic and clinical characteristics, gender preference, and gonadal malignancy rates for steroid 5-alpha-reductase type 2 deficiency (5α-RD2) are limited and they were conducted on small number of patients. OBJECTIVE To present genotype-phenotype correlation, gonadal malignancy risk, gender preference, and diagnostic sensitivity of serum testosterone/dihydrotestosterone (T/DHT) ratio in patients with 5α-RD2. MATERIALS AND METHODS Patients with variations in the SRD5A2 gene were included in the study. Demographic characteristics, phenotype, gender assignment, hormonal tests, molecular genetic data, and presence of gonadal malignancy were evaluated. RESULTS A total of 85 patients were included in the study. Abnormality of the external genitalia was the most dominant phenotype (92.9%). Gender assignment was male in 58.8% and female in 29.4% of the patients, while it was uncertain for 11.8%. Fourteen patients underwent bilateral gonadectomy, and no gonadal malignancy was detected. The most frequent pathogenic variants were p.Ala65Pro (30.6%), p.Leu55Gln (16.5%), and p.Gly196Ser (15.3%). The p.Ala65Pro and p.Leu55Gln showed more undervirilization than the p.Gly196Ser. The diagnostic sensitivity of stimulated T/DHT ratio was higher than baseline serum T/DHT ratio, even in pubertal patients. The cut-off values yielding the best sensitivity for stimulated T/DHT ratio were ≥ 8.5 for minipuberty, ≥ 10 for prepuberty, and ≥ 17 for puberty. CONCLUSION There is no significant genotype-phenotype correlation in 5α-RD2. Gonadal malignancy risk seems to be low. If genetic analysis is not available at the time of diagnosis, stimulated T/DHT ratio can be useful, especially if different cut-off values are utilized in accordance with the pubertal status.
Collapse
Affiliation(s)
- A Abacı
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, Balcova, 35340, Izmir, Turkey.
| | - G Çatlı
- Department of Pediatric Endocrinology, Faculty of Medicine, İzmir Katip Çelebi University, Izmir, Turkey
| | - Ö Kırbıyık
- Division of Genetics, Tepecik Training and Research Hospital, Sağlık Bilimleri University, Izmir, Turkey
| | - N M Şahin
- Department of Pediatric Endocrinology, Faculty of Medicine and Dr Sami Ulus Woman Health and Children Research Hospital, Yıldırım Beyazıt University, Ankara, Turkey
| | - Z Y Abalı
- Department of Pediatric Endocrinology, Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - E Ünal
- Department of Pediatric Endocrinology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Z Şıklar
- Department of Pediatric Endocrinology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - E Mengen
- Department of Pediatric Endocrinology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - S Özen
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - T Güran
- Department of Pediatric Endocrinology, Faculty of Medicine, Marmara University, İstanbul, Turkey
| | - C Kara
- Department of Pediatric Endocrinology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - M Yıldız
- Division of Pediatric Endocrinology, Kanuni Sultan Süleyman Training and Research Hospital, İstanbul, Turkey
| | - E Eren
- Department of Pediatric Endocrinology, Faculty of Medicine, Uludağ University, Bursa, Turkey
| | - Ö Nalbantoğlu
- Division of Pediatric Endocrinology, Dr. Behcet Uz Children's Hospital, Izmir, Turkey
| | - A Güven
- Department of Pediatric Endocrinology, Göztepe Training and Research Hospital, İstanbul, Turkey
- Department of Pediatric Endocrinology, Faculty of Medicine, Amasya University, Amasya, Turkey
| | - A Çayır
- Division of Pediatric Endocrinology, Erzurum Training and Research Hospital, Erzurum, Turkey
| | - E D Akbaş
- Department of Pediatric Endocrinology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Y Kor
- Department of Pediatric Endocrinology, Numune Training and Research Hospital, Sağlık Bilimleri University, Adana, Turkey
| | - Y Çürek
- Department of Pediatric Endocrinology, Sağlık Bilimleri University Antalya Training and Research Hospital, Antalya, Turkey
| | - Z Aycan
- Department of Pediatric Endocrinology, Faculty of Medicine and Dr Sami Ulus Woman Health and Children Research Hospital, Yıldırım Beyazıt University, Ankara, Turkey
| | - F Baş
- Department of Pediatric Endocrinology, Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Ş Darcan
- Department of Pediatric Endocrinology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - M Berberoğlu
