1
|
Masiero G, Ferrarese G, Perazzolo E, Baraldo M, Nogara L, Tezze C. Custom-made 3D-printed boot as a model of disuse-induced atrophy in murine skeletal muscle. PLoS One 2024; 19:e0304380. [PMID: 38820523 PMCID: PMC11142711 DOI: 10.1371/journal.pone.0304380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/10/2024] [Indexed: 06/02/2024] Open
Abstract
Skeletal muscle atrophy is characterized by a decrease in muscle mass and strength caused by an imbalance in protein synthesis and degradation. This process naturally occurs upon reduced or absent physical activity, often related to illness, forced bed rest, or unhealthy lifestyles. Currently, no treatment is available for atrophy, and it can only be prevented by overloading exercise, causing severe problems for patients who cannot exercise due to chronic diseases, disabilities, or being bedridden. The two murine models commonly used to induce muscle atrophy are hindlimb suspension and ankle joint immobilization, both of which come with criticalities. The lack of treatments and the relevance of this atrophic process require a unilateral, safe, and robust model to induce muscle atrophy. In this work, we designed and developed a 3D-printed cast to be used for the study of disuse skeletal muscle atrophy. Applying two halves of the cast is non-invasive, producing little to no swelling or skin damage. The application of the cast induces, in 2-weeks immobilized leg, the activation of atrophy-related genes, causing a muscle weight loss up to 25% in the gastrocnemius muscle, and 31% in the soleus muscle of the immobilized leg compared to the control leg. The cross-sectional area of the fibers is decreased by 31% and 34% respectively, with a peculiar effect on fiber types. In the immobilized gastrocnemius, absolute muscle force is reduced by 38%, while normalized force is reduced by 16%. The contralateral leg did not show signs of overload or hypertrophy when compared to free roaming littermates, offering a good internal control over the immobilized limb. Upon removing the cast, the mice effectively recovered mass and force in 3 weeks.
Collapse
Affiliation(s)
- Giulio Masiero
- Department of Biomedical Science, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Giulia Ferrarese
- Department of Biomedical Science, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Eleonora Perazzolo
- Department of Biomedical Science, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Leonardo Nogara
- Department of Biomedical Science, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Caterina Tezze
- Department of Biomedical Science, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
2
|
Klawitter F, Ehler J, Bajorat R, Patejdl R. Mitochondrial Dysfunction in Intensive Care Unit-Acquired Weakness and Critical Illness Myopathy: A Narrative Review. Int J Mol Sci 2023; 24:5516. [PMID: 36982590 PMCID: PMC10052131 DOI: 10.3390/ijms24065516] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Mitochondria are key structures providing most of the energy needed to maintain homeostasis. They are the main source of adenosine triphosphate (ATP), participate in glucose, lipid and amino acid metabolism, store calcium and are integral components in various intracellular signaling cascades. However, due to their crucial role in cellular integrity, mitochondrial damage and dysregulation in the context of critical illness can severely impair organ function, leading to energetic crisis and organ failure. Skeletal muscle tissue is rich in mitochondria and, therefore, particularly vulnerable to mitochondrial dysfunction. Intensive care unit-acquired weakness (ICUAW) and critical illness myopathy (CIM) are phenomena of generalized weakness and atrophying skeletal muscle wasting, including preferential myosin breakdown in critical illness, which has also been linked to mitochondrial failure. Hence, imbalanced mitochondrial dynamics, dysregulation of the respiratory chain complexes, alterations in gene expression, disturbed signal transduction as well as impaired nutrient utilization have been proposed as underlying mechanisms. This narrative review aims to highlight the current known molecular mechanisms immanent in mitochondrial dysfunction of patients suffering from ICUAW and CIM, as well as to discuss possible implications for muscle phenotype, function and therapeutic approaches.
Collapse
Affiliation(s)
- Felix Klawitter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Rika Bajorat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Robert Patejdl
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
3
|
Henrot P, Blervaque L, Dupin I, Zysman M, Esteves P, Gouzi F, Hayot M, Pomiès P, Berger P. Cellular interplay in skeletal muscle regeneration and wasting: insights from animal models. J Cachexia Sarcopenia Muscle 2023; 14:745-757. [PMID: 36811134 PMCID: PMC10067506 DOI: 10.1002/jcsm.13103] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 02/24/2023] Open
Abstract
Skeletal muscle wasting, whether related to physiological ageing, muscle disuse or to an underlying chronic disease, is a key determinant to quality of life and mortality. However, cellular basis responsible for increased catabolism in myocytes often remains unclear. Although myocytes represent the vast majority of skeletal muscle cellular population, they are surrounded by numerous cells with various functions. Animal models, mostly rodents, can help to decipher the mechanisms behind this highly dynamic process, by allowing access to every muscle as well as time-course studies. Satellite cells (SCs) play a crucial role in muscle regeneration, within a niche also composed of fibroblasts and vascular and immune cells. Their proliferation and differentiation is altered in several models of muscle wasting such as cancer, chronic kidney disease or chronic obstructive pulmonary disease (COPD). Fibro-adipogenic progenitor cells are also responsible for functional muscle growth and repair and are associated in disease to muscle fibrosis such as in chronic kidney disease. Other cells have recently proven to have direct myogenic potential, such as pericytes. Outside their role in angiogenesis, endothelial cells and pericytes also participate to healthy muscle homoeostasis by promoting SC pool maintenance (so-called myogenesis-angiogenesis coupling). Their role in chronic diseases muscle wasting has been less studied. Immune cells are pivotal for muscle repair after injury: Macrophages undergo a transition from the M1 to the M2 state along with the transition between the inflammatory and resolutive phase of muscle repair. T regulatory lymphocytes promote and regulate this transition and are also able to activate SC proliferation and differentiation. Neural cells such as terminal Schwann cells, motor neurons and kranocytes are notably implicated in age-related sarcopenia. Last, newly identified cells in skeletal muscle, such as telocytes or interstitial tenocytes could play a role in tissular homoeostasis. We also put a special focus on cellular alterations occurring in COPD, a chronic and highly prevalent respiratory disease mainly linked to tobacco smoke exposure, where muscle wasting is strongly associated with increased mortality, and discuss the pros and cons of animal models versus human studies in this context. Finally, we discuss resident cells metabolism and present future promising leads for research, including the use of muscle organoids.
Collapse
Affiliation(s)
- Pauline Henrot
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Pessac, France.,CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Léo Blervaque
- PhyMedExp, INSERM-CNRS-Montpellier University, Montpellier, France
| | - Isabelle Dupin
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Pessac, France
| | - Maéva Zysman
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Pessac, France.,CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Pauline Esteves
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Pessac, France
| | - Fares Gouzi
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, Montpellier, France
| | - Maurice Hayot
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, INSERM-CNRS-Montpellier University, Montpellier, France
| | - Patrick Berger
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Pessac, France.,CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| |
Collapse
|
4
|
Hou YC, Wu JM, Chen KY, Wu MH, Yang PJ, Lee PC, Chen PD, Yeh SL, Lin MT. Glutamine and leucine administration attenuates muscle atrophy in sepsis. Life Sci 2023; 314:121327. [PMID: 36584912 DOI: 10.1016/j.lfs.2022.121327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
AIMS This study investigated whether l-glutamine (Gln) and/or l-leucine (Leu) administration could attenuate muscle atrophy in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. MATERIALS AND METHODS Septic mice were given a daily intraperitoneal injection of Gln, Leu, or Gln plus Leu, and mice were sacrificed on either day 1 or 4 after CLP. Blood and muscles were collected for analysis of amino acid contents and markers related to protein degradation, muscle regeneration, and protein synthesis. KEY FINDINGS Leu treatment alone increased both muscle mass and total muscle protein content on day 4 after CLP. Gln administration reduced muscular Gln contents on day 1 and enhanced plasma Gln levels on day 4. Higher plasma branched-chain amino acid (BCAA) abundances and lower muscular BCAA levels were observed in Leu-treated mice on day 4. Gln and Leu individually suppressed muscle expressions of the E3 ubiquitin ligase genes, Trim63 and Fbxo32, on day 4 after CLP. As to muscle expressions of myogenic genes, both Gln and Leu upregulated Myog expression on day 1, but Leu alone enhanced Myf5 gene expression, whereas Gln plus Leu increased MyoD and Myog expression levels on day 4. Akt/mammalian target of rapamycin (mTOR) signaling was only activated by Gln and Leu when individually administered. SIGNIFICANCE Gln and/or Leu administration reduces sepsis-induced muscle degradation and promotes myogenic gene expressions. Leu treatment alone had more-pronounced effects on maintaining muscle mass during sepsis. A combination of Gln and Leu failed to show synergistic effects on alleviating sepsis-induced muscle atrophy.
Collapse
Affiliation(s)
- Yu-Chen Hou
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Yuan Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsun Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Jen Yang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Da Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Ling Yeh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Acevedo LM, Vidal Á, Aguilera-Tejero E, Rivero JLL. Muscle plasticity is influenced by renal function and caloric intake through the FGF23-vitamin D axis. Am J Physiol Cell Physiol 2023; 324:C14-C28. [PMID: 36409180 DOI: 10.1152/ajpcell.00306.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Skeletal muscle, the main metabolic engine in the body of vertebrates, is endowed with great plasticity. The association between skeletal muscle plasticity and two highly prevalent health problems: renal dysfunction and obesity, which share etiologic links as well as many comorbidities, is a subject of great relevance. It is important to know how these alterations impact on the structure and function of skeletal muscle because the changes in muscle phenotype have a major influence on the quality of life of the patients. This literature review aims to discuss the influence of a nontraditional axis involving kidney, bone, and muscle on skeletal muscle plasticity. In this axis, the kidneys play a role as the main site for vitamin D activation. Renal disease leads to a direct decrease in 1,25(OH)2-vitamin D, secondary to reduction in renal functional mass, and has an indirect effect, through phosphate retention, that contributes to stimulate fibroblast growth factor 23 (FGF23) secretion by bone cells. FGF23 downregulates the renal synthesis of 1,25(OH)2-vitamin D and upregulates its metabolism. Skeletal production of FGF23 is also regulated by caloric intake: it is increased in obesity and decreased by caloric restriction, and these changes impact on 1,25(OH)2-vitamin D concentrations, which are decreased in obesity and increased after caloric restriction. Thus, both phosphate retention, that develops secondary to renal failure, and caloric intake influence 1,25(OH)2-vitamin D that in turn plays a key role in muscle anabolism.
