1
|
Roseti L, Cavallo C, Desando G, D’Alessandro M, Grigolo B. Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side. Pharmaceutics 2024; 16:1622. [PMID: 39771600 PMCID: PMC11677864 DOI: 10.3390/pharmaceutics16121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair. Objectives: This review aims to outline biological and clinical advances, from the use of mature adult chondrocytes to cell-derived products, going through progenitor cells derived from bone marrow or adipose tissue and their concentrates for articular cartilage repair. Moreover, it highlights the relevance of gene therapy as a valuable tool for successfully implementing current regenerative treatments, and overcoming the limitations of the local delivery of growth factors. Conclusions: Finally, this review concludes with an outlook on the importance of understanding the role and mechanisms of action of the different cell compounds with a view to implementing personalized treatments.
Collapse
Affiliation(s)
| | - Carola Cavallo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; (L.R.); (G.D.); (M.D.); (B.G.)
| | | | | | | |
Collapse
|
2
|
Sadeghirad B, Rehman Y, Khosravirad A, Sofi-Mahmudi A, Zandieh S, Jomy J, Patel M, Couban RJ, Momenilandi F, Burnham R, Poolman RW, Busse JW. Mesenchymal stem cells for chronic knee pain secondary to osteoarthritis: A systematic review and meta-analysis of randomized trials. Osteoarthritis Cartilage 2024; 32:1207-1219. [PMID: 38777213 DOI: 10.1016/j.joca.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE To assess the effectiveness of mesenchymal stem cells (MSCs) for chronic knee pain secondary to osteoarthritis (OA). METHODS We searched MEDLINE, EMBASE, CINAHL, and Cochrane Central to September 2023 for trials that (1) enrolled patients with chronic pain associated with knee OA, and (2) randomized them to MSC therapy vs. placebo or usual care. We performed random-effects meta-analysis and used Grading of Recommendations, Assessment, Development, and Evaluation to assess the certainty of evidence. RESULTS We included 16 trials (807 participants). At 3-6 months, MSC therapy probably results in little to no difference in pain relief (weighted mean difference [WMD] -0.74 cm on a 10 cm visual analog scale [VAS], 95% confidence interval [95%CI] -1.16 to -0.33; minimally important difference [MID] 1.5 cm) or physical functioning (WMD 2.23 points on 100-point 36-item Short Form Survey (SF-36) physical functioning subscale, 95%CI -0.97 to 5.43; MID 10-points; both moderate certainty). At 12 months, injection of MSCs probably results in little to no difference in pain (WMD -0.73 cm on a 10 cm VAS, 95%CI -1.69 to 0.24; moderate certainty) and may improve physical functioning (WMD 19.36 points on 100-point SF-36 PF subscale, 95%CI -0.19 to 38.9; low certainty). MSC therapy may increase risk of any adverse events (risk ratio [RR] 2.67, 95%CI 1.19 to 5.99; low certainty) and pain and swelling of the knee joint (RR 1.58, 95%CI 1.04 to 2.38; low certainty). CONCLUSIONS Intra-articular injection of MSCs for chronic knee pain associated with OA probably provides little to no improvement in pain or physical function.
Collapse
Affiliation(s)
- Behnam Sadeghirad
- Michael G. DeGroote National Pain Centre, McMaster University, Hamilton, Ontario, Canada; Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Yasir Rehman
- Michael G. DeGroote National Pain Centre, McMaster University, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Azin Khosravirad
- Michael G. DeGroote National Pain Centre, McMaster University, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Ahmad Sofi-Mahmudi
- Michael G. DeGroote National Pain Centre, McMaster University, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Sara Zandieh
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Jane Jomy
- Michael G. DeGroote National Pain Centre, McMaster University, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Mansi Patel
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Rachel J Couban
- Michael G. DeGroote National Pain Centre, McMaster University, Hamilton, Ontario, Canada; Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
| | - Feryal Momenilandi
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Velenjak, Tehran, Iran
| | - Robert Burnham
- Division of Physical Medicine and Rehabilitation, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rudolf W Poolman
- Department of Orthopedic Surgery, Onze Lieve Vrouwe Gasthuis, Amsterdam, North Holland, The Netherlands
| | - Jason W Busse
- Michael G. DeGroote National Pain Centre, McMaster University, Hamilton, Ontario, Canada; Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Iwanaga J, Samrid R, Shelvin KB, Cardona JJ, Kikuchi K, Chaiyamoon A, Suwannakhan A, Tubbs RS. Revisiting morphology of xiphoid process of the sternum in human: a comprehensive anatomical study. Surg Radiol Anat 2024; 46:1687-1692. [PMID: 39172258 DOI: 10.1007/s00276-024-03463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND The xiphoid process (XP) in animals such as sheep and rats are well known to have cartilage called xiphoidal cartilage (XC). In humans, the cartilage in the xiphoid process is considered an anatomical variant and is not well understood. The aim of this study was to investigate the morphology of the XP. METHODS A total of twenty embalmed European descendant cadaveric sterna (aged 52 to 98 years) were used. Transilluminated XPs and midsagittal sections of XPs were used to examine the bone and cartilage. Subsequently, a sagittally-sectioned XP was harvested for histology and stained with Masson's trichrome. The results of the transillumination and histological examinations were compared qualitatively. RESULTS The dark area visible in transilluminated XPs was consistent with the bony part in the midsagittal XP sections, which contained bone marrow; the bright area was consistent with the cartilage part in the midsagittal XP sections. This was all demonstrated histologically. Most of the XPs (85%) had some portion of cartilage. The XP was classified into four types based on its proportions of bone and cartilage: Type I, no ossification (< 1/3 ossification) 45%; Type II, minor ossification (1/3 - 1/2 ossification) 20%; Type III, major ossification (1/2-2/3 ossification) 20%; Type IV, complete ossification (> 2/3 ossification) 15%. Most of the XPs (85%) had bone and cartilage, which could have been overlooked in studies using skeletons or CT. CONCLUSION Previous studies probably underestimated or overestimated the size of the XP. The XC needs to be considered as normal anatomy.
Collapse
Affiliation(s)
- Joe Iwanaga
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, 131 S. Robertson St. Suite 1300, New Orleans, LA, 70112, USA.
- Department of Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, LA, USA.
- Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, Japan.
| | - Rarinthorn Samrid
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, 131 S. Robertson St. Suite 1300, New Orleans, LA, 70112, USA
- Department of Anatomy, Faculty of Medicine, KhonKaen University, KhonKaen, Thailand
| | - Kierany B Shelvin
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Juan J Cardona
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, 131 S. Robertson St. Suite 1300, New Orleans, LA, 70112, USA
| | - Keishiro Kikuchi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, 131 S. Robertson St. Suite 1300, New Orleans, LA, 70112, USA
- Division of Gross and Clinical Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, Japan
- Department of Orthopaedic Surgery, Kurume University School of Medicine, Fukuoka, Japan
| | - Arada Chaiyamoon
- Department of Anatomy, Faculty of Medicine, KhonKaen University, KhonKaen, Thailand
| | - Athikhun Suwannakhan
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - R Shane Tubbs
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, 131 S. Robertson St. Suite 1300, New Orleans, LA, 70112, USA
- Department of Neurology, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, LA, USA
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Anatomical Sciences, St. George's University, St. George's, Grenada
- University of Queensland, Brisbane, Australia
| |
Collapse
|
4
|
Epanomeritakis IE, Khan WS. Adipose-derived regenerative therapies for the treatment of knee osteoarthritis. World J Stem Cells 2024; 16:324-333. [PMID: 38690511 PMCID: PMC11056639 DOI: 10.4252/wjsc.v16.i4.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 04/25/2024] Open
Abstract
Knee osteoarthritis is a degenerative condition with a significant disease burden and no disease-modifying therapy. Definitive treatment ultimately requires joint replacement. Therapies capable of regenerating cartilage could significantly reduce financial and clinical costs. The regenerative potential of mesenchymal stromal cells (MSCs) has been extensively studied in the context of knee osteoarthritis. This has yielded promising results in human studies, and is likely a product of immunomodulatory and chondroprotective biomolecules produced by MSCs in response to inflammation. Adipose-derived MSCs (ASCs) are becoming increasingly popular owing to their relative ease of isolation and high proliferative capacity. Stromal vascular fraction (SVF) and micro-fragmented adipose tissue (MFAT) are produced by the enzymatic and mechanical disruption of adipose tissue, respectively. This avoids expansion of isolated ASCs ex vivo and their composition of heterogeneous cell populations, including immune cells, may potentiate the reparative function of ASCs. In this editorial, we comment on a multicenter randomized trial regarding the efficacy of MFAT in treating knee osteoarthritis. We discuss the study's findings in the context of emerging evidence regarding adipose-derived regenerative therapies. An underlying mechanism of action of ASCs is proposed while drawing important distinctions between the properties of isolated ASCs, SVF, and MFAT.
Collapse
Affiliation(s)
- Ilias E Epanomeritakis
- Division of Trauma and Orthopaedic Surgery, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Wasim S Khan
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
5
|
Mukherjee K, Dutta P, Badwaik HR, Giri TK. Gellan gum–based hydrogels. POLYSACCHARIDE HYDROGELS FOR DRUG DELIVERY AND REGENERATIVE MEDICINE 2024:109-128. [DOI: 10.1016/b978-0-323-95351-1.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Zhang Z, Mu Y, Zhou H, Yao H, Wang DA. Cartilage Tissue Engineering in Practice: Preclinical Trials, Clinical Applications, and Prospects. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:473-490. [PMID: 36964757 DOI: 10.1089/ten.teb.2022.0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Articular cartilage defects significantly compromise the quality of life in the global population. Although many strategies are needed to repair articular cartilage, including microfracture, autologous osteochondral transplantation, and osteochondral allograft, the therapeutic effects remain suboptimal. In recent years, with the development of cartilage tissue engineering, scientists have continuously improved the formulations of therapeutic cells, biomaterial-based scaffolds, and biological factors, which have opened new avenues for better therapeutics of cartilage lesions. This review focuses on advances in cartilage tissue engineering, particularly in preclinical trials and clinical applications, prospects, and challenges.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, P.R. China
| |
Collapse
|
7
|
Cao R, Chen B, Song K, Guo F, Pan H, Cao Y. Characterization and potential of periosteum-derived cells: an overview. Front Med (Lausanne) 2023; 10:1235992. [PMID: 37554503 PMCID: PMC10405467 DOI: 10.3389/fmed.2023.1235992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
As a thin fibrous layer covering the bone surface, the periosteum plays a significant role in bone physiology during growth, development and remodeling. Over the past several decades, the periosteum has received considerable scientific attention as a source of mesenchymal stem cells (MSCs). Periosteum-derived cells (PDCs) have emerged as a promising strategy for tissue engineering due to their chondrogenic, osteogenic and adipogenic differentiation capacities. Starting from the history of PDCs, the present review provides an overview of their characterization and the procedures used for their isolation. This study also summarizes the chondrogenic, osteogenic, and adipogenic abilities of PDCs, serving as a reference about their potential therapeutic applications in various clinical scenarios, with particular emphasis on the comparison with other common sources of MSCs. As techniques continue to develop, a comprehensive analysis of the characterization and regulation of PDCs can be conducted, further demonstrating their role in tissue engineering. PDCs present promising potentials in terms of their osteogenic, chondrogenic, and adipogenic capacities. Further studies should focus on exploring their utility under multiple clinical scenarios to confirm their comparative benefit over other commonly used sources of MSCs.