- Department of Pediatric Endocrinology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Avendaño A, Paradisi I, Cammarata-Scalisi F, Callea M. 5-α-Reductase type 2 deficiency: is there a genotype-phenotype correlation? A review. Hormones (Athens) 2018; 17:197-204. [PMID: 29858846 DOI: 10.1007/s42000-018-0013-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
5-α-Reductase type 2 enzyme catalyzes the conversion of testosterone into dihydrotestosterone, a potent androgen responsible for male sexual development during the fetal period and later during puberty. Its deficiency causes an autosomal recessive disorder of sex development characterized by a wide range of under-virilization of external genitalia in patients with a 46,XY karyotype. Mutations in the SRD5A2 gene cause 5-α-Reductase deficiency; although it is an infrequent disorder, it has been reported worldwide, with mutational heterogeneity. Furthermore, it has been proposed that there is no genotype-phenotype correlation, even in patients carrying the same mutation. The aim of this review was to perform an extensive search in various databases and to select those articles with a comprehensive genotype and phenotype description of the patients, classifying their phenotypes using the external masculinization score (EMS). Thus, it was possible to objectively compare the eventual genotype-phenotype correlation between them. The analysis showed that for most of the studied mutations no correlation can be established, although the specific location of the mutation in the protein has an effect on the severity of the phenotype. Nevertheless, even in patients carrying the same homozygous mutation, a variable phenotype was observed, suggesting that additional genetic factors might be influencing it. Due to the clinical variability of the disorder, an accurate diagnosis and adequate medical management might be difficult to carry out, as is highlighted in the review.
Collapse
MESH Headings
- 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/blood
- 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/deficiency
- 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics
- Disorder of Sex Development, 46,XY/blood
- Disorder of Sex Development, 46,XY/genetics
- Disorder of Sex Development, 46,XY/pathology
- Disorder of Sex Development, 46,XY/therapy
- Genitalia/abnormalities
- Genotype
- Humans
- Hypospadias/blood
- Hypospadias/genetics
- Hypospadias/pathology
- Hypospadias/therapy
- Phenotype
- Steroid Metabolism, Inborn Errors/blood
- Steroid Metabolism, Inborn Errors/genetics
- Steroid Metabolism, Inborn Errors/pathology
- Steroid Metabolism, Inborn Errors/therapy
Collapse
Affiliation(s)
- Andrea Avendaño
- Medicine Faculty, Medical Genetics Unit, Los Andes University, Mérida, Venezuela
| | - Irene Paradisi
- Human Genetics Laboratory, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela.
| | | | - Michele Callea
- Unit of Dentistry, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
9
|
Eren E, Edgünlü T, Asut E, Karakaş Çelik S. Homozygous Ala65Pro Mutation with V89L Polymorphism in SRD5A2 Deficiency. J Clin Res Pediatr Endocrinol 2016; 8:218-23. [PMID: 26761946 PMCID: PMC5096479 DOI: 10.4274/jcrpe.2495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Deficiency of steroid 5-alpha reductase type 2 (5αRD2) is a rare autosomal recessive disorder caused by mutations in the SRD5A2 gene. A defect in the 5-alpha reductase enzyme, which ensures conversion of testosterone into dihydrotestosterone, leads to disorders of sex development. This study presents the clinical and genetic results of patients with 5αRD2 deficiency. METHODS 5αRD2 deficiency was detected in 6 different patients from 3 unrelated families. All patients were reared as girls. Two of the patients presented with primary amenorrhea, one with primary amenorrhea and rejection of female gender, and the others with masses in their inguinal canals. Chromosome and sex-determining region Y (SRY) gene analyses were performed in all patients. Additionally, five exons of the SRD5A2 gene were amplified with polymerase chain reaction in the obtained DNA samples and evaluated. RESULTS While 46,XY was identified in 5 patients, 47,XXY was detected in one patient. The SRY gene was positive in all patients. The p.Ala65Pro (c193G>C) mutation and V89L polymorphism were observed in exon 1 of the SRD5A2 gene in all patients. CONCLUSION Identification of this mutation and polymorphism is a significant indicator of presence of 5αRD2 deficiency in Southeastern Turkey, a geographical region where consanguineous marriages are also highly common.