Collapse
Affiliation(s)
- Luz M Acevedo
- Department of Comparative Anatomy and Pathological Anatomy and Toxicology, Faculty of Veterinary Sciences, Laboratory of Muscular Biopathology, University of Cordoba, Spain.,Departamento de Ciencias Biomédicas, Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Venezuela
| | - Ángela Vidal
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain
| | - Escolástico Aguilera-Tejero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain
| | - José-Luis L Rivero
- Department of Comparative Anatomy and Pathological Anatomy and Toxicology, Faculty of Veterinary Sciences, Laboratory of Muscular Biopathology, University of Cordoba, Spain
| |
Collapse
|
6
|
González-Hedström D, Moreno-Rupérez Á, de la Fuente-Fernández M, de la Fuente-Muñoz M, Román-Carmena M, Amor S, García-Villalón ÁL, López-Calderón A, Isabel Martín A, Priego T, Granado M. A Nutraceutical Product Based on a Mixture of Algae and Extra Virgin Olive Oils and Olive Leaf Extract Attenuates Sepsis-Induced Cardiovascular and Muscle Alterations in Rats. Front Nutr 2022; 9:918841. [PMID: 35795581 PMCID: PMC9252429 DOI: 10.3389/fnut.2022.918841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
Nutraceuticals are products of natural origin widely used for the treatment and/or prevention of some chronic diseases that are highly prevalent in Western countries, such as obesity or type II diabetes, among others. However, its possible use in the prevention of acute diseases that can put life at risk has been poorly studied. Sepsis is an acute condition that causes cardiovascular and skeletal muscle damage due to a systemic inflammatory state. The aim of this work was to evaluate the possible beneficial effect of a new nutraceutical based on a mixture of algae oil (AO) and extra virgin olive oil (EVOO) supplemented with an olive leaf extract (OLE) in the prevention of cardiovascular alterations and skeletal muscle disorders induced by sepsis in rats. For this purpose, male Wistar rats were treated with the nutraceutical or with water p.o. for 3 weeks and after the treatment they were injected with 1mg/kg LPS twice (12 and 4 h before sacrifice). Pretreatment with the nutraceutical prevented the LPS-induced decrease in cardiac contractility before and after the hearts were subjected to ischemia-reperfusion. At the vascular level, supplementation with the nutraceutical did not prevent hypotension in septic animals, but it attenuated endothelial dysfunction and the increased response of aortic rings to the vasoconstrictors norepinephrine and angiotensin-II induced by LPS. The beneficial effects on cardiovascular function were associated with an increased expression of the antioxidant enzymes SOD-1 and GSR in cardiac tissue and SOD-1 and Alox-5 in arterial tissue. In skeletal muscle, nutraceutical pretreatment prevented LPS-induced muscle proteolysis and autophagy and significantly increased protein synthesis as demonstrated by decreased expression of MURF-1, atrogin-1, LC3b and increased MCH-I and MCH -IIa in gastrocnemius muscle. These effects were associated with a decrease in the expression of TNFα, HDAC4 and myogenin. In conclusion, treatment with a new nutraceutical based on a mixture of AO and EVOO supplemented with OLE is useful to prevent cardiovascular and muscular changes induced by sepsis in rats. Thus, supplementation with this nutraceutical may constitute an interesting strategy to reduce the severity and mortality risk in septic patients.
Collapse
Affiliation(s)
- Daniel González-Hedström
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- R&D Department, Pharmactive Biotech Products S.L.U., Alcobendas, Madrid, Spain
| | - Álvaro Moreno-Rupérez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | - Marta Román-Carmena
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara Amor
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Asunción López-Calderón
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Isabel Martín
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Teresa Priego
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Miriam Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Miriam Granado,
| |
Collapse
|
7
|
Li X, Du L, Liu Q, Lu Z. MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review). Exp Ther Med 2022; 24:446. [PMID: 35720622 PMCID: PMC9199081 DOI: 10.3892/etm.2022.11373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cachexia denotes a complex metabolic syndrome featuring severe loss of weight, fatigue and anorexia. In total, 50-80% of patients suffering from advanced cancer are diagnosed with cancer cachexia, which contributes to 40% of cancer-associated mortalities. MicroRNAs (miRNAs) are non-coding RNAs capable of regulating gene expression. Dysregulated miRNA expression has been observed in muscle tissue, adipose tissue and blood samples from patients with cancer cachexia compared with that of samples from patients with cancer without cachexia or healthy controls. In addition, miRNAs promote and maintain the malignant state of systemic inflammation, while inflammation contributes to cancer cachexia. The present review discusses the role of miRNAs in the progression of cancer cachexia, and assess their diagnostic value and potential therapeutic value.
Collapse
Affiliation(s)
- Xin Li
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Lidong Du
- Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Qiang Liu
- Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
8
|
Role of Glucocorticoid Signaling and HDAC4 Activation in Diaphragm and Gastrocnemius Proteolytic Activity in Septic Rats. Int J Mol Sci 2022; 23:ijms23073641. [PMID: 35408999 PMCID: PMC8998191 DOI: 10.3390/ijms23073641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Sepsis increases glucocorticoid and decreases IGF-1, leading to skeletal muscle wasting and cachexia. Muscle atrophy mainly takes place in locomotor muscles rather than in respiratory ones. Our study aimed to elucidate the mechanism responsible for this difference in muscle proteolysis, focusing on local inflammation and IGF-1 as well as on their glucocorticoid response and HDAC4-myogenin activation. Sepsis was induced in adult male rats by lipopolysaccharide (LPS) injection (10 mg/kg), and 24 h afterwards, rats were euthanized. LPS increased TNFα and IL-10 expression in both muscles studied, the diaphragm and gastrocnemius, whereas IL-6 and SOCS3 mRNA increased only in diaphragm. In comparison with gastrocnemius, diaphragm showed a lower increase in proteolytic marker expression (atrogin-1 and LC3b) and in LC3b protein lipidation after LPS administration. LPS increased the expression of glucocorticoid induced factors, KLF15 and REDD1, and decreased that of IGF-1 in gastrocnemius but not in the diaphragm. In addition, an increase in HDAC4 and myogenin expression was induced by LPS in gastrocnemius, but not in the diaphragm. In conclusion, the lower activation of both glucocorticoid signaling and HDAC4-myogenin pathways by sepsis can be one of the causes of lower sepsis-induced proteolysis in the diaphragm compared to gastrocnemius.
Collapse
|
9
|
Exogenous Melatonin Alleviates Skeletal Muscle Wasting by Regulating Hypothalamic Neuropeptides Expression in Endotoxemia Rats. Neurochem Res 2022; 47:885-896. [PMID: 35061163 PMCID: PMC8891201 DOI: 10.1007/s11064-021-03489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 10/25/2022]
Abstract
To investigate whether exogenous melatonin (MLT) could alleviate skeletal muscle wasting by regulating hypothalamic neuropeptides expression. Adult male Sprague Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) (10 mg/kg), followed by MLT (30 mg/kg/day) or saline for 3 days. Hypothalamic tissues and skeletal muscle were obtained on day 3. Skeletal muscle wasting was measured by the mRNA expression of two E3 ubiquitin ligases, muscle atrophy F-box and muscle ring finger 1 as well as 3-methylhistidine (3-MH) and tyrosine release. Three hypothalamic neuropeptides (POMC, AgRP, CART) expression were detected in all groups. POMC expression knockdown was achieved by ARC injection of lentiviruses containing shRNA against POMC. Two weeks after ARC viruses injection, rats were i.p. injected with LPS (10 mg/kg) followed by MLT (30 mg/kg/day) or saline for 3 days. Brain tissues were harvested for immunostaining. In septic rats, 3-MH, tyrosine release and muscle atrophic gene expression were significantly decreased in MLT treated group. POMC and CART expression were lower while AgRP expression was higher in MLT treated group. Furthermore, in septic rats treated with MLT, muscle wasting in those with lower expression of neuropeptide POMC did not differ from those with normal POMC expression. Exogenous MLT could alleviate skeletal muscle wasting in septic rats by regulating hypothalamic neuropeptides.
Collapse
|
10
|
Protective Effects of Glutamine and Leucine Supplementation on Sepsis-Induced Skeletal Muscle Injuries. Int J Mol Sci 2021; 22:ijms222313003. [PMID: 34884807 PMCID: PMC8657647 DOI: 10.3390/ijms222313003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023] Open
Abstract
This study investigated the effects of l-glutamine (Gln) and/or l-leucine (Leu) administration on sepsis-induced skeletal muscle injuries. C57BL/6J mice were subjected to cecal ligation and puncture to induce polymicrobial sepsis and then given an intraperitoneal injection of Gln, Leu, or Gln plus Leu beginning at 1 h after the operation with re-injections every 24 h. All mice were sacrificed on either day 1 or day 4 after the operation. Blood and muscles were collected for analysis of inflammation and oxidative damage-related biomolecules. Results indicated that both Gln and Leu supplementation alleviated sepsis-induced skeletal muscle damage by reducing monocyte infiltration, calpain activity, and mRNA expression levels of inflammatory cytokines and hypoxia-inducible factor-1α. Furthermore, septic mice treated with Gln had higher percentages of blood anti-inflammatory monocytes and muscle M2 macrophages, whereas Leu treatment enhanced the muscle expressions of mitochondrion-related genes. However, there were no synergistic effects when Gln and Leu were simultaneously administered. These findings suggest that both Gln and Leu had prominent abilities to attenuate inflammation and degradation of skeletal muscles in the early and/or late phases of sepsis. Moreover, Gln promoted the switch of leukocytes toward an anti-inflammatory phenotype, while Leu treatment maintained muscle bioenergetic function.
Collapse
|
11
|
Use of Organ Dysfunction as a Primary Outcome Variable Following Cecal Ligation and Puncture: Recommendations for Future Studies. Shock 2021; 54:168-182. [PMID: 31764625 DOI: 10.1097/shk.0000000000001485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Outcomes variables for research on sepsis have centered on mortality and changes in the host immune response. However, a recent task force (Sepsis-3) revised the definition of sepsis to "life-threatening organ dysfunction caused by a dysregulated host response to infection." This new definition suggests that human studies should focus on organ dysfunction. The appropriate criteria for organ dysfunction in either human sepsis or animal models are, however, poorly delineated, limiting the potential for translation. Further, in many systems, the difference between "dysfunction" and "injury" may not be clear. In this review, we identify criteria for organ dysfunction and/or injury in human sepsis and in rodents subjected to cecal ligation and puncture (CLP), the most commonly used animal model of sepsis. We further examine instances where overlap between human sepsis and CLP is sufficient to identify translational endpoints. Additional verification may demonstrate that these endpoints are applicable to other animals and to other sepsis models, for example, pneumonia. We believe that the use of these proposed measures of organ dysfunction will facilitate mechanistic studies on the pathobiology of sepsis and enhance our ability to develop animal model platforms to evaluate therapeutic approaches to human sepsis.
Collapse
|
12
|
Lin YA, Li YR, Chang YC, Hsu MC, Chen ST. Activation of IGF-1 pathway and suppression of atrophy related genes are involved in Epimedium extract (icariin) promoted C2C12 myotube hypertrophy. Sci Rep 2021; 11:10790. [PMID: 34031457 PMCID: PMC8144409 DOI: 10.1038/s41598-021-89039-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
The regenerative effect of Epimedium and its major bioactive flavonoid icariin (ICA) have been documented in traditional medicine, but their effect on sarcopenia has not been evaluated. The aim of this study was to investigate the effects of Epimedium extract (EE) on skeletal muscle as represented by differentiated C2C12 cells. Here we demonstrated that EE and ICA stimulated C2C12 myotube hypertrophy by activating several, including IGF-1 signal pathways. C2C12 myotube hypertrophy was demonstrated by enlarged myotube and increased myosin heavy chains (MyHCs). In similar to IGF-1, EE/ICA activated key components of the IGF-1 signal pathway, including IGF-1 receptor. Pre-treatment with IGF-1 signal pathway specific inhibitors such as picropodophyllin, LY294002, and rapamycin attenuated EE induced myotube hypertrophy and MyHC isoform overexpression. In a different way, EE induced MHyC-S overexpression can be blocked by AMPK, but not by mTOR inhibitor. On the level of transcription, EE suppressed myostatin and MRF4 expression, but did not suppress atrogenes MAFbx and MuRF1 like IGF-1 did. Differential regulation of MyHC isoform and atrogenes is probably due to inequivalent AKT and AMPK phosphorylation induced by EE and IGF-1. These findings suggest that EE/ICA stimulates pathways partially overlapping with IGF-1 signaling pathway to promote myotube hypertrophy.