Collapse
Affiliation(s)
- Rongkai Cao
- Stomatological Hospital and Dental School of Tongji University, Shanghai, China
| | - Beibei Chen
- Stomatological Hospital and Dental School of Tongji University, Shanghai, China
| | - Kun Song
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fang Guo
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Haoxin Pan
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yujie Cao
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Muacevic A, Adler JR. Adult Stem Cells for Cartilage Regeneration. Cureus 2022; 14:e32280. [PMID: 36505953 PMCID: PMC9727652 DOI: 10.7759/cureus.32280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 12/12/2022] Open
Abstract
As cartilage is an avascular, aneural structure, it has very low capabilities of self-repair. Osteoarthritis prevalence is increasing, and there are no clinically approved management techniques that can cure the degradation of cartilage. This report investigates the efficacy of different sources of cells to generate articular cartilage. Autologous chondrocyte implantation has been used to some extent in clinics; however it has not generated efficient, reliable results, and there is no evidence of long-term success. The usage of stem cells is more promising, particularly mesenchymal stem cells (MSCs). Human embryonic stem cells (hESCs) have also been trialed; however, it is important to note that the process of differentiation into chondrocytes is not fully understood, and the cartilage produced can often be of poor quality. MSCs seems to be the way forward, and hESCs will perhaps need further study with the usage of MSC differentiation methodology.
Collapse
|
9
|
Schroers M, Schermuck Y, Steigmeier‐Raith S, Waselau A, Meyer‐Lindenberg A. Rapid autologous point‐of‐care transplantation of the adipose‐derived stromal vascular fraction in a dog with cubarthrosis. VETERINARY RECORD CASE REPORTS 2022. [DOI: 10.1002/vrc2.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maike Schroers
- Clinic for Small Animal Surgery and Reproduction, Veterinary Faculty Ludwig‐Maximilians‐Universität München Munich Germany
| | - Yyonne Schermuck
- Clinic for Small Animal Surgery and Reproduction, Veterinary Faculty Ludwig‐Maximilians‐Universität München Munich Germany
| | - Stephanie Steigmeier‐Raith
- Clinic for Small Animal Surgery and Reproduction, Veterinary Faculty Ludwig‐Maximilians‐Universität München Munich Germany
| | - Anja‐Christina Waselau
- Clinic for Small Animal Surgery and Reproduction, Veterinary Faculty Ludwig‐Maximilians‐Universität München Munich Germany
| | - Andrea Meyer‐Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Veterinary Faculty Ludwig‐Maximilians‐Universität München Munich Germany
| |
Collapse
|
10
|
Kahraman E, Ribeiro R, Lamghari M, Neto E. Cutting-Edge Technologies for Inflamed Joints on Chip: How Close Are We? Front Immunol 2022; 13:802440. [PMID: 35359987 PMCID: PMC8960235 DOI: 10.3389/fimmu.2022.802440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a painful and disabling musculoskeletal disorder, with a large impact on the global population, resulting in several limitations on daily activities. In OA, inflammation is frequent and mainly controlled through inflammatory cytokines released by immune cells. These outbalanced inflammatory cytokines cause cartilage extracellular matrix (ECM) degradation and possible growth of neuronal fibers into subchondral bone triggering pain. Even though pain is the major symptom of musculoskeletal diseases, there are still no effective treatments to counteract it and the mechanisms behind these pathologies are not fully understood. Thus, there is an urgent need to establish reliable models for assessing the molecular mechanisms and consequently new therapeutic targets. Models have been established to support this research field by providing reliable tools to replicate the joint tissue in vitro. Studies firstly started with simple 2D culture setups, followed by 3D culture focusing mainly on cell-cell interactions to mimic healthy and inflamed cartilage. Cellular approaches were improved by scaffold-based strategies to enhance cell-matrix interactions as well as contribute to developing mechanically more stable in vitro models. The progression of the cartilage tissue engineering would then profit from the integration of 3D bioprinting technologies as these provide 3D constructs with versatile structural arrangements of the 3D constructs. The upgrade of the available tools with dynamic conditions was then achieved using bioreactors and fluid systems. Finally, the organ-on-a-chip encloses all the state of the art on cartilage tissue engineering by incorporation of different microenvironments, cells and stimuli and pave the way to potentially simulate crucial biological, chemical, and mechanical features of arthritic joint. In this review, we describe the several available tools ranging from simple cartilage pellets to complex organ-on-a-chip platforms, including 3D tissue-engineered constructs and bioprinting tools. Moreover, we provide a fruitful discussion on the possible upgrades to enhance the in vitro systems making them more robust regarding the physiological and pathological modeling of the joint tissue/OA.
Collapse
Affiliation(s)
- Emine Kahraman
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, Porto, Portugal
| | - Ricardo Ribeiro
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Estrela Neto
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Epanomeritakis IE, Lee E, Lu V, Khan W. The Use of Autologous Chondrocyte and Mesenchymal Stem Cell Implants for the Treatment of Focal Chondral Defects in Human Knee Joints-A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms23074065. [PMID: 35409424 PMCID: PMC8999850 DOI: 10.3390/ijms23074065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 12/16/2022] Open
Abstract
Focal chondral defects of the knee occur commonly in the young, active population due to trauma. Damage can insidiously spread and lead to osteoarthritis with significant functional and socioeconomic consequences. Implants consisting of autologous chondrocytes or mesenchymal stem cells (MSC) seeded onto scaffolds have been suggested as promising therapies to restore these defects. However, the degree of integration between the implant and native cartilage still requires optimization. A PRISMA systematic review and meta-analysis was conducted using five databases (PubMed, MEDLINE, EMBASE, Web of Science, CINAHL) to identify studies that used autologous chondrocyte implants (ACI) or MSC implant therapies to repair chondral defects of the tibiofemoral joint. Data on the integration of the implant-cartilage interface, as well as outcomes of clinical scoring systems, were extracted. Most eligible studies investigated the use of ACI only. Our meta-analysis showed that, across a total of 200 patients, 64% (95% CI (51%, 75%)) achieved complete integration with native cartilage. In addition, a pooled improvement in the mean MOCART integration score was observed during post-operative follow-up (standardized mean difference: 1.16; 95% CI (0.07, 2.24), p = 0.04). All studies showed an improvement in the clinical scores. The use of a collagen-based scaffold was associated with better integration and clinical outcomes. This review demonstrated that cell-seeded scaffolds can achieve good quality integration in most patients, which improves over time and is associated with clinical improvements. A greater number of studies comparing these techniques to traditional cartilage repair methods, with more inclusion of MSC-seeded scaffolds, should allow for a standardized approach to cartilage regeneration to develop.
Collapse
Affiliation(s)
| | - Ernest Lee
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (I.E.E.); (E.L.); (V.L.)
| | - Victor Lu
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (I.E.E.); (E.L.); (V.L.)
| | - Wasim Khan
- Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: ; Tel.: +44-(0)-7791-025554
| |
Collapse
|
12
|
The Induced Pluripotent Stem Cells in Articular Cartilage Regeneration and Disease Modelling: Are We Ready for Their Clinical Use? Cells 2022; 11:cells11030529. [PMID: 35159338 PMCID: PMC8834349 DOI: 10.3390/cells11030529] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
The development of induced pluripotent stem cells has brought unlimited possibilities to the field of regenerative medicine. This could be ideal for treating osteoarthritis and other skeletal diseases, because the current procedures tend to be short-term solutions. The usage of induced pluripotent stem cells in the cell-based regeneration of cartilage damages could replace or improve on the current techniques. The patient’s specific non-invasive collection of tissue for reprogramming purposes could also create a platform for drug screening and disease modelling for an overview of distinct skeletal abnormalities. In this review, we seek to summarise the latest achievements in the chondrogenic differentiation of pluripotent stem cells for regenerative purposes and disease modelling.
Collapse
|
13
|
Yan J, Liu C, Tu C, Zhang R, Tang X, Li H, Wang H, Ma Y, Zhang Y, Wu H, Sheng G. Hydrogel-hydroxyapatite-monomeric collagen type-I scaffold with low-frequency electromagnetic field treatment enhances osteochondral repair in rabbits. Stem Cell Res Ther 2021; 12:572. [PMID: 34774092 PMCID: PMC8590294 DOI: 10.1186/s13287-021-02638-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cartilage damage is a common medical issue in clinical practice. Complete cartilage repair remains a significant challenge owing to the inferior quality of regenerative tissue. Safe and non-invasive magnetic therapy combined with tissue engineering to repair cartilage may be a promising breakthrough. METHODS In this study, a composite scaffold made of Hydroxyapatite-Collagen type-I (HAC) and PLGA-PEG-PLGA thermogel was produced to match the cartilage and subchondral layers in osteochondral defects, respectively. Bone marrow mesenchymal stem cells (BMSC) encapsulated in the thermogel were stimulated by an electromagnetic field (EMF). Effect of EMF on the proliferation and chondrogenic differentiation potential was evaluated in vitro. 4 mm femoral condyle defect was constructed in rabbits. The scaffolds loaded with BMSCs were implanted into the defects with or without EMF treatment. Effects of the combination treatment of the EMF and composite scaffold on rabbit osteochondral defect was detected in vivo. RESULTS In vitro experiments showed that EMF could promote proliferation and chondrogenic differentiation of BMSCs partly by activating the PI3K/AKT/mTOR and Wnt1/LRP6/β-catenin signaling pathway. In vivo results further confirmed that the scaffold with EMF enhances the repair of osteochondral defects in rabbits, and, in particular, cartilage repair. CONCLUSION Hydrogel-Hydroxyapatite-Monomeric Collagen type-I scaffold with low-frequency EMF treatment has the potential to enhance osteochondral repair.
Collapse
Affiliation(s)
- Jiyuan Yan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China
| | - Chang Tu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Ruizhuo Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China
| | - Huaixi Wang
- Department of Spine and Spinal Cord Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan, Zhengzhou, People's Republic of China
| | - Yongzhuang Ma
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Yingchi Zhang
- Department of Traumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China.
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China.
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
14
|
Hsu GCY, Cherief M, Sono T, Wang Y, Negri S, Xu J, Peault B, James AW. Divergent effects of distinct perivascular cell subsets for intra-articular cell therapy in posttraumatic osteoarthritis. J Orthop Res 2021; 39:2388-2397. [PMID: 33512030 PMCID: PMC8319216 DOI: 10.1002/jor.24997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/04/2023]
Abstract
Intra-articular injection of mesenchymal stem cells has shown benefit for the treatment of osteoarthritis (OA). However, mesenchymal stem/stromal cells at the origin of these clinical results are heterogenous cell populations with limited cellular characterization. Here, two transgenic reporter mice were used to examine the differential effects of two precisely defined perivascular cell populations (Pdgfrα+ and Pdgfrβ+ cells) from white adipose tissue for alleviation of OA. Perivascular mesenchymal cells were isolated from transgenic Pdgfrα-and Pdgfrβ-CreERT2 reporter animals and delivered as a one-time intra-articular dose to C57BL/6J mice after destabilization of the medial meniscus (DMM). Both Pdgfrα+ and Pdgfrβ+ cell preparations improved metrics of cartilage degradation and reduced markers of chondrocyte hypertrophy. While some similarities in cell distribution were identified within the synovial and perivascular spaces, injected Pdgfrα+ cells remained in the superficial layers of articular cartilage, while Pdgfrβ+ cells were more widely dispersed. Pdgfrβ+ cell therapy prevented subchondral sclerosis induced by DMM, while Pdgfrα+ cell therapy had no effect. In summary, while both cell therapies showed beneficial effects in the DMM model, important differences in cell incorporation, persistence, and subchondral sclerosis were identified.