Collapse
Affiliation(s)
- Erdal Eren
- Harran University Faculty of Medicine, Department of Pediatric Endocrinology, Şanlıurfa, Turkey; Present position: Uludağ University Faculty of Medicine, Department of Pediatric Endocrinology, Bursa, Turkey, Phone: +90 224 295 05 40 E-mail:
| | - Tuba Edgünlü
- Sıtkı Koçman University Faculty of Health Sciences, Department of Medical Biology, Muğla, Turkey
| | - Emre Asut
- Uludağ University Faculty of Medicine, Department of Pediatrics, Bursa, Turkey
| | - Sevim Karakaş Çelik
- Bülent Ecevit University Faculty of Medicine, Department of Medical Genetics, Zonguldak, Turkey
| |
Collapse
|
10
|
Shabir I, Khurana ML, Joseph AA, Eunice M, Mehta M, Ammini AC. Phenotype, genotype and gender identity in a large cohort of patients from India with 5α-reductase 2 deficiency. Andrology 2015; 3:1132-9. [PMID: 26453174 DOI: 10.1111/andr.12108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/27/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022]
Abstract
Deficiency of the 5α-reductase 2 enzyme impairs the conversion of testosterone to dihydrotestosterone (DHT) and differentiation of external genitalia, seminal vesicles and prostate in males. The present study describes the phenotype, genotype and gender identity in a large cohort of patients with 5αRD2. All patients underwent detailed clinical evaluation, hormonal profile, karyotyping and molecular analysis of the SRD5A2 gene. The molecular analysis of the SRD5A2 gene showed the presence of mutant alleles in 24 patients. We found 6 novel mutations IVS(1-2) T>C, p.A52T, 188-189insTA, 904-905ins A, p.A12T and p.E57X in our patients. All patients had ambiguous genitalia and the degrees of under-virilization ranged from penoscrotal hypospadias and microphallus to clitoromegaly. The position of gonads was variable in patients with same mutation. All the patients with mutations in the SRD5A2 gene had male gender identity. Those reared as female had gender dysphoria and underwent gender reassignment. Though a specific genotype-phenotype correlation could not be established in our patient but confirming the diagnosis of 5αRD2 with assessment of the SRD5A2 gene may help in appropriate gender assignment.
Collapse
Affiliation(s)
- I Shabir
- Department of Endocrinology & Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - M L Khurana
- Department of Endocrinology & Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - A A Joseph
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - M Eunice
- Department of Endocrinology & Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - M Mehta
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - A C Ammini
- Department of Endocrinology & Metabolism, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Achermann JC, Domenice S, Bachega TASS, Nishi MY, Mendonca BB. Disorders of sex development: effect of molecular diagnostics. Nat Rev Endocrinol 2015; 11:478-88. [PMID: 25942653 DOI: 10.1038/nrendo.2015.69] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Disorders of sex development (DSDs) are a diverse group of conditions that can be challenging to diagnose accurately using standard phenotypic and biochemical approaches. Obtaining a specific diagnosis can be important for identifying potentially life-threatening associated disorders, as well as providing information to guide parents in deciding on the most appropriate management for their child. Within the past 5 years, advances in molecular methodologies have helped to identify several novel causes of DSDs; molecular tests to aid diagnosis and genetic counselling have now been adopted into clinical practice. Occasionally, genetic profiling of embryos prior to implantation as an adjunct to assisted reproduction, prenatal diagnosis of at-risk pregnancies and confirmatory testing of positive results found during newborn biochemical screening are performed. Of the available genetic tests, the candidate gene approach is the most popular. New high-throughput DNA analysis could enable a genetic diagnosis to be made when the aetiology is unknown or many differential diagnoses are possible. Nonetheless, concerns exist about the use of genetic tests. For instance, a diagnosis is not always possible even using new molecular approaches (which can be worrying for the parents) and incidental information obtained during the test might cause anxiety. Careful selection of the genetic test indicated for each condition remains important for good clinical practice. The purpose of this Review is to describe advances in molecular biological techniques for diagnosing DSDs.