Collapse
Affiliation(s)
- Yi-An Lin
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan.,Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan City, Taiwan
| | - Yan-Rong Li
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan
| | - Yi-Ching Chang
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Szu-Tah Chen
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan.
| |
Collapse
|
13
|
Nagasao J, Fukasawa H, Yoshioka K, Miyamoto M, Iwaki Y, Kajiwara K, Sato K, Arihara K. Skeletal Muscle Fibre Type Changes in an Avian Model of Hepatic Fibrosis. J Comp Pathol 2021; 183:26-32. [PMID: 33714428 DOI: 10.1016/j.jcpa.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/11/2020] [Accepted: 01/02/2021] [Indexed: 01/01/2023]
Abstract
We investigated the susceptibility of type I and type II skeletal myofibres to atrophy in hens with hepatic fibrosis induced by bile duct ligation (BDL). Seven hens, approximately 2 years old, were randomly assigned to BDL (n = 4) and sham surgery (SHAM) (n = 3) groups. Mean body weight and mean liver weight as a percentage of mean body weight were significantly lower in the BDL group than in the SHAM group at 4 weeks post surgery (P = 0.002, P = 0.005, respectively). Mean plasma aspartate aminotransferase activity was slightly higher, while total cholesterol (P <0.001), total bilirubin (P = 0.022) and NH3 (P = 0.048) concentrations were significantly higher in the BDL group than in the SHAM group. Liver lesions were induced in all hens in the BDL group. The weights of the pectoralis (PCT) (P = 0.049) and flexor perforans et perforatus digiti III (FPPD III) muscles (P = 0.006) as a percentage of body weight were significantly decreased in the BDL group. A significantly reduced mean myofibre cross-sectional area in the PCT of BDL hens (P = 0.005) was indicative of atrophy. No significant differences were observed in the fibre type composition of the PCT, supracoracoideus or FPPD III muscles between the SHAM and BDL groups. However, there was an approximate 43% increase in the number of type I fibres in the femorotibialis lateralis of the BDL group and small angular type II fibres and large round type I fibres in this muscle were characteristic of peripheral neuropathy. The results suggest that type II fibres are more susceptible to atrophy than type I fibres in this model of hepatic fibrosis.
Collapse
Affiliation(s)
- Jun Nagasao
- Department of Food Function and Safety, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan.
| | - Hanae Fukasawa
- Department of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Kazuki Yoshioka
- Department of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Miki Miyamoto
- Department of Food Function and Safety, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Yuna Iwaki
- Department of Food Function and Safety, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Kurumi Kajiwara
- Department of Food Function and Safety, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Koudai Sato
- Department of Food Function and Safety, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Keizo Arihara
- Department of Food Function and Safety, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| |
Collapse
|
14
|
Hydrocortisone mitigates ICU-AW by fine-tuning of muscle atrophic and hypertrophic signaling pathways in a sepsis model with limb immobilization. Life Sci 2020; 261:118366. [PMID: 32871182 DOI: 10.1016/j.lfs.2020.118366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022]
Abstract
AIMS Intensive care unit-acquired weakness (ICU-AW) is a complex spectrum of disability that delays recovery of critically ill-immobilized patients with sepsis. Much discrepancy remain on the use of corticosteroids and their impact on muscle regeneration in critical illness management. Therefore, the aim of this study is to investigate whether hydrocortisone (HCT) modulates muscle mass turnover in ICU-AW induced by sepsis with limb immobilization (SI). MAIN METHODS Sepsis by cecal ligation puncture (CLP) with forelimb-immobilization were performed in rats. The study consisted of four groups: Sham (left forelimb-immobilization), Sham HCT (left forelimb-immobilization + HCT), SI (CLP + left forelimb-immobilization) and SI HCT (CLP + left forelimb-immobilization + HCT). Motor force, blood and muscle sampling were assessed. KEY FINDINGS HCT prevented body weight loss associated with SI and attenuated systemic and muscular inflammation. Besides, myosin was restituted in SI HCT group in conjunction to muscle mass and strength restoration. Pro-hypertrophic calcineurin (PP2B-Aβ) and nuclear factor of activated T-cells C3 (NFATc3) but not protein kinase B (Akt) were re-activated by HCT. Finally, pro-atrophic extracellular signal-regulated kinases (ERK1/2) and p38 mitogen-activated protein kinases (p38) but not nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) were inhibited in SI HCT group. SIGNIFICANCE This study unravels new molecular events thought to control muscle protein synthesis in ICU-AW induced by sepsis and limb immobilization. HCT has a potential to fine-tune muscle-signaling pathways and to reduce the negative outcomes of ICU-AW.
Collapse
|
15
|
Yang C, Yang W, Wong Y, Wang K, Teng Y, Chang M, Liao K, Nian F, Chao C, Tsai J, Hwang W, Lin M, Tzeng T, Wang P, Campbell M, Chen L, Tsai T, Chang P, Kung H. Muscle atrophy-related myotube-derived exosomal microRNA in neuronal dysfunction: Targeting both coding and long noncoding RNAs. Aging Cell 2020; 19:e13107. [PMID: 32233025 PMCID: PMC7253071 DOI: 10.1111/acel.13107] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 12/27/2022] Open
Abstract
In mammals, microRNAs can be actively secreted from cells to blood. miR‐29b‐3p has been shown to play a pivotal role in muscle atrophy, but its role in intercellular communication is largely unknown. Here, we showed that miR‐29b‐3p was upregulated in normal and premature aging mouse muscle and plasma. miR‐29b‐3p was also upregulated in the blood of aging individuals, and circulating levels of miR‐29b‐3p were negatively correlated with relative appendicular skeletal muscle. Consistently, miR‐29b‐3p was observed in exosomes isolated from long‐term differentiated atrophic C2C12 cells. When C2C12‐derived miR‐29b‐3p‐containing exosomes were uptaken by neuronal SH‐SY5Y cells, increased miR‐29b‐3p levels in recipient cells were observed. Moreover, miR‐29b‐3p overexpression led to downregulation of neuronal‐related genes and inhibition of neuronal differentiation. Interestingly, we identified HIF1α‐AS2 as a novel c‐FOS targeting lncRNA that is induced by miR‐29b‐3p through down‐modulation of c‐FOS and is required for miR‐29b‐3p‐mediated neuronal differentiation inhibition. Our results suggest that atrophy‐associated circulating miR‐29b‐3p may mediate distal communication between muscle cells and neurons.
Collapse
Affiliation(s)
- Chia‐Pei Yang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Wan‐Shan Yang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Yu‐Hui Wong
- Brain Research Center National Yang‐Ming University Taipei Taiwan
| | - Kai‐Hsuan Wang
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan
| | - Yuan‐Chi Teng
- Program in Molecular Medicine School of Life Sciences National Yang‐Ming University and Academia Sinica Taipei Taiwan
- Department of Life Sciences Institute of Genome Sciences National Yang‐Ming University Taipei Taiwan
| | - Ming‐Hsuan Chang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Ko‐Hsun Liao
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
| | - Fang‐Shin Nian
- Institute of Brain Science National Yang‐Ming University Taipei Taiwan
- Program in Molecular Medicine National Yang‐Ming University and Academia Sinica Taipei Taiwan
| | - Chuan‐Chuan Chao
- The Ph.D. Program for Cancer Molecular Biology and Drug Discovery College of Medical Science and Technology Taipei Medical University Taipei Taiwan
| | - Jin‐Wu Tsai
- Institute of Brain Science National Yang‐Ming University Taipei Taiwan
| | - Wei‐Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine National Yang‐Ming University Taipei Taiwan
| | - Ming‐Wei Lin
- Institute of Public Health National Yang‐Ming University Taipei Taiwan
| | - Tsai‐Yu Tzeng
- Cancer Progression Research Center National Yang‐Ming University Taipei Taiwan
| | - Pei‐Ning Wang
- Brain Research Center National Yang‐Ming University Taipei Taiwan
- Department of Neurology Neurological InstituteTaipei Veterans General Hospital Taipei Taiwan
- Aging and Health Research Center National Yang‐Ming University Taipei Taiwan
| | - Mel Campbell
- UC Davis Comprehensive Cancer CenterUniversity of California Davis CA USA
| | - Liang‐Kung Chen
- Aging and Health Research Center National Yang‐Ming University Taipei Taiwan
- Department of Geriatric Medicine School of Medicine National Yang Ming University Taipei Taiwan
- Center for Geriatrics and Gerontology Taipei Veterans General Hospital Taipei Taiwan
| | - Ting‐Fen Tsai
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan
- Program in Molecular Medicine School of Life Sciences National Yang‐Ming University and Academia Sinica Taipei Taiwan
- Department of Life Sciences Institute of Genome Sciences National Yang‐Ming University Taipei Taiwan
- Aging and Health Research Center National Yang‐Ming University Taipei Taiwan
| | - Pei‐Ching Chang
- Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan
- Cancer Progression Research Center National Yang‐Ming University Taipei Taiwan
| | - Hsing‐Jien Kung
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan
- The Ph.D. Program for Cancer Molecular Biology and Drug Discovery College of Medical Science and Technology Taipei Medical University Taipei Taiwan
- UC Davis Comprehensive Cancer CenterUniversity of California Davis CA USA
| |
Collapse
|
16
|
Skeletal muscle alterations in tachycardia-induced heart failure are linked to deficient natriuretic peptide signalling and are attenuated by RAS-/NEP-inhibition. PLoS One 2019; 14:e0225937. [PMID: 31800630 PMCID: PMC6892497 DOI: 10.1371/journal.pone.0225937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background Heart failure induced cachexia is highly prevalent. Insights into disease progression are lacking. Methods Early state of left ventricular dysfunction (ELVD) and symptomatic systolic heart failure (HF) were both induced in rabbits by tachypacing. Tissue of limb muscle (LM) was subjected to histologic assessment. For unbiased characterisation of early and late myopathy, a proteomic approach followed by computational pathway-analyses was performed and combined with pathway-focused gene expression analyses. Specimen of thoracic diaphragm (TD) served as control for inactivity-induced skeletal muscle alterations. In a subsequent study, inhibition of the renin-angiotensin-system and neprilysin (RAS-/NEP) was compared to placebo. Results HF was accompanied by loss of protein content (8.7±0.4% vs. 7.0±0.5%, mean±SEM, control vs. HF, p<0.01) and a slow-to-fast fibre type switch, establishing hallmarks of cachexia. In ELVD, the enzymatic set-up of LM and TD shifted to a catabolic state. A disturbed malate-aspartate shuttle went well with increased enzymes of glycolysis, forming the enzymatic basis for enforced anoxic energy regeneration. The histological findings and the pathway analysis of metabolic results drew the picture of suppressed PGC-1α signalling, linked to the natriuretic peptide system. In HF, natriuretic peptide signalling was desensitised, as confirmed by an increase in the ratio of serum BNP to tissue cGMP (57.0±18.6pg/ml/nM/ml vs. 165.8±16.76pg/ml/nM/ml, p<0.05) and a reduced expression of natriuretic peptide receptor-A. In HF, combined RAS-/NEP-inhibition prevented from loss in protein content (8.7±0.3% vs. 6.0±0.6% vs. 8.3±0.9%, Baseline vs. HF-Placebo vs. HF-RAS/NEP, p<0.05 Baseline vs. HF-Placebo, p = 0.7 Baseline vs. HF-RAS/NEP). Conclusions Tachypacing-induced heart failure entails a generalised myopathy, preceding systolic dysfunction. The characterisation of “pre-cachectic” state and its progression is feasible. Early enzymatic alterations of LM depict a catabolic state, rendering LM prone to futile substrate metabolism. A combined RAS-/NEP-inhibition ameliorates cardiac-induced myopathy independent of systolic function, which could be linked to stabilised natriuretic peptide/cGMP/PGC-1α signalling.