Collapse
Affiliation(s)
- Ginny Ching-Yun Hsu
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States;,Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, 90095;,Center For Cardiovascular Science and Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Ross Research Building, Room 524A, 720 Rutland Avenue, Baltimore, MD, 21205, United States
| |
Collapse
|
15
|
Uzieliene I, Bironaite D, Bernotas P, Sobolev A, Bernotiene E. Mechanotransducive Biomimetic Systems for Chondrogenic Differentiation In Vitro. Int J Mol Sci 2021; 22:9690. [PMID: 34575847 PMCID: PMC8469886 DOI: 10.3390/ijms22189690] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a long-term chronic joint disease characterized by the deterioration of bones and cartilage, which results in rubbing of bones which causes joint stiffness, pain, and restriction of movement. Tissue engineering strategies for repairing damaged and diseased cartilage tissue have been widely studied with various types of stem cells, chondrocytes, and extracellular matrices being on the lead of new discoveries. The application of natural or synthetic compound-based scaffolds for the improvement of chondrogenic differentiation efficiency and cartilage tissue engineering is of great interest in regenerative medicine. However, the properties of such constructs under conditions of mechanical load, which is one of the most important factors for the successful cartilage regeneration and functioning in vivo is poorly understood. In this review, we have primarily focused on natural compounds, particularly extracellular matrix macromolecule-based scaffolds and their combinations for the chondrogenic differentiation of stem cells and chondrocytes. We also discuss different mechanical forces and compression models that are used for In Vitro studies to improve chondrogenic differentiation. Summary of provided mechanical stimulation models In Vitro reviews the current state of the cartilage tissue regeneration technologies and to the potential for more efficient application of cell- and scaffold-based technologies for osteoarthritis or other cartilage disorders.
Collapse
Affiliation(s)
- Ilona Uzieliene
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| | - Daiva Bironaite
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| | - Paulius Bernotas
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia;
| | - Eiva Bernotiene
- State Research Institute Centre for Innovative Medicine, Department of Regenerative Medicine, LT-08406 Vilnius, Lithuania; (I.U.); (D.B.); (P.B.)
| |
Collapse
|
16
|
Comparison between Intra-Articular Injection of Infrapatellar Fat Pad (IPFP) Cell Concentrates and IPFP-Mesenchymal Stem Cells (MSCs) for Cartilage Defect Repair of the Knee Joint in Rabbits. Stem Cells Int 2021; 2021:9966966. [PMID: 34367294 PMCID: PMC8337123 DOI: 10.1155/2021/9966966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic method in regenerative medicine. Our previous research adopted a simple nonenzymatic strategy for the preparation of a new type of ready-to-use infrapatellar fat pad (IPFP) cell concentrates. The aim of this study was to compare the therapeutic efficacy of intra-articular (IA) injection of autologous IPFP cell concentrates and allogeneic IPFP-MSCs obtained from these concentrates in a rabbit articular cartilage defect model. IPFP-MSCs sprouting from the IPFP cell concentrates were characterized via flow cytometry as well as based on their potential for differentiation into adipocytes, osteoblasts, and chondrocytes. In the rabbit model, cartilage defects were created on the trochlear groove, followed by treatment with IPFP cell concentrates, IPFP-MSCs, or normal saline IA injection. Distal femur samples were evaluated at 6 and 12 weeks posttreatment via macroscopic observation and histological assessment based on the International Cartilage Repair Society (ICRS) macroscopic scoring system as well as the ICRS visual histological assessment scale. The macroscopic score and histological score were significantly higher in the IPFP-MSC group compared to the IPFP cell concentrate group at 12 weeks. Further, both treatment groups had higher scores compared to the normal saline group. In comparison to the latter, the groups treated with IPFP-MSCs and IPFP cell concentrates showed considerably better cartilage regeneration. Overall, IPFP-MSCs represent an effective therapeutic strategy for stimulating articular cartilage regeneration. Further, due to the simple, cost-effective, nonenzymatic, and safe preparation process, IPFP cell concentrates may represent an effective alternative to stem cell-based therapy in the clinic.
Collapse
|
17
|
Guan M, Pan D, Zhang M, Leng X, Yao B. Deer antler extract potentially facilitates xiphoid cartilage growth and regeneration and prevents inflammatory susceptibility by regulating multiple functional genes. J Orthop Surg Res 2021; 16:208. [PMID: 33752715 PMCID: PMC7983396 DOI: 10.1186/s13018-021-02350-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Deer antler is a zoological exception due to its fantastic characteristics, including amazing growth rate and repeatable regeneration. Deer antler has been used as a key ingredient in traditional Chinese medicine relating to kidney and bone health for centuries. The aim of this study was to dissect the molecular regulation of deer antler extract (DAE) on xiphoid cartilage (XC). METHODS The DAE used in this experiment was same as the one that was prepared as previously described. The specific pathogen-free (SPF) grade Sprague-Dawley (SD) rats were randomly divided into blank group (n =10) and DAE group (n =10) after 1-week adaptive feeding. The DAE used in this experiment was same as the one that was prepared as previously described. The rats in DAE group were fed with DAE for 3 weeks at a dose of 0.2 g/kg per day according to the body surface area normalization method, and the rats in blank group were fed with drinking water. Total RNA was extracted from XC located in the most distal edge of the sternum. Illumina RNA sequencing (RNA-seq) in combination with quantitative real-time polymerase chain reaction (qRT-PCR) validation assay was carried out to dissect the molecular regulation of DAE on XC. RESULTS We demonstrated that DAE significantly increased the expression levels of DEGs involved in cartilage growth and regeneration, but decreased the expression levels of DEGs involved in inflammation, and mildly increased the expression levels of DEGs involved in chondrogenesis and chondrocyte proliferation. CONCLUSIONS Our findings suggest that DAE might serve as a complementary therapeutic regent for cartilage growth and regeneration to treat cartilage degenerative disease, such as osteoarthritis.
Collapse
Affiliation(s)
- Mengqi Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Daian Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, Jilin, 130117 China
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| |
Collapse
|
18
|
Zhou Y, Li H, Xiang D, Shao J, Fu Q, Han Y, Zhu J, Chen Y, Qian Q. The clinical efficacy of arthroscopic therapy with knee infrapatellar fat pad cell concentrates in treating knee cartilage lesion: a prospective, randomized, and controlled study. J Orthop Surg Res 2021; 16:87. [PMID: 33509248 PMCID: PMC7841893 DOI: 10.1186/s13018-021-02224-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction To evaluate the clinical efficacy of arthroscopic therapy with infrapatellar fat pad cell concentrates in treating knee cartilage lesions, we conducted a prospective randomized single-blind clinical study of controlled method. Methods Sixty cases from Shanghai Changzheng Hospital from April 2018 to December 2019 were chosen and randomly divided into 2 groups equally. Patients in the experiment group were treated through knee arthroscopy with knee infrapatellar fat pad cell concentrates containing mesenchymal stromal cells, while patients in the control group were treated through regular knee arthroscopic therapy. VAS and WOMAC scores were assessed at pre-operation, and 6 weeks, 12 weeks, 6 months, and 12 months after intervention. MORCART scores were assessed at pre-operation and 12 months after intervention. Results Twenty-nine cases in the experiment group and 28 cases in the control group were followed up. No significant difference in VAS, WOMAC, and MOCART scores were found between the two groups before surgery (P > 0.05). The WOMAC total and WOMAC function scores of the experiment group were significantly lower than those of the control group 6 months and 12 months after surgery (P < 0.05). The VAS rest and VAS motion scores of the experiment group were found significantly lower than those of the control group 12 months after surgery (P < 0.05). The MOCART scores of the experiment group were found significantly higher compared with the control group 12 months after surgery (P < 0.05). No significant difference in WOMAC stiffness scores were found between the two groups. Conclusions The short-term results of our study are encouraging and demonstrate that knee arthroscopy with infrapatellar fat pad cell concentrates containing mesenchymal stromal cells is safe and provides assistance in reducing pain and improving function in patients with knee cartilage lesions. Trial registration ChiCTR1800015379. Registered on 27 March 2018, http://www.chictr.org.cn/showproj.aspx?proj=25901.
Collapse
Affiliation(s)
- Yiqin Zhou
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Haobo Li
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Dong Xiang
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Jiahua Shao
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Qiwei Fu
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Yaguang Han
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Jun Zhu
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.
| | - Yi Chen
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.
| | - Qirong Qian
- Department of Joint Surgery and Sports Medicine, Shanghai Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
19
|
Yamashita A, Tsumaki N. Recent progress of animal transplantation studies for treating articular cartilage damage using pluripotent stem cells. Dev Growth Differ 2021; 63:72-81. [PMID: 33411345 DOI: 10.1111/dgd.12706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
Focal articular cartilage damage can eventually lead to the onset of osteoarthritis with degradation around healthy articular cartilage. Currently, there are no drugs available that effectively repair articular cartilage damage. Several surgical techniques exist and are expected to prevent progression to osteoarthritis, but they do not offer a long-term clinical solution. Recently, regenerative medicine approaches using human pluripotent stem cells (PSCs) have gained attention as new cell sources for therapeutic products. To translate PSCs to clinical application, appropriate cultures that produce large amounts of chondrocytes and hyaline cartilage are needed. So too are assays for the safety and efficacy of the cellular materials in preclinical studies including animal transplantation models. To confirm safety and efficacy, transplantation into the subcutaneous space and articular cartilage defects have been performed in animal models. All but one study we reviewed that transplanted PSC-derived cellular products into articular cartilage defects found safe and effective recovery. However, for most of those studies, the quality of the PSCs was not verified, and the evaluations were done with small animals over short observation periods. Large animals and longer observation times are preferred. We will discuss the recent progress and future direction of the animal transplantation studies for the treatment of focal articular cartilage damages using PSCs.
Collapse
Affiliation(s)
- Akihiro Yamashita
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Noriyuki Tsumaki
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Gupta RC, Kalidindi SR, Doss RB, Lall R, Srivastava A, Sinha A. Nutraceuticals in arthritis. NUTRACEUTICALS 2021:193-214. [DOI: 10.1016/b978-0-12-821038-3.00014-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Ran J, Fei Y, Wang C, Ruan D, Hu Y, Zheng Z, Chen X, Yin Z, Tang C, Chen Y, Huang J, Shen L, Wu L, Heng BC, Pioletti D, Shen W, Ouyang H. An Off-the-Shelf Tissue Engineered Cartilage Composed of Optimally Sized Pellets of Cartilage Progenitor/Stem Cells. ACS Biomater Sci Eng 2020; 7:881-892. [PMID: 33715373 DOI: 10.1021/acsbiomaterials.9b01863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Articular cartilage focal lesion remains an intractable challenge in sports medicine, and autologous chondrocytes' implantation (ACI) is one of the most commonly utilized treatment modality for this ailment. However, the current ACI technique requires two surgical steps which increases patients' morbidity and incurs additional medical costs. In the present study, we developed a one-step cryopreserved off-the-shelf ACI tissue-engineered (TE) cartilage by seeding pellets of spheroidal cartilage stem/progenitor cells (CSPCs) on a silk scaffold. The pellets were developed through a hanging-drop method, and the incubation time of 1 day could efficiently produce spheroidal pellets without any adverse influence on the cell activity. The pellet size was also optimized. Under chondrogenic induction, pellets consisting of 40 000 CSPCs were found to exhibit the most abundant cartilage matrix deposition and the highest mRNA expression levels of SOX9, aggrecan, and COL2A1, as compared with pellets consisting of 10 000, 100 000, or 200 000 CSPCs. Scaffolds seeded with CSPCs pellets containing 40 000 cells could be preserved in liquid nitrogen with the viability, migration, and chondrogenic ability remaining unaffected for as long as 3 months. When implanted in a rat trochlear cartilage defect model for 3 months, the ready-to-use, cryopreserved TE cartilage yielded fully cartilage reconstruction, which was comparable with the uncryopreserved control. Hence, our study provided preliminary data that our off-the-shell TE cartilage with optimally sized CSPCs pellets seeded within silk scaffolds exhibited strong cartilage repair capacity, which provided a convenient and promising one-step surgical approach to ACI.