Collapse
Affiliation(s)
- John C Achermann
- Developmental Endocrinology Research Group, Genetics and Genomic Medicine, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Sorahia Domenice
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av Dr Eneas de Carvalho Aguiar, 155, PAMB, 2 andar, Bloco 6, 05403-900 São Paulo, Brazil
| | - Tania A S S Bachega
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av Dr Eneas de Carvalho Aguiar, 155, PAMB, 2 andar, Bloco 6, 05403-900 São Paulo, Brazil
| | - Mirian Y Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av Dr Eneas de Carvalho Aguiar, 155, PAMB, 2 andar, Bloco 6, 05403-900 São Paulo, Brazil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av Dr Eneas de Carvalho Aguiar, 155, PAMB, 2 andar, Bloco 6, 05403-900 São Paulo, Brazil
| |
Collapse
|
12
|
Laino L, Majore S, Preziosi N, Grammatico B, De Bernardo C, Scommegna S, Rapone AM, Marrocco G, Bottillo I, Grammatico P. Disorders of sex development: a genetic study of patients in a multidisciplinary clinic. Endocr Connect 2014; 3:180-92. [PMID: 25248670 PMCID: PMC4195882 DOI: 10.1530/ec-14-0085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sex development is a process under genetic control directing both the bi-potential gonads to become either a testis or an ovary, and the consequent differentiation of internal ducts and external genitalia. This complex series of events can be altered by a large number of genetic and non-genetic factors. Disorders of sex development (DSD) are all the medical conditions characterized by an atypical chromosomal, gonadal, or phenotypical sex. Incomplete knowledge of the genetic mechanisms involved in sex development results in a low probability of determining the molecular definition of the genetic defect in many of the patients. In this study, we describe the clinical, cytogenetic, and molecular study of 88 cases with DSD, including 29 patients with 46,XY and disorders in androgen synthesis or action, 18 with 46,XX and disorders in androgen excess, 17 with 46,XY and disorders of gonadal (testicular) development, 11 classified as 46,XX other, eight with 46,XX and disorders of gonadal (ovarian) development, and five with sex chromosome anomalies. In total, we found a genetic variant in 56 out of 88 of them, leading to the clinical classification of every patient, and we outline the different steps required for a coherent genetic testing approach. In conclusion, our results highlight the fact that each category of DSD is related to a large number of different DNA alterations, thus requiring multiple genetic studies to achieve a precise etiological diagnosis for each patient.