Collapse
|
17
|
Davuluri G, Giusto M, Chandel R, Welch N, Alsabbagh K, Kant S, Kumar A, Kim A, Gangadhariah M, Ghosh PK, Tran U, Krajcik DM, Vasu K, DiDonato AJ, DiDonato JA, Willard B, Monga SP, Wang Y, Fox PL, Stark GR, Wessely O, Esser KA, Dasarathy S. Impaired Ribosomal Biogenesis by Noncanonical Degradation of β-Catenin during Hyperammonemia. Mol Cell Biol 2019; 39:e00451-18. [PMID: 31138664 PMCID: PMC6664607 DOI: 10.1128/mcb.00451-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
Increased ribosomal biogenesis occurs during tissue hypertrophy, but whether ribosomal biogenesis is impaired during atrophy is not known. We show that hyperammonemia, which occurs in diverse chronic disorders, impairs protein synthesis as a result of decreased ribosomal content and translational capacity. Transcriptome analyses, real-time PCR, and immunoblotting showed consistent reductions in the expression of the large and small ribosomal protein subunits (RPL and RPS, respectively) in hyperammonemic murine skeletal myotubes, HEK cells, and skeletal muscle from hyperammonemic rats and human cirrhotics. Decreased ribosomal content was accompanied by decreased expression of cMYC, a positive regulator of ribosomal biogenesis, as well as reduced expression and activity of β-catenin, a transcriptional activator of cMYC. However, unlike the canonical regulation of β-catenin via glycogen synthase kinase 3β (GSK3β)-dependent degradation, GSK3β expression and phosphorylation were unaltered during hyperammonemia, and depletion of GSK3β did not prevent ammonia-induced degradation of β-catenin. Overexpression of GSK3β-resistant variants, genetic depletion of IκB kinase β (IKKβ) (activated during hyperammonemia), protein interactions, and in vitro kinase assays showed that IKKβ phosphorylated β-catenin directly. Overexpressing β-catenin restored hyperammonemia-induced perturbations in signaling responses that regulate ribosomal biogenesis. Our data show that decreased protein synthesis during hyperammonemia is mediated via a novel GSK3β-independent, IKKβ-dependent impairment of the β-catenin-cMYC axis.
Collapse
Affiliation(s)
- Gangarao Davuluri
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michela Giusto
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rajeev Chandel
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Khaled Alsabbagh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sashi Kant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Avinash Kumar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam Kim
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Prabar K Ghosh
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Uyen Tran
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel M Krajcik
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kommireddy Vasu
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anthony J DiDonato
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Joseph A DiDonato
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Belinda Willard
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuxin Wang
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paul L Fox
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - George R Stark
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Oliver Wessely
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, Institute of Myology, University of Florida, Gainesville, Florida, USA
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Dumitru A, Radu BM, Radu M, Cretoiu SM. Muscle Changes During Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1088:73-92. [PMID: 30390248 DOI: 10.1007/978-981-13-1435-3_4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Muscle atrophy typically is a direct effect of protein degradation induced by a diversity of pathophysiologic states such as disuse, immobilization, denervation, aging, sepsis, cachexia, glucocorticoid treatment, hereditary muscular disorders, cancer, diabetes and obesity, kidney and heart failure, and others. Muscle atrophy is defined by changes in the muscles, consisting in shrinkage of myofibers, changes in the types of fiber and myosin isoforms, and a net loss of cytoplasm, organelles and overall a protein loss. Although in the literature there are extensive studies in a range of animal models, the paucity of human data is a reality. This chapter is focused on various aspects of muscle wasting and describes the transitions of myofiber types during the progression of muscle atrophy in several pathological states. Clinical conditions associated with muscle atrophy have been grouped based on the fast-to-slow or slow-to-fast fiber-type shifts. We have also summarized the ultrastructural and histochemical features characteristic for muscle atrophy in clinical and experimental models for aging, cancer, diabetes and obesity, and heart failure and arrhythmia.
Collapse
Affiliation(s)
- Adrian Dumitru
- Department of Pathology, Emergency University Hospital, Bucharest, Romania
| | - Beatrice Mihaela Radu
- Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Bucharest, Romania.,Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
| | - Mihai Radu
- Department of Life & Environmental Physics, 'Horia Hulubei' National Institute for Physics & Nuclear Engineering, Magurele, Romania
| | - Sanda Maria Cretoiu
- Division of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
19
|
De Toni L, Agoulnik AI, Sandri M, Foresta C, Ferlin A. INSL3 in the muscolo-skeletal system. Mol Cell Endocrinol 2019; 487:12-17. [PMID: 30625346 DOI: 10.1016/j.mce.2018.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/27/2018] [Accepted: 12/31/2018] [Indexed: 12/23/2022]
Abstract
Bone and skeletal muscle are currently considered a unified functional unit, showing complementary regulation at mechanical, biochemical, paracrine and metabolic levels. This functional unit undergoes a central hormonal regulation which is mainly ascribed to sex steroids and, in particular, androgens. However, recent evidence suggest that another testicular hormone lines the classical anabolic effect of testosterone on bone and muscle, the insulin-like peptide 3 (INSL3) acting on its specific receptor RXFP2. This minireview focuses on the most recent findings describing the role of INSL3/RXFP2 axis on the muscolo-skeletal system, from the mechanistic insights to the phenotypic consequences. Pathophysiological and therapeutic widenings deriving from available data are also discussed.
Collapse
Affiliation(s)
- Luca De Toni
- Department of Medicine, University of Padova, Via Giustiniani 2, 35121, Padova, Italy.
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, 33199, Miami, FL, USA.
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Via Colombo 3, 35100, Padova, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35129, Padova, Italy.
| | - Carlo Foresta
- Department of Medicine, University of Padova, Via Giustiniani 2, 35121, Padova, Italy.
| | - Alberto Ferlin
- Unit of Endocrinology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
20
|
Freire PP, Fernandez GJ, Cury SS, de Moraes D, Oliveira JS, de Oliveira G, Dal-Pai-Silva M, Dos Reis PP, Carvalho RF. The Pathway to Cancer Cachexia: MicroRNA-Regulated Networks in Muscle Wasting Based on Integrative Meta-Analysis. Int J Mol Sci 2019; 20:E1962. [PMID: 31013615 PMCID: PMC6515458 DOI: 10.3390/ijms20081962] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer cachexia is a multifactorial syndrome that leads to significant weight loss. Cachexia affects 50%-80% of cancer patients, depending on the tumor type, and is associated with 20%-40% of cancer patient deaths. Besides the efforts to identify molecular mechanisms of skeletal muscle atrophy-a key feature in cancer cachexia-no effective therapy for the syndrome is currently available. MicroRNAs are regulators of gene expression, with therapeutic potential in several muscle wasting disorders. We performed a meta-analysis of previously published gene expression data to reveal new potential microRNA-mRNA networks associated with muscle atrophy in cancer cachexia. We retrieved 52 differentially expressed genes in nine studies of muscle tissue from patients and rodent models of cancer cachexia. Next, we predicted microRNAs targeting these differentially expressed genes. We also include global microRNA expression data surveyed in atrophying skeletal muscles from previous studies as background information. We identified deregulated genes involved in the regulation of apoptosis, muscle hypertrophy, catabolism, and acute phase response. We further predicted new microRNA-mRNA interactions, such as miR-27a/Foxo1, miR-27a/Mef2c, miR-27b/Cxcl12, miR-27b/Mef2c, miR-140/Cxcl12, miR-199a/Cav1, and miR-199a/Junb, which may contribute to muscle wasting in cancer cachexia. Finally, we found drugs targeting MSTN, CXCL12, and CAMK2B, which may be considered for the development of novel therapeutic strategies for cancer cachexia. Our study has broadened the knowledge of microRNA-regulated networks that are likely associated with muscle atrophy in cancer cachexia, pointing to their involvement as potential targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Paula Paccielli Freire
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Geysson Javier Fernandez
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Sarah Santiloni Cury
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Diogo de Moraes
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Jakeline Santos Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Grasieli de Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Patrícia Pintor Dos Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-687, Brazil.
- Experimental Research Unity, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-687, Brazil.
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| |
Collapse
|
21
|
Kuçi O, Verlaan D, Vicente C, Nubret E, Le Plenier S, De Bandt JP, Cynober L. Citrulline and muscle protein homeostasis in three different models of hypercatabolism. Clin Nutr 2019; 39:917-927. [PMID: 31010700 DOI: 10.1016/j.clnu.2019.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 02/24/2019] [Accepted: 03/26/2019] [Indexed: 01/23/2023]
Abstract
Supplementation of enteral nutrition (EN) by specific amino acids (AAs) has been proposed to prevent muscle protein loss in intensive care unit (ICU) patients. Citrulline (Cit), which has been shown to stimulate muscle protein synthesis in other situations, may be of interest in this setting. Our aim was to assess the effect of Cit in three catabolic models relevant to critical illness: endotoxemia (LPS), traumatic brain injury (TBI), and TBI with infectious complications (TBI-Ec), which are characterized by different alterations in protein homeostasis. Fifty-eight male Sprague-Dawley rats (200-220 g) were randomized to receive a standard diet ad libitum (CON, n = 9) or to undergo catabolic injuries on day 0 (D0, n = 49), and EN (Sondalis HP energy® 290 kcal/kg/d) from day 1 (D1) combined with Cit (2 g/kg/d) or isonitrogenous non-essential AAs (NEAAs) until day 3 (D3). Endotoxemia was induced by IP injection of LPS from E. coli (3 mg/kg), TBI by hydraulic percussion, and infectious complications (TBI-Ec) by administration of luminescent E. coli on D1. Nitrogen balance (ΔN) and 3-methylhistidine (3-MHis) were measured daily. Muscle protein synthesis (MPS, measured by the SUnSET method) and mTORC1 activation (S6K-1 and 4E-BP1 phosphorylation) were measured on D3 2 h after the arrest of enteral nutrition in soleus, extensor digitorum longus (EDL), gastrocnemius and tibialis muscles. ΔN was lower (p < 0.001) in all three models of injury compared with basal and CON from D1 to D3, and more negative in the LPS-CIT (p < 0.05) than in the LPS group. The 3-MHis/creatinine ratio was significantly increased on D1 in all groups compared with CON, and on D2 only in the LPS and TBI groups (p < 0.0001, LPS and TBI vs. CON). MPS was similar in all groups in soleus and tibialis but significantly higher in EDL in LPS-CIT [LPS-CIT: 4.5 ± 1.7 (mean ± SD) vs. CON: 2.3 ± 1.2; and vs. LPS-NEAA: 3.1 ± 2.3] and in gastrocnemius (LPS-CIT vs. CON; p = 0.05). S6K-1 phosphorylation in the EDL was also higher in LPS-CIT vs. CON (LPS-CIT: 0.94 ± 0.51 CON: 0.42 ± 0.28), but not in gastrocnemius. IL-6 plasma level was significantly higher in all the catabolic groups vs. CON (p < 0.005) with no difference between treatments (Cit or NEAAs). In conclusion, the TBI model showed only a rise in muscle proteolysis, whereas the LPS model displayed a rise in both protein synthesis and proteolysis. Secondly, our results show that the Cit effect varies according to the type of injury and to the muscle under study. The stimulation of MPS rate and the mTOR pathway in LPS-treated rats contrasts with degraded ΔN, suggesting that the Cit effect on protein metabolism in critically ill rats is limited at the whole-body level.