Collapse
Affiliation(s)
- Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Canlong Wang
- Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yejun Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zefeng Zheng
- Department of Orthopedic Surgery, The Children's Hospital, School of Medicine, Zhejiang University,3333 Binsheng Road, Hangzhou, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yangwu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Lingfang Shen
- Air Force Health Care Center for Special Services, 15 Yanggongdi Road, Hangzhou 310000, China
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Boon Chin Heng
- Peking University School of Stomatology, 5 Yiheyuan Road, Beijing, China
| | - Dominique Pioletti
- Laboratory of Biomechanical Orthopedics, EPFL, MED 3 2626 (Bâtiment MED), Station 9, Lausanne CH-1015, Switzerland
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
22
|
Yamashita A, Yoshitomi H, Kihara S, Toguchida J, Tsumaki N. Culture substrate-associated YAP inactivation underlies chondrogenic differentiation of human induced pluripotent stem cells. Stem Cells Transl Med 2020; 10:115-127. [PMID: 32822104 PMCID: PMC7780802 DOI: 10.1002/sctm.20-0058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/23/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are a promising cell source for the creation of cartilage to treat articular cartilage damage. The molecular mechanisms that translate culture conditions to the chondrogenic differentiation of hiPSCs remain to be analyzed. To analyze the effects of culture substrates, we chondrogenically differentiated hiPSCs on Matrigel or laminin 511‐E8 while holding the composition of the chondrogenic medium constant. Cartilage was formed from hiPSCs on Matrigel, but not on laminin 511‐E8. On Matrigel, the hiPSCs were round and yes‐associated protein (YAP) was inactive. In contrast, on laminin 511‐E8, the hiPSCs were flat and YAP was active. Treating the laminin 511‐E8 hiPSCs in a bioreactor caused cell aggregates, in which the cells were round and YAP was inactive. Subsequent culture of the aggregates in chondrogenic medium resulted in cartilage formation. Transient knockdown of YAP in hiPSCs around the start of chondrogenic differentiation successfully formed cartilage on laminin 511‐E8, suggesting that the activation of YAP is responsible for the failure of cartilage formation from hiPSCs on laminin 511‐E8. Consistently, the addition of YAP inhibitors to laminin 511‐E8 hiPSCs caused partial cartilage formation. This study contributes to identifying the molecules that mediate the effects of culture substrates on the chondrogenic differentiation of hiPSCs as well as to developing clinically applicable chondrogenic differentiation methods.
Collapse
Affiliation(s)
- Akihiro Yamashita
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hiroyuki Yoshitomi
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University (CiRA), Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shunsuke Kihara
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Junya Toguchida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University (CiRA), Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Noriyuki Tsumaki
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Debnath UK. Mesenchymal Stem Cell Therapy in Chondral Defects of Knee: Current Concept Review. Indian J Orthop 2020; 54:1-9. [PMID: 32952903 PMCID: PMC7474009 DOI: 10.1007/s43465-020-00198-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Full-thickness cartilage defects if left alone would increase the risk of osteoarthritis (OA) with severe associated pain and functional disability. Articular cartilage defect may result from direct trauma or chronic degeneration. The capability of the mesenchymal stem cells (MSCs) to repair and regenerate cartilage has been widely investigated. This review describes current trends in MSC biology, the sourcing, expansion, application and role of MSCs in chondral defects of human knees. METHODS The studies referencing MSCs and knee osteoarthritis were searched (from1998 to 2020) using PubMed, EMBASE, Cochrane Library, Web of Science and the ClinicalTrials.gov with keywords (MSCs, chondral defects or cartilage degeneration of knee, cartilage regeneration, chondrogenesis, tissue engineering, efficacy and safety). The inclusion criteria were based on use of MSCs for treatment of chondral defects and osteoarthritis of the knee, English language and human studies. RESULTS The history of MSC research from the initial discovery of their multipotency to the more recent recognition of their role in cartilage defects of knee is elucidated. Several studies have demonstrated promising results in the clinical application for repair of chondral defects as an adjuvant or independent procedure. Intra-articular MSCs provide improvements in pain and function in knee osteoarthritis at short-term follow-up in many studies. The tendency of MSCs to differentiate into fibrocartilage affecting the outcome is a common issue faced by researchers. CONCLUSION Some efficacy has been shown of MSCs for cartilage repair in osteoarthritis; however, the evidence of efficacy of intra-articular MSCs on both clinical outcomes and cartilage repair remains limited. Despite the high quality of evidence to support, MSC therapy has emerged but further refinement of methodology will be necessary to support its routine clinical use.
Collapse
|
24
|
TissueGene-C promotes an anti-inflammatory micro-environment in a rat monoiodoacetate model of osteoarthritis via polarization of M2 macrophages leading to pain relief and structural improvement. Inflammopharmacology 2020; 28:1237-1252. [PMID: 32696209 PMCID: PMC7524813 DOI: 10.1007/s10787-020-00738-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is the most common form of arthritis, characterized by cartilage destruction, pain and inflammation in the joints. Existing medications can provide relief from the symptoms, but their effects on the progression of the disease are limited. TissueGene-C (TG-C) is a novel cell and gene therapy for the treatment of OA, comprising a mixture of human allogeneic chondrocytes and irradiated cells engineered to overexpress transforming growth factor-β1 (TGF-β1). This study aims to investigate the efficacy and mechanism of action of TG-C in a rat model of OA. Using the monosodium-iodoacetate (MIA) model of OA, we examined whether TG-C could improve OA symptoms and cartilage structure in rats. Our results showed that TG-C provided pain relief and cartilage structural improvement in the MIA OA model over 56 days. In parallel with these long-term effects, cytokine profiles obtained on day 4 revealed increased expression of interleukin-10 (IL-10), an anti-inflammatory cytokine, in the synovial lavage fluid. Moreover, the increased levels of TGF-β1 and IL-10 caused by TG-C induced the expression of arginase 1, a marker of M2 macrophages, and decreased the expression of CD86, a marker of M1 macrophages. These results suggest that TG-C exerts a beneficial effect on OA by inducing a M2 macrophage-dominant micro-environment. Cell therapy using TG-C may be a promising strategy for targeting the underlying pathogenic mechanisms of OA, reducing pain, improving function, and creating a pro-anabolic micro-environment. This environment supports cartilage structure regeneration and is worthy of further evaluation in future clinical trials.
Collapse
|
25
|
Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo X, Ouyang J, He M, Du X, Chen L. Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res 2020; 8:25. [PMID: 32596023 PMCID: PMC7305215 DOI: 10.1038/s41413-020-0100-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
Exosomes participate in many physiological and pathological processes by regulating cell-cell communication, which are involved in numerous diseases, including osteoarthritis (OA). Exosomes are detectable in the human articular cavity and were observed to change with OA progression. Several joint cells, including chondrocytes, synovial fibroblasts, osteoblasts, and tenocytes, can produce and secrete exosomes that influence the biological effects of targeted cells. In addition, exosomes from stem cells can protect the OA joint from damage by promoting cartilage repair, inhibiting synovitis, and mediating subchondral bone remodeling. This review summarizes the roles and therapeutic potential of exosomes in OA and discusses the perspectives and challenges related to exosome-based treatment for OA patients in the future.
Collapse
Affiliation(s)
- Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Siru Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury; Medical Cformation of H-type vessel in subchondral enter of Trauma and War Injury; Daping Hospital, Army Medical University of PLA, Chongqing, China
| | - Song Li
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Eleven Squadron Three Brigade, School of Basic Medical Science, Army Medical University, Chongqing, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoqing Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Junjie Ouyang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Mei He
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaolan Du
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
26
|
Yang X, Liu TC, Liu S, Zhu W, Li H, Liang P, Ye S, Cui S. Promoted Viability and Differentiated Phenotype of Cultured Chondrocytes With Low Level Laser Irradiation Potentiate Efficacious Cells for Therapeutics. Front Bioeng Biotechnol 2020; 8:468. [PMID: 32548098 PMCID: PMC7272569 DOI: 10.3389/fbioe.2020.00468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/22/2020] [Indexed: 12/03/2022] Open
Abstract
Effective clinical treatments of cartilage lesions in affected joints require large numbers of viable chondrogenic cells generated through in vivo stimulation or ex vivo expansion of chondrocytes isolated from small biopsy specimens. Conventional passaging of chondrocytes in culture provides sufficient cells for treatments but these cells usually lose their differentiated phenotype. This leads to the formation of fibrocartilaginous tissue due to a malfunctioning repair process. Biostimulation of passaging chondrocytes with low level laser irradiation (LLLI) may theoretically produce more functional chondrocytes for cell-based repair of cartilage defects. Molecular and cellular analyses, cytochemistry, cell cultivation, and microscopy showed that LLLI treatments were found to (1) increase chondrocyte viability, (2) promote secretion of matrix proteins, (3) upregulate expression of chondrogenic genes, and (4) downregulate gene expression of cell destructive proteases and genes coding for mediators involved in the extrinsic apoptosis signaling pathway. Furthermore, LLLI attenuated induction of genes associated with cell death and matrix breakdown induced by IL-1β, some of which was seen at the protein level, with verification of effects on gene expression in the C28/I2 human chondrocyte line. LLLI treatments during culture generated larger numbers of viable chondrocytes compared to untreated cultures. Moreover, LLLI-treated chondrocytes in culture also rectified and simultaneously maintained their differentiated phenotype. Cultured chondrocytes treated with LLLI are a promising cell source for repairing cartilage lesions in vivo and restoration of articular function using tissue engineering strategies.
Collapse
Affiliation(s)
- Xiaohong Yang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, School of Medicine, Jinan University, Guangzhou, China
| | - Timon Chengyi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Medicine, South China Normal University, Guangzhou, China
| | - Shaojie Liu
- Surgical Department, Guangzhou Red Cross Hospital, School of Medicine, Jinan University, Guangzhou, China
| | - Weicong Zhu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, School of Medicine, Jinan University, Guangzhou, China
| | - Honglin Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, School of Medicine, Jinan University, Guangzhou, China
| | - Peihong Liang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, School of Medicine, Jinan University, Guangzhou, China
| | - Suihui Ye
- Surgical Department, Guangzhou Red Cross Hospital, School of Medicine, Jinan University, Guangzhou, China
| | - Shuliang Cui
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, School of Medicine, Jinan University, Guangzhou, China.,School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Rocha B, Cillero-Pastor B, Eijkel G, Calamia V, Fernandez-Puente P, Paine MRL, Ruiz-Romero C, Heeren RMA, Blanco FJ. Integrative Metabolic Pathway Analysis Reveals Novel Therapeutic Targets in Osteoarthritis. Mol Cell Proteomics 2020; 19:574-588. [PMID: 31980557 PMCID: PMC7124476 DOI: 10.1074/mcp.ra119.001821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/08/2020] [Indexed: 01/15/2023] Open
Abstract
In osteoarthritis (OA), impairment of cartilage regeneration can be related to a defective chondrogenic differentiation of mesenchymal stromal cells (MSCs). Therefore, understanding the proteomic- and metabolomic-associated molecular events during the chondrogenesis of MSCs could provide alternative targets for therapeutic intervention. Here, a SILAC-based proteomic analysis identified 43 proteins related with metabolic pathways whose abundance was significantly altered during the chondrogenesis of OA human bone marrow MSCs (hBMSCs). Then, the level and distribution of metabolites was analyzed in these cells and healthy controls by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), leading to the recognition of characteristic metabolomic profiles at the early stages of differentiation. Finally, integrative pathway analysis showed that UDP-glucuronic acid synthesis and amino sugar metabolism were downregulated in OA hBMSCs during chondrogenesis compared with healthy cells. Alterations in these metabolic pathways may disturb the production of hyaluronic acid (HA) and other relevant cartilage extracellular matrix (ECM) components. This work provides a novel integrative insight into the molecular alterations of osteoarthritic MSCs and potential therapeutic targets for OA drug development through the enhancement of chondrogenesis.