Collapse
Affiliation(s)
- Luigi Laino
- Department of Molecular MedicineMedical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatrics and HematologySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, ItalyPsychology DepartmentSan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Dipartimento di Pscicologia, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatric SurgerySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, Italy
| | - Silvia Majore
- Department of Molecular MedicineMedical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatrics and HematologySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, ItalyPsychology DepartmentSan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Dipartimento di Pscicologia, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatric SurgerySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, Italy
| | - Nicoletta Preziosi
- Department of Molecular MedicineMedical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatrics and HematologySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, ItalyPsychology DepartmentSan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Dipartimento di Pscicologia, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatric SurgerySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, Italy
| | - Barbara Grammatico
- Department of Molecular MedicineMedical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatrics and HematologySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, ItalyPsychology DepartmentSan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Dipartimento di Pscicologia, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatric SurgerySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, Italy
| | - Carmelilia De Bernardo
- Department of Molecular MedicineMedical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatrics and HematologySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, ItalyPsychology DepartmentSan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Dipartimento di Pscicologia, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatric SurgerySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, Italy
| | - Salvatore Scommegna
- Department of Molecular MedicineMedical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatrics and HematologySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, ItalyPsychology DepartmentSan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Dipartimento di Pscicologia, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatric SurgerySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, Italy
| | - Anna Maria Rapone
- Department of Molecular MedicineMedical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatrics and HematologySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, ItalyPsychology DepartmentSan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Dipartimento di Pscicologia, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatric SurgerySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, Italy
| | - Giacinto Marrocco
- Department of Molecular MedicineMedical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatrics and HematologySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, ItalyPsychology DepartmentSan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Dipartimento di Pscicologia, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatric SurgerySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, Italy
| | - Irene Bottillo
- Department of Molecular MedicineMedical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatrics and HematologySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, ItalyPsychology DepartmentSan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Dipartimento di Pscicologia, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatric SurgerySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, Italy
| | - Paola Grammatico
- Department of Molecular MedicineMedical Genetics, San Camillo-Forlanini Hospital, Sapienza University, A.O. San Camillo-Forlanini, Padiglione Morgagni, I piano, UOC Laboratorio di Genetica Medica, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatrics and HematologySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, ItalyPsychology DepartmentSan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Dipartimento di Pscicologia, Circonvallazione Gianicolense 87, Rome 00152, ItalyDepartment of Pediatric SurgerySan Camillo-Forlanini Hospital, A.O. San Camillo-Forlanini, Padiglione Baccelli, II piano, Pediatria ed Ematologia Pediatrica, Circonvallazione Gianicolense 87, Rome 00152, Italy
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To examine the sex assignment in patients with atypical external genitalia, a particularly challenging situation, especially when the genital appearance is not compatible with the sex chromosome. RECENT FINDINGS The most important factors that influence sex assignment include the definite diagnosis, genital appearance, surgical options, potential for fertility, risks of gonadal malignancy and, finally, the perception of the patients and their parents. Full disclosure and complete involvement of the parents in making decisions concerning gender assignment and/or genital surgery must be part of the basic medical care for children with disorder of sex development. SUMMARY Patients with disorder of sex development should receive long-term care provided by multidisciplinary teams in centers of excellence with ample experience in the management of this disorder.
Collapse
Affiliation(s)
- Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Chan AOK, But BWM, Lee CY, Lam YY, Ng KL, Tung JYL, Kwan EYW, Chan YK, Tsui TKC, Lam ALN, Tse WY, Cheung PT, Shek CC. Diagnosis of 5α-Reductase 2 Deficiency: Is Measurement of Dihydrotestosterone Essential? Clin Chem 2013; 59:798-806. [DOI: 10.1373/clinchem.2012.196501] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND
5α-Reductase 2 deficiency (5ARD) is a known cause of 46,XY disorders of sex development (DSD). Traditionally, the diagnosis relies on dihydrotestosterone (DHT) measurement, but the results are often equivocal, potentially leading to misdiagnosis. We reviewed alternative approaches for diagnosis of 5ARD.
METHODS
We conducted a retrospective review of the results of urinary steroid profiling (USP) by GC-MS and mutational analysis of SRD5A2 [steroid-5-alpha-reductase, alpha polypeptide 2 (3-oxo-5 alpha-steroid delta 4-dehydrogenase alpha 2)] by PCR and direct DNA sequencing of all 46,XY DSD patients referred to our laboratory with biochemical and/or genetic findings compatible with 5ARD. We also performed a literature review on the laboratory findings of all 5ARD cases reported in the past 10 years.