Collapse
Affiliation(s)
- O Kuçi
- Laboratoire de Biologie de la Nutrition, EA 4466 PRETRAM, Université Paris Descartes, Sorbonne Paris Cité, France
| | - D Verlaan
- Laboratoire de Biologie de la Nutrition, EA 4466 PRETRAM, Université Paris Descartes, Sorbonne Paris Cité, France
| | - C Vicente
- Laboratoire de Biologie de la Nutrition, EA 4466 PRETRAM, Université Paris Descartes, Sorbonne Paris Cité, France
| | - E Nubret
- Laboratoire de Biologie de la Nutrition, EA 4466 PRETRAM, Université Paris Descartes, Sorbonne Paris Cité, France
| | - S Le Plenier
- Laboratoire de Biologie de la Nutrition, EA 4466 PRETRAM, Université Paris Descartes, Sorbonne Paris Cité, France
| | - J P De Bandt
- Laboratoire de Biologie de la Nutrition, EA 4466 PRETRAM, Université Paris Descartes, Sorbonne Paris Cité, France; Service de Biochimie, Hôpital Cochin, HUPC, AP-HP, Paris, France
| | - L Cynober
- Laboratoire de Biologie de la Nutrition, EA 4466 PRETRAM, Université Paris Descartes, Sorbonne Paris Cité, France; Service de Biochimie, Hôpital Cochin, HUPC, AP-HP, Paris, France.
| |
Collapse
|
22
|
Alabarse PV, Lora PS, Silva JM, Santo RC, Freitas EC, de Oliveira MS, Almeida AS, Immig M, Teixeira VO, Filippin LI, Xavier RM. Collagen-induced arthritis as an animal model of rheumatoid cachexia. J Cachexia Sarcopenia Muscle 2018; 9:603-612. [PMID: 29575818 PMCID: PMC5989855 DOI: 10.1002/jcsm.12280] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/21/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis is characterized by chronic polyarticular synovitis and presents systemic changes that impact quality of life, such as impaired muscle function, seen in up to 66% of the patients. This can progress to severely debilitating state known as rheumatoid cachexia-without loss of fat mass and body weight-for which there is little consensus in terms of diagnosis or treatment. This study aims to evaluate whether the collagen-induced arthritis (CIA) animal model also develops clinical and functional features characteristic of rheumatoid cachexia. METHODS Male DBA1/J mice were randomly divided into 2 groups: healthy animals (CO, n = 11) and CIA animals (n = 13). The clinical score and edema size, animal weight and food intake, free exploratory locomotion, grip strength, and endurance exercise performance were tested 0, 18, 35, 45, 55, and 65 days after disease induction. After euthanasia, several organs, visceral and brown fat, and muscles were dissected and weighed. Muscles were used to assess myofiber diameter. Ankle joint was used to assess arthritis severity by histological score. Statistical analysis were performed using one-way and two-way analyses of variance followed by Tukey's and Bonferroni's test or t-test of Pearson and statistical difference were assumed for a P value under 0.05. RESULTS The CIA had significantly higher arthritis scores and larger hind paw edema volumes than CO. The CIA had decreased endurance exercise performance total time (fatigue; 23, 22, 24, and 21% at 35, 45, 55, and 65 days, respectively), grip strength (27, 55, 63, 60, and 66% at 25, 35, 45, 55, and 65 days, respectively), free locomotion (43, 57, 59, and 66% at 35, 45, 55, and 65 days, respectively), and tibialis anterior and gastrocnemius muscle weight (25 and 24%, respectively) compared with CO. Sarcoplasmic ratios were also reduced in CIA (TA: 23 and GA: 22% less sarcoplasmic ratio), confirming the atrophy of skeletal muscle mass in these animals than in CO. Myofiber diameter was also reduced 45% in TA and 41% in GA in CIA when compared with the CO. Visceral and brown fat were lighter in CIA (54 and 39%, respectively) than CO group. CONCLUSIONS The CIA model is a valid experimental model for rheumatoid cachexia given that the clinical changes observed were similar to those described in patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Paulo V.G. Alabarse
- Laboratório de Doenças AutoimunesHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Faculdade de MedicinaUniversidade Federal do Rio Grande do Sul, R. Ramiro Barcelos, 2350Porto Alegre90035‐003Brazil
| | - Priscila S. Lora
- Laboratório de Doenças AutoimunesHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Universidade do Vale do Rio dos SinosSão LeopoldoBrazil
| | - Jordana M.S. Silva
- Laboratório de Doenças AutoimunesHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Faculdade de MedicinaUniversidade Federal do Rio Grande do Sul, R. Ramiro Barcelos, 2350Porto Alegre90035‐003Brazil
| | - Rafaela C.E. Santo
- Laboratório de Doenças AutoimunesHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Faculdade de MedicinaUniversidade Federal do Rio Grande do Sul, R. Ramiro Barcelos, 2350Porto Alegre90035‐003Brazil
| | - Eduarda C. Freitas
- Laboratório de Doenças AutoimunesHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Faculdade de MedicinaUniversidade Federal do Rio Grande do Sul, R. Ramiro Barcelos, 2350Porto Alegre90035‐003Brazil
| | - Mayara S. de Oliveira
- Laboratório de Doenças AutoimunesHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Faculdade de MedicinaUniversidade Federal do Rio Grande do Sul, R. Ramiro Barcelos, 2350Porto Alegre90035‐003Brazil
| | - Andrelise S. Almeida
- Laboratório de Doenças AutoimunesHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Faculdade de BiomedicinaUniversidade do Vale do Rio dos SinosSão LeopoldoBrazil
| | - Mônica Immig
- Laboratório de Doenças AutoimunesHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Faculdade de BiomedicinaUniversidade do Vale do Rio dos SinosSão LeopoldoBrazil
| | - Vivian O.N. Teixeira
- Laboratório de Doenças AutoimunesHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Faculdade de MedicinaUniversidade Federal do Rio Grande do Sul, R. Ramiro Barcelos, 2350Porto Alegre90035‐003Brazil
| | - Lidiane I. Filippin
- Laboratório de Doenças AutoimunesHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Universidade La SalleCanoasBrazil
| | - Ricardo M. Xavier
- Laboratório de Doenças AutoimunesHospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Faculdade de MedicinaUniversidade Federal do Rio Grande do Sul, R. Ramiro Barcelos, 2350Porto Alegre90035‐003Brazil
| |
Collapse
|
23
|
Song M, Xia L, Liu Q, Sun M, Wang F, Yang C. Sarcopenia in Liver Disease: Current Evidence and Issues to Be sResolved. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:413-433. [PMID: 30390263 DOI: 10.1007/978-981-13-1435-3_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcopenia is a common clinical symptom in aging and patients with wasting diseases, characterized by a decreased skeletal muscle mass. As a consequence of lifestyle change, the nonalcoholic fatty liver disease (NAFLD) presents a rising trend. In the past three decades, increasing evidence has proved that sarcopenia is related to NAFLD. In this chapter, we will summarize the emerging evidence of the predictive role of sarcopenia in NAFLD and review the diagnosis value, feasible mechanism, and therapy strategies of sarcopenia in NAFLD. Sarcopenia is a potential risk factor for NAFLD, and targeting sarcopenia can benefit NAFLD to some extent.
Collapse
Affiliation(s)
- Meiyi Song
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Xia
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Liu
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengxue Sun
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in locomotor and respiratory muscles during experimental sepsis in mice. Sci Rep 2017; 7:10866. [PMID: 28883493 PMCID: PMC5589872 DOI: 10.1038/s41598-017-11440-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/24/2017] [Indexed: 11/17/2022] Open
Abstract
Sepsis induced loss of muscle mass and function contributes to promote physical inactivity and disability in patients. In this experimental study, mice were sacrificed 1, 4, or 7 days after cecal ligation and puncture (CLP) or sham surgery. When compared with diaphragm, locomotor muscles were more prone to sepsis-induced muscle mass loss. This could be attributed to a greater activation of ubiquitin-proteasome system and an increased myostatin expression. Thus, this study strongly suggests that the contractile activity pattern of diaphragm muscle confers resistance to atrophy compared to the locomotor gastrocnemius muscle. These data also suggest that a strategy aimed at preventing the activation of catabolic pathways and preserving spontaneous activity would be of interest for the treatment of patients with sepsis-induced neuromyopathy.
Collapse
|
25
|
Gortan Cappellari G, Semolic A, Ruozi G, Vinci P, Guarnieri G, Bortolotti F, Barbetta D, Zanetti M, Giacca M, Barazzoni R. Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease. FASEB J 2017; 31:5159-5171. [PMID: 28778977 DOI: 10.1096/fj.201700126r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022]
Abstract
Unacylated ghrelin (UnAG) may lower skeletal muscle oxidative stress, inflammation, and insulin resistance in lean and obese rodents. UnAG-induced autophagy activation may contribute to these effects, likely involving removal of dysfunctional mitochondria (mitophagy) and redox state maintenance. In chronic kidney disease (CKD) oxidative stress, inflammation and insulin resistance may negatively influence patient outcome by worsening nutritional state through muscle mass loss. Here we show in a 5/6 nephrectomy (Nx) CKD rat model that 4 d s.c. UnAG administration (200 µg twice a day) normalizes CKD-induced loss of gastrocnemius muscle mass and a cluster of high tissue mitochondrial reactive oxygen species generation, high proinflammatory cytokines, and low insulin signaling activation. Consistent with these results, human uremic serum enhanced mitochondrial reactive oxygen species generation and lowered insulin signaling activation in C2C12 myotubes while concomitant UnAG incubation completely prevented these effects. Importantly, UnAG enhanced muscle mitophagy in vivo and silencing RNA-mediated autophagy protein 5 silencing blocked UnAG activities in myotubes. UnAG therefore normalizes CKD-induced skeletal muscle oxidative stress, inflammation, and low insulin signaling as well as muscle loss. UnAG effects are mediated by autophagy activation at the mitochondrial level. UnAG administration and mitophagy activation are novel potential therapeutic strategies for skeletal muscle metabolic abnormalities and their negative clinical impact in CKD.-Gortan Cappellari, G., Semolic, A., Ruozi, G., Vinci, P., Guarnieri, G., Bortolotti, F., Barbetta, D., Zanetti, M., Giacca, M., Barazzoni, R. Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease.
Collapse
Affiliation(s)
| | - Annamaria Semolic
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulia Ruozi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Pierandrea Vinci
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Gianfranco Guarnieri
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Francesca Bortolotti
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Michela Zanetti
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Rocco Barazzoni
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy;
| |
Collapse
|
26
|
Ozkok E, Yorulmaz H, Ates G, Aksu A, Balkis N, Şahin Ö, Tamer S. Amelioration of energy metabolism by melatonin in skeletal muscle of rats with LPS induced endotoxemia. Physiol Res 2017; 65:833-842. [PMID: 27875899 DOI: 10.33549/physiolres.933282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In the literature, few studies have investigated the effects of melatonin on energy metabolism in skeletal muscle in endotoxemia. We investigated the effects of melatonin on tissue structure, energy metabolism in skeletal muscle, and antioxidant level of rats with endotoxemia. We divided rats into 4 groups, control, lipopolysaccharide (LPS) (20 mg/kg, i.p., single dose), melatonin (10 mg/kg, i.p., three times), and melatonin + LPS. Melatonin was injected i.p. 30 min before and after the 2nd and 4th hours of LPS injection. Antioxidant status was determined by glutathione (GSH) measurement in the blood. Muscle tissue was stained using modified Gomori trichrome (MGT), succinic dehydrogenase (SDH), and cytochrome oxidase (COX) and histological scored. Also the sections were then stained with hematoxylin and eosin. The stained sections were visualized and photographed. Creatine, creatine phosphate, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) levels were investigated using high performance liquid chromatography (HPLC) in muscle tissue. In the Melatonin + LPS group, blood GSH levels were increased compared with the LPS group (P<0.01). Melatonin reduced myopathic changes in the LPS group according to the histopathologic findings. In addition, ATP values were increased compared with the LPS group (P<0.05). Our findings showed melatonin treatment prevented muscle damage by increasing ATP and GSH levels in rats with LPS induced endotoxemia.