Collapse
Affiliation(s)
- Beatriz Rocha
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS, Universidad de A Coruña, A Coruña, Spain
| | - Berta Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Gert Eijkel
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Valentina Calamia
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS, Universidad de A Coruña, A Coruña, Spain.
| | - Patricia Fernandez-Puente
- Grupo de Investigación de Reumatología, INIBIC-Complejo Hospitalario Universitario de A Coruña, SERGAS, Agrupación CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Martin R L Paine
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS, Universidad de A Coruña, A Coruña, Spain
| | - Ron M A Heeren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Francisco J Blanco
- Grupo de Investigación de Reumatología, INIBIC-Complejo Hospitalario Universitario de A Coruña, SERGAS, Departamento de Medicina Universidad de A Coruña, A Coruña, Spain.
| |
Collapse
|
28
|
Chimutengwende-Gordon M, Donaldson J, Bentley G. Current solutions for the treatment of chronic articular cartilage defects in the knee. EFORT Open Rev 2020; 5:156-163. [PMID: 32296549 PMCID: PMC7144889 DOI: 10.1302/2058-5241.5.190031] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chondral and osteochondral defects in the knee are common and may lead to degenerative joint disease if treated inappropriately. Conventional treatments such as microfracture often result in fibrocartilage formation and are associated with inferior results. Additionally, microfracture is generally unsuitable for the treatment of defects larger than 2–4 cm2. The osteochondral autograft transfer system (OATS) has been shown to produce superior clinical outcomes to microfracture but is technically difficult and may be associated with donor-site morbidity. Osteochondral allograft use is limited by graft availability and failure of cartilage incorporation is an issue. Autologous chondrocyte implantation (ACI) has been shown to result in repair with hyaline-like cartilage but involves a two-stage procedure and is relatively expensive. Rehabilitation after ACI takes 12 months, which is inconvenient and not feasible for athletic patients. Newer methods to regenerate cartilage include autologous stem cell transplantation, which may be performed as a single-stage procedure, can have a shorter rehabilitation period and is less expensive than ACI. Longer-term studies of these methods are needed.
Cite this article: EFORT Open Rev 2020;5:156-163. DOI: 10.1302/2058-5241.5.190031
Collapse
Affiliation(s)
| | - James Donaldson
- Joint Reconstruction Unit, Royal National Orthopaedic Hospital Trust, Stanmore, UK
| | - George Bentley
- Joint Reconstruction Unit, Royal National Orthopaedic Hospital Trust, Stanmore, UK
| |
Collapse
|
29
|
Chaikovsky Y, Herashchenko S, Deltsova O. Problems and Perspectives of Using Stem Cells of Cartilage Tissues. PROBLEMS OF CRYOBIOLOGY AND CRYOMEDICINE 2019; 29:303-316. [DOI: 10.15407/cryo29.04.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Xu T, Yu X, Yang Q, Liu X, Fang J, Dai X. Autologous Micro-Fragmented Adipose Tissue as Stem Cell-Based Natural Scaffold for Cartilage Defect Repair. Cell Transplant 2019; 28:1709-1720. [PMID: 31565996 PMCID: PMC6923561 DOI: 10.1177/0963689719880527] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Osteoarthritis (OA) poses a tough challenge worldwide. Adipose-derived stem cells (ASCs)
have been proved to play a promising role in cartilage repair. However, enzymatic
digestion, ex vivo culture and expansion, with significant senescence and decline in
multipotency, limit their application. The present study was designed to obtain
micro-fragmented adipose tissue (MFAT) through gentle mechanical force and determine the
effect of this stem cell-based natural scaffold on repair of full-thickness cartilage
defects. In this study, ASCs sprouted from MFAT were characterized by
multi-differentiation induction and flow cytometry. Scratch and transwell migration assays
were operated to determine whether MFAT could promote migration of chondrocytes in vitro.
In a rat model, cartilage defects were created on the femoral groove and treated with
intra-articular injection of MFAT or PBS for 6 weeks and 12 weeks (n =
12). At the time points, the degree of cartilage repair was evaluated by histological
staining, immunohistochemistry and scoring, respectively. Two unoperated age-matched
animals served as native controls. ASCs derived from MFAT possessed properties to
differentiate into adipocytes, osteocytes and chondrocytes, with expression of mesenchymal
stem cell markers (CD29, 44, 90) and no expression of hematopoietic markers (CD31, 34,
45). In addition, MFAT could significantly promote migration of chondrocytes. MFAT-treated
defects showed improved macroscopic appearance and histological evaluation compared with
PBS-treated defects at both time points. After 12 weeks of treatment, MFAT-treated defects
displayed regular surface, high amount of hyaline cartilage, intact subchondral bone
reconstruction and corresponding formation of type I, II, and VI collagen, which resembled
the normal cartilage. This study demonstrates the efficacy of MFAT on cartilage repair in
an animal model for the first time, and the utility of MFAT as a ready-to-use therapeutic
alternative to traditional stem cell therapy.
Collapse
Affiliation(s)
- Tengjing Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinning Yu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedic Surgery, Hangzhou Mingzhou Hospital (International Medical Center, Second Affiliated Hospital, Zhejiang University School of Medicine), Hangzhou, China
| | - Quanming Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaonan Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghua Fang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedic Surgery, Hangzhou Mingzhou Hospital (International Medical Center, Second Affiliated Hospital, Zhejiang University School of Medicine), Hangzhou, China
| | - Xuesong Dai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedic Surgery, Hangzhou Mingzhou Hospital (International Medical Center, Second Affiliated Hospital, Zhejiang University School of Medicine), Hangzhou, China
| |
Collapse
|
31
|
Cheng B, Tu T, Shi X, Liu Y, Zhao Y, Zhao Y, Li Y, Chen H, Chen Y, Zhang M. A novel construct with biomechanical flexibility for articular cartilage regeneration. Stem Cell Res Ther 2019; 10:298. [PMID: 31547887 PMCID: PMC6757433 DOI: 10.1186/s13287-019-1399-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/13/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although tissue-engineered cartilage has been broadly studied, complete integration of regenerated cartilage with residual cartilage is still difficult for the inferior mechanical and biochemical feature of neocartilage. Chondrogenesis of mesenchymal stem cells can be induced by biophysical and biochemical factors. METHODS In this study, autologous platelet-rich fibrin (PRF) membrane was used as a growth factor-rich scaffold that may facilitate differentiation of the transplanted bone marrow mesenchymal stem cells (BMSCs). At the same time, hydrostatic pressure was adopted for pre-adjustment of the seed cells before transplantation that may promote the mechanical flexibility of neocartilage. RESULTS An in vitro study showed that the feasible hydrostatic pressure stimulation substantially promoted the chondrogenic potential of in vitro-cultured BMSC/PRF construct. In vivo results revealed that at every time point, the newborn tissues were the most favorable in the pressure-pretreated BMSC/PRF transplant group. Besides, the transplantation of feasible hydrostatic pressure-pretreated construct by BMSC sheet fragments and PRF granules could obviously improve the integration between the regenerated cartilage and host cartilage milieu, and thereby achieve boundaryless repair between the neocartilage and residual host cartilage tissue in rabbit temporomandibular joints. It could be concluded that feasible hydrostatic pressure may effectively promote the proliferation and chondrogenic differentiation of BMSCs in a BMSC/PRF construct. CONCLUSION This newly formed construct with biomechanical flexibility showed a superior capacity for cartilage regeneration by promoting the mechanical properties and integration of neocartilage.
Collapse
Affiliation(s)
- Baixiang Cheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Teng Tu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Xiao Shi
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Yanzheng Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Ying Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Yinhua Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Yijie Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Hui Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China
| | - Yongjin Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China.
| | - Min Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an, 710032, China.
| |
Collapse
|
32
|
Tomaszewski R, Wiktor Ł, Gap A. Enhancement of cartilage repair through the addition of growth plate chondrocytes in an immature skeleton animal model. J Orthop Surg Res 2019; 14:260. [PMID: 31416470 PMCID: PMC6694631 DOI: 10.1186/s13018-019-1302-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/30/2019] [Indexed: 01/01/2023] Open
Abstract
Background The treatment of articular cartilage damage is a major clinical problem. More often, this clinical issue affects children, which forces doctors to find the best treatment method. Methods The aim of this experimental study on 2-month-old Landrace pigs was to compare the results of two cartilage defect treatments: (1) filling the cartilage defect with a scaffold incubated with bone marrow aspirate supplemented with growth plate chondrocytes (the CELLS group) and (2) filling the cartilage defect with an empty scaffold implanted after drilling the subchondral bone (the CTRL group). The treatment outcomes were assessed macroscopically and microscopically. Results Based on the macroscopic evaluation, all animals showed a nearly normal morphology, with an average of 9.66/12 points (CTRL) and 10.44/12 points (CELLS). Based on the microscopic evaluation, 1 very good result and 8 good results were obtained in the CTRL group, with an average of 70.44%, while 5 very good results and 4 good results were obtained in the CELLS group, with an average of 79.61%. Conclusions (1) Growth plate chondrocytes have high chondrogenic potential and thus offer new possibilities for cartilage cell therapy. (2) The implantation of a scaffold loaded with bone marrow-derived MSCs (mesenchymal stem cells) and growth plate chondrocytes into a cartilage defect is a good therapeutic method in immature patients. (3) Cartilage repair based on a scaffold with bone marrow aspirate-derived cells supplemented with autologous growth plate chondrocytes achieves better results than repair with marrow stimulation and a hyaluronic acid-based scaffold (overall microscopic rating). (4) Chondrocyte clustering is a manifestation of the cartilage repair process but requires further observation. Electronic supplementary material The online version of this article (10.1186/s13018-019-1302-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryszard Tomaszewski
- Department of Pediatric Traumatology and Orthopedy, Silesian Medical University, Katowice, Poland.,Institute of Physics, University of Silesia, Katowice, Poland
| | - Łukasz Wiktor
- Department of Pediatric Traumatology and Orthopedy, Silesian Medical University, Katowice, Poland.
| | - Artur Gap
- Department of Pediatric Traumatology and Orthopedy, Silesian Medical University, Katowice, Poland
| |
Collapse
|
33
|
A Bioactive Cartilage Graft of IGF1-Transduced Adipose Mesenchymal Stem Cells Embedded in an Alginate/Bovine Cartilage Matrix Tridimensional Scaffold. Stem Cells Int 2019; 2019:9792369. [PMID: 31149016 PMCID: PMC6501174 DOI: 10.1155/2019/9792369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/18/2019] [Accepted: 02/19/2019] [Indexed: 01/29/2023] Open
Abstract
Articular cartilage injuries remain as a therapeutic challenge due to the limited regeneration potential of this tissue. Cartilage engineering grafts combining chondrogenic cells, scaffold materials, and microenvironmental factors are emerging as promissory alternatives. The design of an adequate scaffold resembling the physicochemical features of natural cartilage and able to support chondrogenesis in the implants is a crucial topic to solve. This study reports the development of an implant constructed with IGF1-transduced adipose-derived mesenchymal stem cells (immunophenotypes: CD105+, CD90+, CD73+, CD14−, and CD34−) embedded in a scaffold composed of a mix of alginate/milled bovine decellularized knee material which was cultivated in vitro for 28 days (3CI). Histological analyses demonstrated the distribution into isogenous groups of chondrocytes surrounded by a de novo dense extracellular matrix with balanced proportions of collagens II and I and high amounts of sulfated proteoglycans which also evidenced adequate cell proliferation and differentiation. This graft also shoved mechanical properties resembling the natural knee cartilage. A modified Bern/O'Driscoll scale showed that the 3CI implants had a significantly higher score than the 2CI implants lacking cells transduced with IGF1 (16/18 vs. 14/18), representing high-quality engineering cartilage suitable for in vivo tests. This study suggests that this graft resembles several features of typical hyaline cartilage and will be promissory for preclinical studies for cartilage regeneration.