RESULTS
Of 16 patients diagnosed with 5ARD between January 2003 and July 2012, 15 underwent USP, and all showed characteristically low 5α- to 5β-reduced steroid metabolite ratios. Four patients had DHT measured, but 2 did not reach the diagnostic cutoff. In all 12 patients who underwent genetic analysis, 2 mutations of the SRD5A2 gene were detected to confirm the diagnosis. Twenty-four publications involving 149 patients with 5ARD were published in the review period. Fewer than half of these patients had DHT tested. Nearly 95% of them had the diagnosis confirmed genetically.
CONCLUSIONS
5ARD can be confidently diagnosed by USP at 3 months postnatally and confirmed by mutational analysis of SRD5A2. Interpretation of DHT results may be problematic and is not essential in the diagnosis of 5ARD. We propose new diagnostic algorithms for 46,XY DSD.
Collapse
Affiliation(s)
| | | | | | - Yuen Yu Lam
- Department of Paediatrics, Kwong Wah Hospital, Hong Kong SAR
| | - Kwok Leung Ng
- Department of Paediatrics, United Christian Hospital, Hong Kong SAR
| | | | - Elaine Yin Wah Kwan
- Department of Paediatrics, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR
| | - Yuk Kit Chan
- Department of Medicine, Caritas Medical Centre, Hong Kong SAR
| | | | - Almen Lai Na Lam
- Department of Paediatrics, United Christian Hospital, Hong Kong SAR
| | | | - Pik To Cheung
- Department of Paediatrics, Queen Mary Hospital, Hong Kong SAR
| | - Chi Chung Shek
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong SAR
| |
Collapse
|
15
|
Shabir I, Marumudi E, Khurana ML, Khadgawat R. Novel mutation of SRD5A2 gene in a patient with 5α-reductase 2 deficiency from India. BMJ Case Rep 2012; 2012:bcr-2012-007060. [PMID: 23112260 DOI: 10.1136/bcr-2012-007060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Master N had genital malformation at birth and had bilateral gonads in the labial fold. He was reared as a boy and corrective surgery was done at the age of 4 years and was reassessed at the age of 14 years. His testosterone/dihydrotestosterone (DHT) was 11.8 (reference range <=10). Molecular analysis of SRD5A2 gene indicated the presence of a novel heterozygous missense mutation of p.A52T in exon 1, which was also detected in mother. The father, sister and maternal grandfather were found to have normal SRD5A2 gene sequence. We also detected an intronic (1-2) homozygous T>C transition in patient, whereas both parents were found to have the same transition in heterozygous form. Although 5α-steroid reductase 2 deficiency is an autosomal-recessive disorder, in this case, it appears that there may be a dominant inheritance because only one identified mutation was present which was passed from mother to son.
Collapse
Affiliation(s)
- Iram Shabir
- Department of Endocrinology and Metabolism, AIIMS, New Delhi, India
| | | | | | | |
Collapse
|
16
|
Tsai MC, Chou YY, Lin SJ, Tsai LP. A novel SRD5A2 mutation in a Taiwanese newborn with ambiguous genitalia. Kaohsiung J Med Sci 2012; 28:231-5. [DOI: 10.1016/j.kjms.2011.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/20/2011] [Indexed: 11/26/2022] Open
|
17
|
Gaspari L, Sampaio DR, Paris F, Audran F, Orsini M, Neto JB, Sultan C. High prevalence of micropenis in 2710 male newborns from an intensive-use pesticide area of Northeastern Brazil. ACTA ACUST UNITED AC 2012; 35:253-64. [DOI: 10.1111/j.1365-2605.2011.01241.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Gaspari L, Paris F, Philibert P, Audran F, Orsini M, Servant N, Maïmoun L, Kalfa N, Sultan C. 