Collapse
Affiliation(s)
- E Ozkok
- Istanbul University, Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
27
|
Bonetto A, Rupert JE, Barreto R, Zimmers TA. The Colon-26 Carcinoma Tumor-bearing Mouse as a Model for the Study of Cancer Cachexia. J Vis Exp 2016. [PMID: 27929469 DOI: 10.3791/54893] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer cachexia is the progressive loss of skeletal muscle mass and adipose tissue, negative nitrogen balance, anorexia, fatigue, inflammation, and activation of lipolysis and proteolysis systems. Cancer patients with cachexia benefit less from anti-neoplastic therapies and show increased mortality1. Several animal models have been established in order to investigate the molecular causes responsible for body and muscle wasting as a result of tumor growth. Here, we describe methodologies pertaining to a well-characterized model of cancer cachexia: mice bearing the C26 carcinoma2-4. Although this model is heavily used in cachexia research, different approaches make reproducibility a potential issue. The growth of the C26 tumor causes a marked and progressive loss of body and skeletal muscle mass, accompanied by reduced muscle cross-sectional area and muscle strength3-5. Adipose tissue is also lost. Wasting is coincident with elevated circulating levels of pro-inflammatory cytokines, particularly Interleukin-6 (IL-6)3, which is directly, although not entirely, responsible for C26 cachexia. It is well-accepted that a primary mechanism by which the C26 tumor induces muscle tissue depletion is the activation of skeletal muscle proteolytic systems. Thus, expression of muscle-specific ubiquitin ligases, such as atrogin-1/MAFbx and MuRF-1, represent an accepted method for the evaluation of the ongoing muscle catabolism2. Here, we present how to execute this model in a reproducible manner and how to excise several tissues and organs (the liver, spleen, and heart), as well as fat and skeletal muscles (the gastrocnemius, tibialis anterior, and quadriceps). We also provide useful protocols that describe how to perform muscle freezing, sectioning, and fiber size quantification.
Collapse
Affiliation(s)
- Andrea Bonetto
- Department of Surgery, Simon Cancer Center and IUPUI Center for Cachexia Research, Innovation and Therapy, Indiana University School of Medicine
| | - Joseph E Rupert
- Department of Surgery, Simon Cancer Center and IUPUI Center for Cachexia Research, Innovation and Therapy, Indiana University School of Medicine
| | - Rafael Barreto
- Department of Surgery, Simon Cancer Center and IUPUI Center for Cachexia Research, Innovation and Therapy, Indiana University School of Medicine
| | - Teresa A Zimmers
- Department of Surgery, Simon Cancer Center and IUPUI Center for Cachexia Research, Innovation and Therapy, Indiana University School of Medicine;
| |
Collapse
|
28
|
Kitajima Y, Ono Y. Estrogens maintain skeletal muscle and satellite cell functions. J Endocrinol 2016; 229:267-75. [PMID: 27048232 DOI: 10.1530/joe-15-0476] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 12/25/2022]
Abstract
Estrogens have crucial roles in an extensive range of physiological functions regulating cellular proliferation and differentiation, development, homeostasis, and metabolism. Therefore, prolonged estrogen insufficiency influences various types of tissues expressing estrogen receptors (ERs). Although ERs are expressed in skeletal muscle and its stem cells, called satellite cells, how prolonged estrogen insufficiency affects their function remains unclear. In this study, we investigated the effect of estrogen reduction on muscle in young ovariectomized (OVX) female mice. We found that reduced estrogens resulted in muscle atrophy in a time-dependent manner. Muscle force generation was reduced in OVX mice. Interestingly, prolonged estrogen insufficiency shifted fiber types toward faster myosin heavy chain isoforms. The number of satellite cells per isolated myofiber was unchanged, while satellite cell expansion, differentiation, and self-renewal were all markedly impaired in OVX mice. Indeed, muscle regeneration was significantly compromised in OVX mice. Taken together, our results demonstrate that estrogens are essential for comprehensively maintaining muscle function with its insufficiency affecting muscle strength and regeneration in young female mice.
Collapse
Affiliation(s)
- Yuriko Kitajima
- Department of Stem Cell BiologyAtomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yusuke Ono
- Department of Stem Cell BiologyAtomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
29
|
Acevedo LM, López I, Peralta-Ramírez A, Pineda C, Chamizo VE, Rodríguez M, Aguilera-Tejero E, Rivero JLL. High-phosphorus diet maximizes and low-dose calcitriol attenuates skeletal muscle changes in long-term uremic rats. J Appl Physiol (1985) 2016; 120:1059-69. [PMID: 26869708 DOI: 10.1152/japplphysiol.00957.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/04/2016] [Indexed: 12/17/2022] Open
Abstract
Although disorders of mineral metabolism and skeletal muscle are common in chronic kidney disease (CKD), their potential relationship remains unexplored. Elevations in plasma phosphate, parathyroid hormone, and fibroblastic growth factor 23 together with decreased calcitriol levels are common features of CKD. High-phosphate intake is a major contributor to progression of CKD. This study was primarily aimed to determine the influence of high-phosphate intake on muscle and to investigate whether calcitriol supplementation counteracts negative skeletal muscle changes associated with long-term uremia. Proportions and metabolic and morphological features of myosin-based muscle fiber types were assessed in the slow-twitch soleus and the fast-twitch tibialis cranialis muscles of uremic rats (5/6 nephrectomy, Nx) and compared with sham-operated (So) controls. Three groups of Nx rats received either a standard diet (0.6% phosphorus, Nx-Sd), or a high-phosphorus diet (0.9% phosphorus, Nx-Pho), or a high-phosphorus diet plus calcitriol (10 ng/kg 3 day/wk ip, Nx-Pho + Cal) for 12 wk. Two groups of So rats received either a standard diet or a high-phosphorus diet (So-Pho) over the same period. A multivariate analysis encompassing all fiber-type characteristics indicated that Nx-Pho + Cal rats displayed skeletal muscle phenotypes intermediate between Nx-Pho and So-Pho rats and that uremia-induced skeletal muscle changes were of greater magnitude in Nx-Pho than in Nx-Sd rats. In uremic rats, treatment with calcitriol preserved fiber-type composition, cross-sectional size, myonuclear domain size, oxidative capacity, and capillarity of muscle fibers. These data demonstrate that a high-phosphorus diet potentiates and low-dose calcitriol attenuates adverse skeletal muscle changes in long-term uremic rats.
Collapse
Affiliation(s)
- Luz M Acevedo
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, Cordoba, Spain; Departamento de Ciencias Biomédicas, Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Venezuela; and
| | - Ignacio López
- Departament of Animal Medicine and Surgery, University of Cordoba, Cordoba, Spain
| | - Alan Peralta-Ramírez
- Departament of Animal Medicine and Surgery, University of Cordoba, Cordoba, Spain; Escuela de Medicina Veterinaria, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - Carmen Pineda
- Departament of Animal Medicine and Surgery, University of Cordoba, Cordoba, Spain
| | - Verónica E Chamizo
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, Cordoba, Spain
| | - Mariano Rodríguez
- Unidad de Investigación y Servicio de Nefrología (Ren in Ren), Instituto Sanitario de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | | | - José-Luis L Rivero
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, Cordoba, Spain;
| |
Collapse
|
30
|
Naylor RJ, Piercy RJ. Development of a clonal equine myoblast cell line capable of terminal differentiation into mature myotubes in vitro. Am J Vet Res 2016; 76:608-14. [PMID: 26111090 DOI: 10.2460/ajvr.76.7.608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To produce a clonal equine myoblast cell line that retains the ability to divide for multiple passages and differentiate into multinucleated myotubes during specific conditions. SAMPLE Cultured primary equine skeletal muscle-derived cells from a healthy Thoroughbred. PROCEDURES Cell cultures were transfected by electroporation with a plasmid (pNIT) that expresses the temperature-sensitive simian vacuolating virus 40 large T antigen (TAg), which can be controlled by a doxycycline-responsive promoter. Cells that stably integrated the TAg were selected and expanded to passage 25. For each passage, differentiation and fusion properties of the cells were determined and immunocytochemical analyses were performed to evaluate expression of TAg and other muscle-specific proteins. Optimum conditions that led to cell differentiation into myotubes were also determined. RESULTS Compared with nontransfected control cells, myogenic, desmin-positive cells expressed the TAg when incubated at 33°C and could be maintained in culture for numerous passages. Reduced expression of TAg was identified in cells incubated at 37°C or when incubated with doxycycline at 33°C. Expression of TAg was not detected when cells were incubated with doxycycline at 37°C, and when serum was withdrawn from the culture medium, those clones differentiated into a pure population of multinucleated myotubes. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that production of an immortalized clonal equine skeletal muscle cell line was possible. A clonal equine skeletal muscle cell line will be a valuable in vitro tool for use in equine physiology and disease research.
Collapse
|
31
|
Abstract
Electrically stimulated muscle contraction is a potential clinical therapy to treat sepsis-induced myopathy; however, whether sepsis alters contraction-induced anabolic signaling is unknown. Polymicrobial peritonitis was produced by cecal ligation and puncture (CLP) in male C57BL/6 mice and time-matched, pair-fed controls (CON). At ∼24 h post-CLP, the right hindlimb was electrically stimulated via the sciatic nerve to evoke maximal muscle contractions, and the gastrocnemius was collected 2 h later. Protein synthesis was increased by muscle contraction in CON mice. Sepsis suppressed the rate of synthesis in both the nonstimulated (31%) and stimulated (57%) muscle versus CON. Contraction of muscle in CON mice increased the phosphorylation of mTORC1 (mammalian target of rapamycin [mTOR] complex 1) substrates S6K1 (70-kd ribosomal protein S6 kinase 1) Thr (8-fold), S6K1 ThrSer (7-fold) and 4E-BP1 Ser (11-fold). Sepsis blunted the contraction-induced phosphorylation of S6K1 Thr (67%), S6K1 ThrSer (46%), and 4E-BP1 Ser (85%). Conversely, sepsis did not appear to modulate protein elongation as eEF2 Thr phosphorylation was decreased similarly by muscle contraction in both groups. Mitogen-activated protein kinase signaling was discordant following contraction in septic muscle; phosphorylation of extracellular signal-regulated kinase ThrTyr and p38 ThrTyr was increased similarly in both CON and CLP mice, while sepsis prevented the contraction-induced phosphorylation of JNK ThrTyr and c-JUN Ser. The expression of interleukin 6 and tumor necrosis factor α (TNF-α) mRNA in muscle was increased by sepsis, and contraction increased TNF-α to a greater extent in muscle from septic than CON mice. Injection of the mTOR inhibitor Torin2 in separate mice confirmed that contraction-induced increases in S6K1 and 4E-BP1 were mTOR mediated. These findings demonstrate that resistance to contraction-induced anabolic signaling occurs during sepsis and is predominantly mTORC1-dependent.