Collapse
|
34
|
Lin TH, Wang HC, Cheng WH, Hsu HC, Yeh ML. Osteochondral Tissue Regeneration Using a Tyramine-Modified Bilayered PLGA Scaffold Combined with Articular Chondrocytes in a Porcine Model. Int J Mol Sci 2019; 20:ijms20020326. [PMID: 30650528 PMCID: PMC6359257 DOI: 10.3390/ijms20020326] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/28/2022] Open
Abstract
Repairing damaged articular cartilage is challenging due to the limited regenerative capacity of hyaline cartilage. In this study, we fabricated a bilayered poly (lactic-co-glycolic acid) (PLGA) scaffold with small (200–300 μm) and large (200–500 μm) pores by salt leaching to stimulate chondrocyte differentiation, cartilage formation, and endochondral ossification. The scaffold surface was treated with tyramine to promote scaffold integration into native tissue. Porcine chondrocytes retained a round shape during differentiation when grown on the small pore size scaffold, and had a fibroblast-like morphology during transdifferentiation in the large pore size scaffold after five days of culture. Tyramine-treated scaffolds with mixed pore sizes seeded with chondrocytes were pressed into three-mm porcine osteochondral defects; tyramine treatment enhanced the adhesion of the small pore size scaffold to osteochondral tissue and increased glycosaminoglycan and collagen type II (Col II) contents, while reducing collagen type X (Col X) production in the cartilage layer. Col X content was higher for scaffolds with a large pore size, which was accompanied by the enhanced generation of subchondral bone. Thus, chondrocytes seeded in tyramine-treated bilayered scaffolds with small and large pores in the upper and lower parts, respectively, can promote osteochondral regeneration and integration for articular cartilage repair.
Collapse
Affiliation(s)
- Tzu-Hsiang Lin
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| | - Hsueh-Chun Wang
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| | - Wen-Hui Cheng
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| | - Horng-Chaung Hsu
- Department of Orthopedics, China Medical University Hospital, 2 Yude Rd., Taichung 40447, Taiwan.
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, 1 University Rd., Tainan 701, Taiwan.
| |
Collapse
|
35
|
Jonitz-Heincke A, Klinder A, Boy D, Salamon A, Hansmann D, Pasold J, Buettner A, Bader R. In Vitro Analysis of the Differentiation Capacity of Postmortally Isolated Human Chondrocytes Influenced by Different Growth Factors and Oxygen Levels. Cartilage 2019; 10:111-119. [PMID: 28715962 PMCID: PMC6376569 DOI: 10.1177/1947603517719318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE In the present in vitro study, we analyzed the chondrogenic differentiation capacity of human chondrocytes postmortally isolated from unaffected knee cartilage by the addition of transforming growth factor-β1 (TGF-β1) and/or insulin-like growth factor-1 (IGF-1) and different oxygen levels. DESIGN After 14 and 35 days, DNA concentrations and protein contents of Col1, Col2, aggrecan as well as glycosaminoglycans (GAGs) of chondrocytes cultivated as pellet cultures were analyzed. Additionally, expression rates of mesenchymal stem cell (MSC)-associated differentiation markers were assessed in monolayer cultures. RESULTS All cultivated chondrocytes were found to be CD29+/CD44+/CD105+/CD166+. Chondrocytic pellets stimulated with TGF-β1 showed enhanced synthesis rates of hyaline cartilage markers and reduced expression of the non-hyaline cartilage marker Col1 under hypoxic culture conditions. CONCLUSIONS Our results underline the substantial chondrogenic potential of human chondrocytes postmortally isolated from unaffected articular knee cartilage especially in case of TGF-β1 administration.
Collapse
Affiliation(s)
- Anika Jonitz-Heincke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, Rostock, Germany,Anika Jonitz-Heincke, Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, Doberaner Strasse 142, 18057 Rostock, Germany.
| | - Annett Klinder
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, Rostock, Germany
| | - Diana Boy
- Institute of Forensic Medicine, University Medical Center Rostock, Rostock, Germany
| | - Achim Salamon
- Department of Cell Biology, University Medical Center Rostock, Rostock, Germany
| | - Doris Hansmann
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, Rostock, Germany
| | - Juliane Pasold
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, Rostock, Germany
| | - Andreas Buettner
- Institute of Forensic Medicine, University Medical Center Rostock, Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
36
|
Yamashita A, Tamamura Y, Morioka M, Karagiannis P, Shima N, Tsumaki N. Considerations in hiPSC-derived cartilage for articular cartilage repair. Inflamm Regen 2018; 38:17. [PMID: 30305854 PMCID: PMC6171247 DOI: 10.1186/s41232-018-0075-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 01/08/2023] Open
Abstract
Background A lack of cell or tissue sources hampers regenerative medicine for articular cartilage damage. Main text We review and discuss the possible use of pluripotent stem cells as a new source for future clinical use. Human induced pluripotent stem cells (hiPSCs) have several advantages over human embryonic stem cells (hESCs). Methods for the generation of chondrocytes and cartilage from hiPSCs have been developed. To reduce the cost of this regenerative medicine, allogeneic transplantation is preferable. hiPSC-derived cartilage shows low immunogenicity like native cartilage, because the cartilage is avascular and chondrocytes are segregated by the extracellular matrix. In addition, we consider our experience with the aberrant deposition of lipofuscin or melanin on cartilage during the chondrogenic differentiation of hiPSCs. Short conclusion Cartilage generated from allogeneic hiPSC-derived cartilage can be used to repair articular cartilage damage.
Collapse
Affiliation(s)
- Akihiro Yamashita
- 1Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yoshihiro Tamamura
- 1Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Miho Morioka
- 1Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Peter Karagiannis
- 2International Public Communications Office, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Nobuyuki Shima
- 1Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Noriyuki Tsumaki
- 1Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Uzieliene I, Bernotas P, Mobasheri A, Bernotiene E. The Role of Physical Stimuli on Calcium Channels in Chondrogenic Differentiation of Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19102998. [PMID: 30275359 PMCID: PMC6212952 DOI: 10.3390/ijms19102998] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/04/2018] [Accepted: 09/22/2018] [Indexed: 12/15/2022] Open
Abstract
Human mesenchymal stem cells (hMSC) are becoming increasingly popular in tissue engineering. They are the most frequently used stem cell source for clinical applications due to their high potential to differentiate into several lineages. Cartilage is known for its low capacity for self-maintenance and currently there are no efficient methods to improve cartilage repair. Chondrogenic differentiation of hMSC isolated from different tissues is widely employed due to a high clinical demand for the improvement of cartilage regeneration. Calcium channels that are regulated by physical stimuli seem to play a pivotal role in chondrogenic differentiation of MSCs. These channels increase intracellular calcium concentration, which leads to the initiation of the relevant cellular processes that are required for differentiation. This review will focus on the impact of different physical stimuli, including electrical, electromagnetic/magnetic and mechanical on various calcium channels and calcium signaling mechanisms during chondrogenic differentiation of hMSC.
Collapse
Affiliation(s)
- Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| | - Paulius Bernotas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK.
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| |
Collapse
|
38
|
Alzahrani MM, Makhdom AM, Rauch F, Lauzier D, Kotsiopriftis M, Ghadakzadeh S, Hamdy RC. Assessment of the effect of systemic delivery of sclerostin antibodies on Wnt signaling in distraction osteogenesis. J Bone Miner Metab 2018. [PMID: 28647818 DOI: 10.1007/s00774-017-0847-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sclerostin is a known inhibitor of the Wnt signaling pathway which is involved in osteogenesis and, when inactivated, stimulates bone formation. To our knowledge, this effect has not been studied in the context of distraction osteogenesis (DO). Tibial DO was conducted on a total of 24 wild-type mice, which were then divided into 2 groups-a saline injection group (control) and an anti-sclerostin (Scl-Ab) injection group (treatment). The mice in the treatment group received 100 mg/kg intravenous injections of the antibody weekly until killing. The 12 mice in each group were subdivided into four time points according to post-osteotomy time of killing-11 days (mid-distraction), 17 days (late distraction), 34 days (mid-consolidation) and 51 days (late consolidation), with 3 mice per subgroup. After killing, the tibia specimens were collected for immunohistochemical analysis. Our results show that the group injected with anti-sclerostin had an earlier peak (day 11) in the distraction phase of the osteogenic molecules involved in the Wnt signaling pathway in comparison to the placebo group. In addition, downregulation of the inhibitors of this pathway was noted in the treatment group when compared with the placebo group. Furthermore, LRP-5 showed a significant increase in expression in the treatment group. Sclerostin inhibition has a significant effect on the DO process through its effect on the Wnt pathway. This effect was evident through the decreased effect of sclerostin on LRP-5 and earlier upregulation of the osteogenic molecules involved in this pathway.
Collapse
Affiliation(s)
- Mohammad M Alzahrani
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, 1003 Decarie Blvd, Montreal, QC, H4A 0A9, Canada.
- Department of Orthopaedic Surgery, University of Dammam, Dammam, Saudi Arabia.
| | - Asim M Makhdom
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, 1003 Decarie Blvd, Montreal, QC, H4A 0A9, Canada
- Department of Orthopaedic Surgery, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Frank Rauch
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, 1003 Decarie Blvd, Montreal, QC, H4A 0A9, Canada
| | - Dominique Lauzier
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, 1003 Decarie Blvd, Montreal, QC, H4A 0A9, Canada
| | - Maria Kotsiopriftis
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, 1003 Decarie Blvd, Montreal, QC, H4A 0A9, Canada
| | - Saber Ghadakzadeh
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, 1003 Decarie Blvd, Montreal, QC, H4A 0A9, Canada
| | - Reggie C Hamdy
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, 1003 Decarie Blvd, Montreal, QC, H4A 0A9, Canada
| |
Collapse
|
39
|
López-Ruiz E, Jiménez G, Kwiatkowski W, Montañez E, Arrebola F, Carrillo E, Choe S, Marchal J, Perán M, Perán M. Impact of TGF-β family-related growth factors on chondrogenic differentiation of adipose-derived stem cells isolated from lipoaspirates and infrapatellar fat pads of osteoarthritic patients. Eur Cell Mater 2018; 35:209-224. [PMID: 29652075 PMCID: PMC5922762 DOI: 10.22203/ecm.v035a15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The success of cell-based approaches for the treatment of cartilage defects requires an optimal autologous cell source with chondrogenic differentiation ability that maintains its differentiated properties and stability following implantation. The objective of this study was to compare the chondrogenic capacity of mesenchymal stem cells (MSCs) isolated from lipoaspirates (ASCs) and the infrapatellar fat pad (IFPSCs) of osteoarthritic patients and treated with transforming growth factor (TGF)-β family-related growth factors. Cells were cultured for 6 weeks in a 3D pellet culture system with the chimeric activin A/bone morphogenic protein (BMP)-2 ligand (AB235), the chimeric nodal/BMP-2 ligand (NB260) or BMP-2. To investigate the stability of the new cartilage, ASCs-treated pellets were transplanted subcutaneously into severe combined immunodeficiency (SCID) mice. Histological and immunohistochemical assessment confirmed that the growth factors induced cartilage differentiation in both isolated cell types. However, reverse transcription-quantitative PCR results showed that ASCs presented a higher chondrogenic potential than IFPSCs. In vivo results revealed that AB235-treated ASCs pellets were larger in size and could form stable cartilage-like tissue as compared to NB260-treated pellets, while BMP-2-treated pellets underwent calcification. The chondrogenic induction of ASCs by AB235 treatment was mediated by SMAD2/3 activation, as proved by immunofluorescence analysis. The results of this study indicated that the combination of ASCs and AB235 might lead to a cell-based cartilage regeneration treatment.