'Idiopathic' partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals? Eur J Endocrinol 2011; 165:579-87. [PMID: 21788424 DOI: 10.1530/eje-11-0580] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE 46,XY disorders of sex differentiation (46,XY DSD) can be due to a testis determination defect, an androgen biosynthesis defect, or androgen resistance (complete or partial androgen insensitivity syndrome (PAIS), or 5α reductase deficiency). We aimed to evaluate the impact of a prenatal contamination by environmental xenoestrogens in 'idiopathic' PAIS-like phenotype. SUBJECTS We investigated 28 newborn/infant males with 46,XY DSD, normal androgen production, and no androgen receptor or steroid-5αR type II enzyme (SRD5A2) gene mutations. METHODS To exclude other genetic defects, we sequenced the steroidogenic factor 1 (SF1) and mastermind-like domain-containing 1 (MAMLD1) genes, which were recently found to be associated with the PAIS-like phenotype. Parents were interviewed about their environmental/occupational exposure to endocrine disrupting chemicals (EDCs) before/during the patients' fetal life. Total estrogenic bioactivity of patient serum was analyzed by ultrasensitive bioassay. RESULTS All the patients had normal SF1 sequence and one patient showed a double polymorphism of MAMLD1. Eleven (39.3%) of the 28 patients had reported parental fetal exposure to EDCs. The mean estrogenic bioactivity in these 11 patients with fetal EDC exposure (6.65 ± 8.07 pg/ml) versus 17 cases without contamination (1.27 ± 0.34 pg/ml) and controls (1.06 ± 0.44 pg/ml; P<0.05) was elevated. CONCLUSIONS Our results indicate that the 'idiopathic' PAIS-like phenotype may in some cases be related to EDC contamination during fetal life.
Collapse
Affiliation(s)
- Laura Gaspari
- Unité d'Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie 1, Hôpital Arnaud-de-Villeneuve, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fernández-Cancio M, Audí L, Andaluz P, Torán N, Piró C, Albisu M, Gussinyé M, Yeste D, Clemente M, Martínez-Mora J, Blanco A, Granada ML, Marco M, Ferragut J, López-Siguero JP, Beneyto M, Carles C, Carrascosa A. SRD5A2 gene mutations and polymorphisms in Spanish 46,XY patients with a disorder of sex differentiation. ACTA ACUST UNITED AC 2011; 34:e526-35. [PMID: 21631525 DOI: 10.1111/j.1365-2605.2010.01136.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One hundred and forty-six index patients with 46,XY DSD in whom gonads were confirmed as testes were consecutively studied for a molecular diagnosis during the period 2002-2010. AR gene was analysed in all patients as the first candidate gene, yielding a mutation in 42.5% of cases and SRD5A2 gene was analysed as the second candidate gene, resulting in the characterization of 10 different mutations (p.Y91D, p.G115D, p.Q126R, p.R171S, p.Y188CfsX9, p.N193S, p.A207D, p.F219SfsX60, p.R227Q and p.R246W) in nine index patients (6.2% of the total number of 46,XY DSD patients). One of the mutations (p.Y188CfsX9) has never been reported. In addition, we genotyped SRD5A2 gene p.V89L and c.281+15T>C polymorphisms in 46,XY DSD and in 156 normal adult males and found that patients with SRD5A2 mutations or without a known molecular diagnosis presented a higher frequency of homozygous p.L89, homozygous TT and combined CCTT genotypes compared with controls. This result suggests that 46,XY DSD patient phenotypes may be influenced by SRD5A2 polymorphism genotypes. SRD5A2 gene mutations may not be as infrequent as previously considered in 46,XY DSD patients with variable degrees of external genitalia virilization at birth and normal T production and appears to be the second aetiology in our series.
Collapse
Affiliation(s)
- M Fernández-Cancio
- Unidad Investigación Endocrinología y Nutrición Pediátricas, Institut de Recerca, Hospital Vall d'Hebron, CIBERER (Centro de Investigación Biomédica en Red), Instituto de Salud Carlos III, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Primary amenorrhea in four adolescents revealed 5α-reductase deficiency confirmed by molecular analysis. Fertil Steril 2011; 95:804.e1-5. [DOI: 10.1016/j.fertnstert.2010.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/04/2010] [Accepted: 08/04/2010] [Indexed: 11/20/2022]
|