Collapse
|
32
|
Acevedo LM, Peralta-Ramírez A, López I, Chamizo VE, Pineda C, Rodríguez-Ortiz ME, Rodríguez M, Aguilera-Tejero E, Rivero JLL. Slow- and fast-twitch hindlimb skeletal muscle phenotypes 12 wk after ⅚ nephrectomy in Wistar rats of both sexes. Am J Physiol Renal Physiol 2015; 309:F638-47. [PMID: 26246512 DOI: 10.1152/ajprenal.00195.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/03/2015] [Indexed: 11/22/2022] Open
Abstract
This study describes fiber-type adaptations in hindlimb muscles, the interaction of sex, and the role of hypoxia on this response in 12-wk ⅚ nephrectomized rats (Nx). Contractile, metabolic, and morphological features of muscle fiber types were assessed in the slow-twitch soleus and the fast-twitch tibialis cranialis muscles of Nx rats, and compared with sham-operated controls. Rats of both sexes were considered in both groups. A slow-to-fast fiber-type transformation occurred in the tibialis cranialis of Nx rats, particularly in males. This adaptation was accomplished by impaired oxidative capacity and capillarity, increased glycolytic capacity, and no changes in size and nuclear density of muscle fiber types. An oxidative-to-glycolytic metabolic transformation was also found in the soleus muscle of Nx rats. However, a modest fast-to-slow fiber-type transformation, fiber hypertrophy, and nuclear proliferation were observed in soleus muscle fibers of male, but not of female, Nx rats. Serum testosterone levels decreased by 50% in male but not in female Nx rats. Hypoxia-inducible factor-1α protein level decreased by 42% in the tibialis cranialis muscle of male Nx rats. These data demonstrate that 12 wk of Nx induces a muscle-specific adaptive response in which myofibers do not change (or enlarge minimally) in size and nuclear density, but acquire markedly different contractile and metabolic characteristics, which are accompanied by capillary rarefaction. Muscle function and sex play relevant roles in these adaptations.
Collapse
Affiliation(s)
- Luz M Acevedo
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, Cordoba, Spain; Departamento de Ciencias Biomédicas, Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Venezuela
| | - Alan Peralta-Ramírez
- Departament of Animal Medicine and Surgery, University of Cordoba, Spain; Escuela de Medicina Veterinaria, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua; and
| | - Ignacio López
- Departament of Animal Medicine and Surgery, University of Cordoba, Spain
| | - Verónica E Chamizo
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, Cordoba, Spain
| | - Carmen Pineda
- Departament of Animal Medicine and Surgery, University of Cordoba, Spain
| | | | - Mariano Rodríguez
- Unidad de Investigación y Servicio de Nefrología (Red in Ren), Instituto Sanitario de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain
| | | | - José-Luis L Rivero
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, Cordoba, Spain;
| |
Collapse
|
33
|
Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, Larsson L. The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill. Physiol Rev 2015; 95:1025-109. [PMID: 26133937 PMCID: PMC4491544 DOI: 10.1152/physrev.00028.2014] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Critical illness polyneuropathies (CIP) and myopathies (CIM) are common complications of critical illness. Several weakness syndromes are summarized under the term intensive care unit-acquired weakness (ICUAW). We propose a classification of different ICUAW forms (CIM, CIP, sepsis-induced, steroid-denervation myopathy) and pathophysiological mechanisms from clinical and animal model data. Triggers include sepsis, mechanical ventilation, muscle unloading, steroid treatment, or denervation. Some ICUAW forms require stringent diagnostic features; CIM is marked by membrane hypoexcitability, severe atrophy, preferential myosin loss, ultrastructural alterations, and inadequate autophagy activation while myopathies in pure sepsis do not reproduce marked myosin loss. Reduced membrane excitability results from depolarization and ion channel dysfunction. Mitochondrial dysfunction contributes to energy-dependent processes. Ubiquitin proteasome and calpain activation trigger muscle proteolysis and atrophy while protein synthesis is impaired. Myosin loss is more pronounced than actin loss in CIM. Protein quality control is altered by inadequate autophagy. Ca(2+) dysregulation is present through altered Ca(2+) homeostasis. We highlight clinical hallmarks, trigger factors, and potential mechanisms from human studies and animal models that allow separation of risk factors that may trigger distinct mechanisms contributing to weakness. During critical illness, altered inflammatory (cytokines) and metabolic pathways deteriorate muscle function. ICUAW prevention/treatment is limited, e.g., tight glycemic control, delaying nutrition, and early mobilization. Future challenges include identification of primary/secondary events during the time course of critical illness, the interplay between membrane excitability, bioenergetic failure and differential proteolysis, and finding new therapeutic targets by help of tailored animal models.
Collapse
Affiliation(s)
- O Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - M B Reid
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - G Van den Berghe
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - I Vanhorebeek
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - G Hermans
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - M M Rich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | - L Larsson
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; College of Health and Human Performance, University of Florida, Gainesville, Florida; Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; and Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Brunnquell CR, Vieira NA, Sábio LR, Sczepanski F, Cecchini AL, Cecchini R, Guarnier FA. Oxidative and proteolysis-related parameters of skeletal muscle from hamsters with experimental pulmonary emphysema: a comparison between papain and elastase induction. Int J Exp Pathol 2015; 96:140-50. [PMID: 26102076 DOI: 10.1111/iep.12121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/22/2015] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to investigate whether emphysema induced by elastase or papain triggers the same effects on skeletal muscle, related to oxidative stress and proteolysis, in hamsters. For this purpose, we evaluated pulmonary lesions, body weight, muscle loss, oxidative stress (thiobarbituric acid-reactive substances, total and oxidized glutathiones, chemiluminescence stimulated by tert-butyl hydroperoxide and carbonyl proteins), chymotrypsin-like and calpain-like proteolytic activities and muscle fibre cross-sectional area in the gastrocnemius muscles of emphysemic hamsters. Two groups of animals received different intratracheal inductions of experimental emphysema: by 40 mg/ml papain (EP) or 5.2 IU/100 g animal (EE) elastase (n = 10 animals/group). The control group received intratracheal instillation of 300 μl sterile NaCl 0.9%. Compared with the control group, the EP group had reduced muscle weight (18.34%) and the EE group had increased muscle weight (8.37%). Additionally, tert-butyl hydroperoxide-initiated chemiluminescence, carbonylated proteins and chymotrypsin-like proteolytic activity were all elevated in the EP group compared to the CS group, while total glutathione was decreased compared to the EE group. The EE group showed more fibres with increased cross-sectional areas and increased calpain-like activity. Together, these data show that elastase and papain, when used to induce experimental models of emphysema, lead to different speeds and types of adaptation. These findings provide more information on choosing a suitable experimental model for studying skeletal muscle adaptations in emphysema.
Collapse
Affiliation(s)
- Cláudia R Brunnquell
- Laboratory of Pathophysiology and Free Radicals, Department of General Pathology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Nichelle A Vieira
- Laboratory of Pathophysiology of Muscle Adaptations, Department of General Pathology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Laís R Sábio
- Laboratory of Pathophysiology of Muscle Adaptations, Department of General Pathology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Felipe Sczepanski
- Intermunicipal Health Consortium of Pioneer North, Jacarezinho, Brazil
| | - Alessandra L Cecchini
- Laboratory of Molecular Pathology, Department of General Pathology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Rubens Cecchini
- Laboratory of Pathophysiology and Free Radicals, Department of General Pathology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Flávia A Guarnier
- Laboratory of Pathophysiology of Muscle Adaptations, Department of General Pathology, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
35
|
Wright CR, Brown EL, Della Gatta PA, Fatouros IG, Karagounis LG, Terzis G, Mastorakos G, Michailidis Y, Mandalidis D, Spengos K, Chatzinikolaou A, Methenitis S, Draganidis D, Jamurtas AZ, Russell AP. Regulation of Granulocyte Colony-Stimulating Factor and Its Receptor in Skeletal Muscle is Dependent Upon the Type of Inflammatory Stimulus. J Interferon Cytokine Res 2015; 35:710-9. [PMID: 26057332 DOI: 10.1089/jir.2014.0159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cytokine granulocyte colony-stimulating factor (G-CSF) binds to its receptor (G-CSFR) to stimulate hematopoietic stem cell mobilization, myelopoiesis, and the production and activation of neutrophils. In response to exercise-induced muscle damage, G-CSF is increased in circulation and G-CSFR has recently been identified in skeletal muscle cells. While G-CSF/G-CSFR activation mediates pro- and anti-inflammatory responses, our understanding of the role and regulation in the muscle is limited. The aim of this study was to investigate, in vitro and in vivo, the role and regulation of G-CSF and G-CSFR in skeletal muscle under conditions of muscle inflammation and damage. First, C2C12 myotubes were treated with lipopolysaccharide (LPS) with and without G-CSF to determine if G-CSF modulates the inflammatory response. Second, the regulation of G-CSF and its receptor was measured following eccentric exercise-induced muscle damage and the expression levels we investigated for redox sensitivity by administering the antioxidant N-acetylcysteine (NAC). LPS stimulation of C2C12 myotubes resulted in increases in G-CSF, interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNFα) messenger RNA (mRNA) and an increase in G-CSF, IL-6, and MCP-1 release from C2C12 myotubes. The addition of G-CSF following LPS stimulation of C2C12 myotubes increased IL-6 mRNA and cytokine release into the media, however it did not affect MCP-1 or TNFα. Following eccentric exercise-induced muscle damage in humans, G-CSF levels were either marginally increased in circulation or remain unaltered in skeletal muscle. Similarly, G-CSFR levels remained unchanged in response to damaging exercise and G-CSF/G-CSFR did not change in response to NAC. Collectively, these findings suggest that G-CSF may cooperate with IL-6 and potentially promote muscle regeneration in vitro, whereas in vivo aseptic inflammation induced by exercise did not change G-CSF and G-CSFR responses. These observations suggest that different models of inflammation produce a different G-CSF response.