Collapse
Affiliation(s)
- E. López-Ruiz
- Department of Health Sciences, University of Jaén, Jaén, Spain,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
| | - G. Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain,Department of Human Anatomy and Embryology, Faculty of Medicine and Excellence Research Unit “Modelling Nature” (MNat), University of Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - W. Kwiatkowski
- Drug Discovery Collaboratory, Qualcomm Institute, University of California, La Jolla, California, USA
| | - E. Montañez
- Department of Orthopaedic Surgery and Traumatology, Virgen de la Victoria University Hospital, Málaga, Spain,Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - F. Arrebola
- Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
| | - E. Carrillo
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain,Department of Human Anatomy and Embryology, Faculty of Medicine and Excellence Research Unit “Modelling Nature” (MNat), University of Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - S. Choe
- Drug Discovery Collaboratory, Qualcomm Institute, University of California, La Jolla, California, USA
| | - J.A. Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain,Department of Human Anatomy and Embryology, Faculty of Medicine and Excellence Research Unit “Modelling Nature” (MNat), University of Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - M. Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain,Address for correspondence: Macarena Perán, Department of Health Sciences, University of Jaén, Jaén E-23071, Spain. Telephone number: +34 953213656, Fax number: +34 953212943,
| | | |
Collapse
|
40
|
Ondrésik M, Oliveira JM, Reis RL. Advances for Treatment of Knee OC Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:3-24. [PMID: 29736567 DOI: 10.1007/978-3-319-76735-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteochondral (OC) defects are prevalent among young adults and are notorious for being unable to heal. Although they are traumatic in nature, they often develop silently. Detection of many OC defects is challenging, despite the criticality of early care. Current repair approaches face limitations and cannot provide regenerative or long-standing solution. Clinicians and researchers are working together in order to develop approaches that can regenerate the damaged tissues and protect the joint from developing osteoarthritis. The current concepts of tissue engineering and regenerative medicine, which have brought many promising applications to OC management, are overviewed herein. We will also review the types of stem cells that aim to provide sustainable cell sources overcoming the limitation of autologous chondrocyte-based applications. The various scaffolding materials that can be used as extracellular matrix mimetic and having functional properties similar to the OC unit are also discussed.
Collapse
Affiliation(s)
- Marta Ondrésik
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - J Miguel Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| |
Collapse
|
41
|
Wu YX, Jing XZ, Sun Y, Ye YP, Guo JC, Huang JM, Xiang W, Zhang JM, Guo FJ. CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro. Mol Med Rep 2017; 16:8019-8028. [PMID: 28983600 PMCID: PMC5779886 DOI: 10.3892/mmr.2017.7616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
Skeletal stem cells (SSCs) are a population of progenitor cells which give rise to postnatal skeletal tissues including bone, cartilage and bone marrow stroma, however not to adipose, haematopoietic or muscle tissue. Growth plate chondrocytes exhibit the ability of continuous proliferation and differentiation, which contributes to the continuous physiological growth. The growth plate has been hypothesized to contain SSCs which exhibit a desirable differentiation capacity to generate bone and cartilage. Due to the heterogeneity of the growth plate chondrocytes, SSCs in the growth plate are not well studied. The present study used cluster of differentiation (CD)146 and CD105 as markers to isolate purified SSCs. CD105+ SSCs and CD146+ SSCs were isolated using a magnetic activated cell sorting method. To quantitatively investigate the proliferation and differentiation ability, the colony-forming efficiency (CFE) and multi‑lineage differentiation capacity of CD105+ SSCs and CD146+ SSCs were compared with unsorted cells and adipose-derived stem cells (ASCs). It was revealed that CD105+ and CD146+ subpopulations represented subsets of SSCs which generated chondrocytes and osteocytes, however not adipocytes. Compared with CD105+ subpopulations and ASCs, the CD146+ subpopulation exhibited a greater CFE and continuous high chondrogenic differentiation capacity in vitro. Therefore, the present study suggested that the CD146+ subpopulation represented a chondrolineage‑restricted subpopulation of SSCs and may therefore act as a valuable cell source for cartilage regeneration.
Collapse
Affiliation(s)
- Ying-Xing Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xing-Zhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yue Sun
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ya-Ping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jia-Chao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jun-Ming Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wei Xiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jia-Ming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Feng-Jing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
42
|
Driessen BJ, Logie C, Vonk LA. Cellular reprogramming for clinical cartilage repair. Cell Biol Toxicol 2017; 33:329-349. [PMID: 28144824 PMCID: PMC5493710 DOI: 10.1007/s10565-017-9382-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/17/2017] [Indexed: 01/06/2023]
Abstract
The repair of articular cartilage needs a sufficient number of chondrocytes to replace the defect tissue, and therefore, expansion of cells is generally required. Chondrocytes derived by cellular reprogramming may provide a solution to the limitations of current (stem) cell-based therapies. In this article, two distinct approaches-induced pluripotent stem cell (iPSC)-mediated reprogramming and direct lineage conversion-are analysed and compared according to criteria that encompass the qualification of the method and the derived chondrocytes for the purpose of clinical application. Progress in iPSC generation has provided insights into the replacement of reprogramming factors by small molecules and chemical compounds. As follows, multistage chondrogenic differentiation methods have shown to improve the chondrocyte yield and quality. Nevertheless, the iPSC 'detour' remains a time- and cost-consuming approach. Direct conversion of fibroblasts into chondrocytes provides a slight advantage over these aspects compared to the iPSC detour. However, the requirement of constitutive transgene expression to inhibit hypertrophic differentiation limits this approach of being translated to the clinic. It can be concluded that the quality of the derived chondrocytes highly depends on the characteristics of the reprogramming method and that this is important to keep in mind during the experimental set-up. Further research into both reprogramming approaches for clinical cartilage repair has to include proper control groups and epigenetic profiling to optimize the techniques and eventually derive functionally stable articular chondrocytes.
Collapse
Affiliation(s)
- Britta J.H. Driessen
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Colin Logie
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Lucienne A. Vonk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
43
|
|
44
|
Donnelly H, Smith CA, Sweeten PE, Gadegaard N, Meek RD, D'Este M, Mata A, Eglin D, Dalby MJ. Bone and cartilage differentiation of a single stem cell population driven by material interface. J Tissue Eng 2017; 8:2041731417705615. [PMID: 28567273 PMCID: PMC5438107 DOI: 10.1177/2041731417705615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/29/2017] [Indexed: 01/26/2023] Open
Abstract
Adult stem cells, such as mesenchymal stem cells, are a multipotent cell source able to differentiate towards multiple cell types. While used widely in tissue engineering and biomaterials research, they present inherent donor variability and functionalities. In addition, their potential to form multiple tissues is rarely exploited. Here, we combine an osteogenic nanotopography and a chondrogenic hyaluronan hydrogel with the hypothesis that we can make a complex tissue from a single multipotent cell source with the exemplar of creating a three-dimensional bone–cartilage boundary environment. Marrow stromal cells were seeded onto the topographical surface and the temperature gelling hydrogel laid on top. Cells that remained on the nanotopography spread and formed osteoblast-like cells, while those that were seeded into or migrated into the gel remained rounded and expressed chondrogenic markers. This novel, simple interfacial environment provides a platform for anisotropic differentiation of cells from a single source, which could ultimately be exploited to sort osteogenic and chondrogenic progenitor cells from a marrow stromal cell population and to develop a tissue engineered interface.
Collapse
Affiliation(s)
- Hannah Donnelly
- Centre for Cell Engineering, University of Glasgow, Glasgow, UK
| | | | - Paula E Sweeten
- Centre for Cell Engineering, University of Glasgow, Glasgow, UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK
| | - Rm Dominic Meek
- Department of Orthopaedics, Southern General Hospital, Glasgow, UK
| | | | - Alvaro Mata
- Institute of Bioengineering, Queen Mary University of London, London, UK.,School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - David Eglin
- AO Research Institute Davos, Davos, Switzerland
| | - Matthew J Dalby
- Centre for Cell Engineering, University of Glasgow, Glasgow, UK
| |
Collapse
|
45
|
Wang Y, Yang T, Liu Y, Zhao W, Zhang Z, Lu M, Zhang W. Decrease of miR-195 Promotes Chondrocytes Proliferation and Maintenance of Chondrogenic Phenotype via Targeting FGF-18 Pathway. Int J Mol Sci 2017; 18:ijms18050975. [PMID: 28471382 PMCID: PMC5454888 DOI: 10.3390/ijms18050975] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Slow growth and rapid loss of chondrogenic phenotypes are the major problems affecting chronic cartilage lesions. The role of microRNA-195 (miR-195) and its detailed working mechanism in the fore-mentioned process remains unknown. Fibroblastic growth factor 18 (FGF-18) plays a key role in cartilage homeostasis; whether miR-195 could regulate FGF-18 and its downstream signal pathway in chondrocyte proliferation and maintenance of chondrogenic phenotypes still remains unclear. The present research shows elevated miR-195 but depressed FGF-18 expressed in joint fluid specimens of 20 patients with chronic cartilage lesions and in CH1M and CH3M chondrocytes when compared with that in joint fluid specimens without cartilage lesions and in CH1W and CH2W chondrocytes, respectively. The following loss of function test revealed that downregulation of miR-195 by transfection of miR-195 inhibitors promoted chondrocyte proliferation and expression of a type II collagen α I chain (Col2a1)/aggrecan. Through the online informatics analysis we theoretically predicted that miR-195 could bind to a FGF-18 3' untranslated region (3'UTR), also, we verified that a miR-195 could regulate the FGF-18 and its downstream pathway. The constructed dual luciferase assay further confirmed that FGF-18 was a direct target of miR-195. The executed anti-sense experiment displayed that miR-195 could regulate chondrocyte proliferation and Col2a1/aggrecan expression via the FGF-18 pathway. Finally, through an in vivo anterior cruciate ligament transection (ACLT) model, downregulation of miR-195 presented a significantly protective effect on chronic cartilage lesions. Evaluating all of the outcomes of the current research revealed that a decrease of miR-195 protected chronic cartilage lesions by promoting chondrocyte proliferation and maintenance of chondrogenic phenotypes via the targeting of the FGF-18 pathway and that the miR-195/FGF-18 axis could be a potential target in the treatment of cartilage lesions.
Collapse
Affiliation(s)
- Yong Wang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
- The 4th Department of Orthopedic Surgery, The Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, China.
| | - Tao Yang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Yadong Liu
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Wei Zhao
- The 4th Department of Orthopedic Surgery, The Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, China.
| | - Zhen Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Ming Lu
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Weiguo Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
46
|
Goldberg A, Mitchell K, Soans J, Kim L, Zaidi R. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res 2017; 12:39. [PMID: 28279182 PMCID: PMC5345159 DOI: 10.1186/s13018-017-0534-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place.