Collapse
Affiliation(s)
- Craig Robert Wright
- 1 Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University , Burwood, Victoria, Australia
| | - Erin Louise Brown
- 1 Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University , Burwood, Victoria, Australia
| | - Paul A Della Gatta
- 1 Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University , Burwood, Victoria, Australia
| | - Ioannis G Fatouros
- 2 Department of Physical Education and Sport Sciences, Democritus University of Thrace , Komotini, Greece
- 3 The Institute of Human Performance and Rehabilitation, Center for Research and Technology-Thessaly , Trikala, Greece
| | - Leonidas G Karagounis
- 4 Nestlé Research Center , Nestec Ltd., Lausanne, Switzerland
- 5 School of Physical Education and Sport Sciences, University of Thessaly , Karies, Trikala, Greece
| | - Gerasimos Terzis
- 6 Athletics Laboratory, School of Physical Education and Sports Science, University of Athens , Athens, Greece
| | - Georgios Mastorakos
- 7 Endocrine Unit, Second Department of Obstetrics and Gynecology, Athens University Medical School , Athens, Greece
| | - Yannis Michailidis
- 2 Department of Physical Education and Sport Sciences, Democritus University of Thrace , Komotini, Greece
| | - Dimitris Mandalidis
- 6 Athletics Laboratory, School of Physical Education and Sports Science, University of Athens , Athens, Greece
| | - Kontantinos Spengos
- 8 The 1st Department of Neurology, University of Athens , School of Medicine, Eginition Hospital, Athens, Greece
| | - Athanasios Chatzinikolaou
- 2 Department of Physical Education and Sport Sciences, Democritus University of Thrace , Komotini, Greece
| | - Spiros Methenitis
- 6 Athletics Laboratory, School of Physical Education and Sports Science, University of Athens , Athens, Greece
| | - Dimitrios Draganidis
- 2 Department of Physical Education and Sport Sciences, Democritus University of Thrace , Komotini, Greece
| | - Athanasios Z Jamurtas
- 3 The Institute of Human Performance and Rehabilitation, Center for Research and Technology-Thessaly , Trikala, Greece
- 5 School of Physical Education and Sport Sciences, University of Thessaly , Karies, Trikala, Greece
| | - Aaron Paul Russell
- 1 Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University , Burwood, Victoria, Australia
| |
Collapse
|
36
|
NOH KYUNGKYUN, CHUNG KIWUNG, SUNG BOKYUNG, KIM MINJO, PARK CHANHUM, YOON CHANGSHIN, CHOI JAESUE, KIM MIKYUNG, KIM CHEOLMIN, KIM NAMDEUK, CHUNG HAEYOUNG. Loquat (Eriobotrya japonica) extract prevents dexamethasone-induced muscle atrophy by inhibiting the muscle degradation pathway in Sprague Dawley rats. Mol Med Rep 2015; 12:3607-3614. [DOI: 10.3892/mmr.2015.3821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 05/08/2015] [Indexed: 11/06/2022] Open
|
37
|
Fjällström AK, Norrby M, Tågerud S. Expression and phosphorylation of eukaryotic translation initiation factor 4-gamma (eIF4G) in denervated atrophic and hypertrophic mouse skeletal muscle. Cell Biol Int 2015; 39:496-501. [PMID: 25623635 DOI: 10.1002/cbin.10402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/30/2014] [Indexed: 11/10/2022]
Abstract
The eukaryotic translation initiation factor 4-gamma (eIF4G) is important for the initiation of protein synthesis and phosphorylation on S1108 regulates this function of eIF4G. Thus, increased phosphorylation has been reported in conditions associated with increased protein synthesis such as meal feeding and insulin/IGF-1 treatment whereas decreased phosphorylation occurs following starvation, dexamethasone treatment, in sepsis and in atrophic denervated hind-limb muscle. The aim of the present study was to test the hypothesis that S1108 phosphorylation of eIF4G is differentially affected in denervated atrophic hind-limb muscles and denervated hypertrophic hemidiaphragm muscle. Protein expression and phosphorylation in innervated and 6-days denervated atrophic hind-limb muscles (pooled gastrocnemius and soleus) and hypertrophic hemidiaphragms were studied semi-quantitatively using Western blots. Total expression of eIF4G did not change in denervated hind-limb muscles but increased about 77% in denervated hemidiaphragm. S1108 phosphorylated eIF4G decreased about 64% in denervated hind-limb muscles but increased about 1.3-fold in denervated hemidiaphragm. The ratio of S1108 phosphorylated eIF4G to total eIF4G decreased about 60% in denervated hind-limb muscles but no statistically significant change was observed in denervated hemidiaphragm. The differential effect of denervation on eIF4G expression and S1108 phosphorylation in hemidiaphragm (hypertrophic) and hind-limb muscle (atrophic) may represent a regulatory mechanism that helps clarify the differential response of these muscles following denervation.
Collapse
Affiliation(s)
- Ann-Kristin Fjällström
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82, Kalmar, Sweden
| | | | | |
Collapse
|
38
|
Role of inflammation in the aging bones. Life Sci 2014; 123:25-34. [PMID: 25510309 DOI: 10.1016/j.lfs.2014.11.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 12/15/2022]
Abstract
Chronic inflammation in aging is characterized by increased inflammatory cytokines, bone loss, decreased adaptation, and defective tissue repair in response to injury. Aging leads to inherent changes in mesenchymal stem cell (MSC) differentiation, resulting in impaired osteoblastogenesis. Also, the pro-inflammatory cytokines increase with aging, leading to enhanced myelopoiesis and osteoclastogenesis. Bone marrow macrophages (BMMs) play pivotal roles in osteoblast differentiation, the maintenance of hematopoietic stem cells (HSCs), and subsequent bone repair. However, during aging, little is known about the role of macrophages in the differentiation and function of MSC and HSC. Aged mammals have higher circulating pro-inflammatory cytokines than young adults, supporting the hypothesis of increased inflammation with aging. This review will aid in the understanding of the potential role(s) of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in differentiation and function of osteoblasts and osteoclasts in relation to aging.
Collapse
|
39
|
Duan K, Yu W, Lin Z, Tan S, Bai X, Gao T, Xi F, Li N. Endotoxemia-induced muscle wasting is associated with the change of hypothalamic neuropeptides in rats. Neuropeptides 2014; 48:379-86. [PMID: 25459520 DOI: 10.1016/j.npep.2014.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 11/21/2022]
Abstract
In critical patients, sepsis-induced muscle wasting is considered to be an important contributor to complications and mortality. Previous work mainly focuses on the peripheral molecular mechanism of muscle degradation, however little evidence exists for the role of central nervous system in the process. In the present study, we, for the first time, characterized the relationship between muscle wasting and central neuropeptide changes in a septic model. Thirty-six adult male Sprague-Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) or saline. Twelve, 24 and 48 hrs after injection, skeletal muscle and hypothalamus tissues were harvested. Muscle wasting was measured by the mRNA expression of two E3 ubiquitin ligases, muscle ring finger 1 (MuRF-1) and muscle atrophy F-box (MAFbx), as well as 3-methyl-histidine (3-MH) and tyrosine release. Hypothalamic neuropeptides and inflammatory marker expressions were also measured in three time points. LPS injection caused an increase expression of MuRF-1 and MAFbx, and a significant higher release of 3-MH and tyrosine. Hypothalamic neuropeptides, proopiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), agouti-related protein (AgRP) and neuropeptide Y (NPY) presented a dynamic change after LPS injection. Also, hypothalamic inflammatory markers, interleukin-1 β (IL-1β) and tumor necrosis factor α (TNF-α) increased substantially after LPS administration. Importantly, the expressions of POMC, AgRP and CART were well correlated with muscle atrophy gene, MuRF-1 expression. These findings suggest hypothalamic peptides and inflammation may participate in the sepsis-induced muscle wasting, but the exact mechanism needs further study.
Collapse
Affiliation(s)
- Kaipeng Duan
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Wenkui Yu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Zhiliang Lin
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Shanjun Tan
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiaowu Bai
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Tao Gao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Fengchan Xi
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Ning Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| |
Collapse
|
40
|
de Souza CO, Kurauti MA, de Fatima Silva F, de Morais H, Borba-Murad GR, de Andrade FG, de Souza HM. Effects of celecoxib and ibuprofen on metabolic disorders induced by Walker-256 tumor in rats. Mol Cell Biochem 2014; 399:237-46. [PMID: 25359170 DOI: 10.1007/s11010-014-2250-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
The contribution of anti-inflammatory property of celecoxib in the improvement of metabolic disorders in cancer is unknown. The purpose of this study was to compare the effects of celecoxib and ibuprofen, non-steroidal anti-inflammatory drugs (NSAIDs), on several metabolic changes observed in Walker-256 tumor-bearing rats. The effects of these NSAIDs on the tumor growth were also assessed. Celecoxib or ibuprofen (both at 25 mg/Kg) was administered orally for 12 days, beginning on the day the rats were inoculated with Walker-256 tumor cells. Celecoxib treatment prevented the losses in body mass and mass of retroperitoneal adipose tissue, gastrocnemius, and extensor digitorum longus muscles in tumor-bearing rats. Celecoxib also prevented the rise in blood levels of triacylglycerol, urea, and lactate, the inhibition of peripheral response to insulin and hepatic glycolysis, and tended to attenuate the decrease in the food intake, but had no effect on the reduction of glycemia induced by the tumor. In addition, celecoxib treatment increased the number of Walker-256 cells with signs of apoptosis and the tumor necrosis area and prevented the tumor growth. In contrast, ibuprofen treatment had no effect on metabolic parameters affected by the Walker-256 tumor or tumor growth. It can be concluded that celecoxib, unlike ibuprofen, ameliorated several metabolic changes in rats with Walker-256 tumor due to its anti-tumor effect and not its anti-inflammatory property.
Collapse
Affiliation(s)
- Camila Oliveira de Souza
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, 86051-990, Brazil
| | | | | | | | | | | | | |
Collapse
|
41
|
The kinin B1 receptor regulates muscle-specific E3 ligases expression and is involved in skeletal muscle mass control. Clin Sci (Lond) 2014; 127:185-94. [PMID: 24498923 DOI: 10.1042/cs20130358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Regulation of muscle mass depends on the balance between synthesis and degradation of proteins, which is under the control of different signalling pathways regulated by hormonal, neural and nutritional stimuli. Such stimuli are altered in several pathologies, including COPD (chronic obstructive pulmonary disease), diabetes, AIDS and cancer (cachexia), as well as in some conditions such as immobilization and aging (sarcopenia), leading to muscle atrophy, which represents a significant contribution to patient morbidity. The KKS (kallikrein-kinin system) is composed of the enzymes kallikreins, which generate active peptides called kinins that activate two G-protein-coupled receptors, namely B1 and B2, which are expressed in a variety of tissues. The local modulation of the KKS may account for its participation in different diseases, such as those of the cardiovascular, renal and central nervous systems, cancer and many inflammatory processes, including pain. Owing to such pleiotropic actions of the KKS by local modulatory events and the probable fine-tuning of associated signalling cascades involved in skeletal muscle catabolic disorders [for example, NF-κB (nuclear factor κB) and PI3K (phosphoinositide 3-kinase)/Akt pathways], we hypothesized that KKS might contribute to the modulation of intracellular responses in atrophying skeletal muscle. Our results show that kinin B1 receptor activation induced a decrease in the diameter of C2C12 myotubes, activation of NF-κB, a decrease in Akt phosphorylation levels, and an increase in the mRNA levels of the ubiquitin E3 ligases atrogin-1 and MuRF-1 (muscle RING-finger protein-1). In vivo, we observed an increase in kinin B1 receptor mRNA levels in an androgen-sensitive model of muscle atrophy. In the same model, inhibition of the kinin B1 receptor with a selective antagonist resulted in an impairment of atrogin-1 and MuRF-1 expression and IκB (inhibitor of NF-κB) phosphorylation. Moreover, knockout of the kinin B1 receptor in mice led to an impairment in MuRF-1 mRNA expression after induction of LA (levator ani) muscle atrophy. In conclusion, using pharmacological and gene-ablation tools, we have obtained evidence that the kinin B1 receptor plays a significant role in the regulation of skeletal muscle proteolysis in the LA muscle atrophy model.
Collapse
|
42
|
Holecek M, Sispera L, Skalska H. Enhanced Glutamine Availability Exerts Different Effects on Protein and Amino Acid Metabolism in Skeletal Muscle From Healthy and Septic Rats. JPEN J Parenter Enteral Nutr 2014; 39:847-54. [DOI: 10.1177/0148607114537832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Milan Holecek
- Department of Physiology, Charles University Prague, Faculty of Medicine Hradec Kralove, Czech Republic
| | - Ludek Sispera
- Department of Physiology, Charles University Prague, Faculty of Medicine Hradec Kralove, Czech Republic
| | - Hana Skalska
- Department of Informatics and Quantitative Methods, Faculty of Informatics and Management, University Hradec Kralove, Czech Republic
| |
Collapse
|
43
|
Current World Literature. Curr Opin Support Palliat Care 2012; 6:543-52. [DOI: 10.1097/spc.0b013e32835ad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Heimburger O, Stenvinkel P, Barany P. The enigma of decreased creatinine generation in acute kidney injury. Nephrol Dial Transplant 2012; 27:3973-4. [DOI: 10.1093/ndt/gfs459] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|