Collapse
Affiliation(s)
- Andy Goldberg
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Katrina Mitchell
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Julian Soans
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| | - Louise Kim
- Joint Research and Enterprise Office, St George’s University of London and St George’s University Hospitals NHS Foundation Trust, Hunter Wing, Cranmer Terrace, London, SW17 0RE UK
| | - Razi Zaidi
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital (RNOH), Brockley Hill Stanmore, London, HA7 4LP UK
| |
Collapse
|
47
|
Calabrese G, Forte S, Gulino R, Cefalì F, Figallo E, Salvatorelli L, Maniscalchi ET, Angelico G, Parenti R, Gulisano M, Memeo L, Giuffrida R. Combination of Collagen-Based Scaffold and Bioactive Factors Induces Adipose-Derived Mesenchymal Stem Cells Chondrogenic Differentiation In vitro. Front Physiol 2017; 8:50. [PMID: 28210226 PMCID: PMC5288372 DOI: 10.3389/fphys.2017.00050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/18/2017] [Indexed: 12/27/2022] Open
Abstract
Recently, multipotent mesenchymal stem cells (MSCs) have attracted much attention in the field of regenerative medicine due to their ability to give rise to different cell types, including chondrocytes. Damaged articular cartilage repair is one of the most challenging issues for regenerative medicine, due to the intrinsic limited capability of cartilage to heal because of its avascular nature. While surgical approaches like chondral autografts and allografts provide symptoms and function improvement only for a short period, MSC based stimulation therapies, like microfracture surgery or autologous matrix-induced chondrogenesis demonstrate to be more effective. The use of adult chondrocytes, which are the main cellular constituent of cartilage, in medical practice, is indeed limited due to their instability in monolayer culture and difficulty to collect donor tissue (articular and nasal cartilage). The most recent cartilage engineering approaches combine cells, biomaterial scaffold and bioactive factors to promote functional tissue replacements. Many recent evidences demonstrate that scaffolds providing specific microenvironmental conditions can promote MSCs differentiation toward a functional phenotype. In the present work, the chondrogenic potential of a new Collagen I based 3D scaffold has been assessed in vitro, in combination with human adipose-derived MSCs which possess a higher chondrogenic potential compared to MSCs isolated from other tissues. Our data indicate that the scaffold was able to promote the early stages of chondrogenic commitment and that supplementation of specific soluble factors was able to induce the complete differentiation of MSCs in chondrocytes as demonstrated by the appearance of cartilage distinctive markers (Sox 9, Aggrecan, Matrilin-1, and Collagen II), as well as by the cartilage-specific Alcian Blue staining and by the acquisition of typical cellular morphology. Such evidences suggest that the investigated scaffold formulation could be suitable for the production of medical devices that can be beneficial in the field of articular cartilage engineering, thus improving the efficacy and durability of the current therapeutic options.
Collapse
Affiliation(s)
- Giovanna Calabrese
- Istituto Oncologico del Mediterraneo - Ricerca ViagrandeCatania, Italy; Physiology Section, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Stefano Forte
- Istituto Oncologico del Mediterraneo - Ricerca Viagrande Catania, Italy
| | - Rosario Gulino
- Istituto Oncologico del Mediterraneo - Ricerca ViagrandeCatania, Italy; Physiology Section, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | | | | | - Lucia Salvatorelli
- Anatomic Pathology Section, Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, "Policlinico Vittorio Emanuele", University of Catania Catania, Italy
| | - Eugenia T Maniscalchi
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Giuseppe Angelico
- Anatomic Pathology Section, Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, "Policlinico Vittorio Emanuele", University of Catania Catania, Italy
| | - Rosalba Parenti
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Massimo Gulisano
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology Viagrande, Italy
| | | |
Collapse
|
48
|
Weegman BP, Essawy A, Nash P, Carlson AL, Voltzke KJ, Geng Z, Jahani M, Becker BB, Papas KK, Firpo MT. Nutrient Regulation by Continuous Feeding for Large-scale Expansion of Mammalian Cells in Spheroids. J Vis Exp 2016:52224. [PMID: 27768027 PMCID: PMC5092061 DOI: 10.3791/52224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this demonstration, spheroids formed from the β-TC6 insulinoma cell line were cultured as a model of manufacturing a mammalian islet cell product to demonstrate how regulating nutrient levels can improve cell yields. In previous studies, bioreactors facilitated increased culture volumes over static cultures, but no increase in cell yields were observed. Limitations in key nutrients such as glucose, which were consumed between batch feedings, can lead to limitations in cell expansion. Large fluctuations in glucose levels were observed, despite the increase in glucose concentrations in the media. The use of continuous feeding systems eliminated fluctuations in glucose levels, and improved cell growth rates when compared with batch fed static and SSB culture methods. Additional increases in growth rates were observed by adjusting the feed rate based on calculated nutrient consumption, which allowed the maintenance of physiological glucose over three weeks in culture. This method can also be adapted for other cell types.
Collapse
|
49
|
James AW, Hindle P, Murray IR, West CC, Tawonsawatruk T, Shen J, Asatrian G, Zhang X, Nguyen V, Simpson AH, Ting K, Péault B, Soo C. Pericytes for the treatment of orthopedic conditions. Pharmacol Ther 2016; 171:93-103. [PMID: 27510330 DOI: 10.1016/j.pharmthera.2016.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/01/2016] [Indexed: 01/15/2023]
Abstract
Pericytes and other perivascular stem cells are of growing interest in orthopedics and tissue engineering. Long regarded as simple regulators of angiogenesis and blood pressure, pericytes are now recognized to have MSC (mesenchymal stem cell) characteristics, including multipotentiality, self-renewal, immunoregulatory functions, and diverse roles in tissue repair. Pericytes are typified by characteristic cell surface marker expression (including αSMA, CD146, PDGFRβ, NG2, RGS5, among others). Although alone no marker is absolutely specific for pericytes, collectively these markers appear to selectively identify an MSC-like pericyte. The purification of pericytes is most well described as a CD146+CD34-CD45- cell population. Pericytes and other perivascular stem cell populations have been applied in diverse orthopedic applications, including both ectopic and orthotopic models. Application of purified cells has sped calvarial repair, induced spine fusion, and prevented fibrous non-union in rodent models. Pericytes induce these effects via both direct and indirect mechanisms. In terms of their paracrine effects, pericytes are known to produce and secrete high levels of a number of growth and differentiation factors both in vitro and after transplantation. The following review will cover existing studies to date regarding pericyte application for bone and cartilage engineering. In addition, further questions in the field will be pondered, including the phenotypic and functional overlap between pericytes and culture-derived MSC, and the concept of pericytes as efficient producers of differentiation factors to speed tissue repair.
Collapse
Affiliation(s)
- Aaron W James
- School of Dentistry, University of California, Los Angeles, United States; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States; Orthopedic Hospital Research Center, University of California, Los Angeles, United States; Department of Pathology, Johns Hopkins University, Baltimore, MD, United States.
| | - Paul Hindle
- Department of Trauma and Orthopaedic Surgery, The University of Edinburgh, Edinburgh, United Kingdom
| | - Iain R Murray
- Department of Trauma and Orthopaedic Surgery, The University of Edinburgh, Edinburgh, United Kingdom; BHF Center for Vascular Regeneration & MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher C West
- BHF Center for Vascular Regeneration & MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom; Department of Plastic and Reconstructive Surgery, St. Johns Hospital, Livingston, United Kingdom
| | - Tulyapruek Tawonsawatruk
- Department of Trauma and Orthopaedic Surgery, The University of Edinburgh, Edinburgh, United Kingdom; BHF Center for Vascular Regeneration & MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom; Department of Orthopaedics, Ramathibodi Hospital, Madihol University, Thailand
| | - Jia Shen
- School of Dentistry, University of California, Los Angeles, United States
| | - Greg Asatrian
- School of Dentistry, University of California, Los Angeles, United States
| | - Xinli Zhang
- School of Dentistry, University of California, Los Angeles, United States
| | - Vi Nguyen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - A Hamish Simpson
- Department of Trauma and Orthopaedic Surgery, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kang Ting
- School of Dentistry, University of California, Los Angeles, United States
| | - Bruno Péault
- Orthopedic Hospital Research Center, University of California, Los Angeles, United States; BHF Center for Vascular Regeneration & MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Chia Soo
- Orthopedic Hospital Research Center, University of California, Los Angeles, United States; Department of Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
50
|
Caminal M, Peris D, Fonseca C, Barrachina J, Codina D, Rabanal RM, Moll X, Morist A, García F, Cairó JJ, Gòdia F, Pla A, Vives J. Cartilage resurfacing potential of PLGA scaffolds loaded with autologous cells from cartilage, fat, and bone marrow in an ovine model of osteochondral focal defect. Cytotechnology 2016; 68:907-19. [PMID: 25595211 PMCID: PMC4960140 DOI: 10.1007/s10616-015-9842-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 01/08/2015] [Indexed: 12/11/2022] Open
Abstract
Current developments in tissue engineering strategies for articular cartilage regeneration focus on the design of supportive three-dimensional scaffolds and their use in combination with cells from different sources. The challenge of translating initial successes in small laboratory animals into the clinics involves pilot studies in large animal models, where safety and efficacy should be investigated during prolonged follow-up periods. Here we present, in a single study, the long-term (up to 1 year) effect of biocompatible porous scaffolds non-seeded and seeded with fresh ex vivo expanded autologous progenitor cells that were derived from three different cell sources [cartilage, fat and bone marrow (BM)] in order to evaluate their advantages as cartilage resurfacing agents. An ovine model of critical size osteochondral focal defect was used and the test items were implanted arthroscopically into the knees. Evidence of regeneration of hyaline quality tissue was observed at 6 and 12 months post-treatment with variable success depending on the cell source. Cartilage and BM-derived mesenchymal stromal cells (MSC), but not those derived from fat, resulted in the best quality of new cartilage, as judged qualitatively by magnetic resonance imaging and macroscopic assessment, and by histological quantitative scores. Given the limitations in sourcing cartilage tissue and the risk of donor site morbidity, BM emerges as a preferential source of MSC for novel cartilage resurfacing therapies of osteochondral defects using copolymeric poly-D,L-lactide-co-glycolide scaffolds.
Collapse
Affiliation(s)
- M Caminal
- Divisió de Teràpies Avançades/XCELIA, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain
| | - D Peris
- Grup d'Enginyeria Cel·lular i Tissular, Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Edifici Q, Campus de la UAB, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - C Fonseca
- Departament de Medicina i Cirurgia Animals, Àrea de Medicina i Cirurgia Animal, Universitat Autònoma de Barcelona, Edifici V, Campus de la UAB, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - J Barrachina
- Hospital ASEPEYO Sant Cugat, Avinguda Alcalde Barnils, 54-60, Sant Cugat del Vallès, 08174, Barcelona, Spain
| | - D Codina
- Hospital ASEPEYO Sant Cugat, Avinguda Alcalde Barnils, 54-60, Sant Cugat del Vallès, 08174, Barcelona, Spain
| | - R M Rabanal
- Departament de Medicina i Cirurgia Animals, Àrea de Medicina i Cirurgia Animal, Universitat Autònoma de Barcelona, Edifici V, Campus de la UAB, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - X Moll
- Departament de Medicina i Cirurgia Animals, Àrea de Medicina i Cirurgia Animal, Universitat Autònoma de Barcelona, Edifici V, Campus de la UAB, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - A Morist
- Departament de Medicina i Cirurgia Animals, Àrea de Medicina i Cirurgia Animal, Universitat Autònoma de Barcelona, Edifici V, Campus de la UAB, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - F García
- Departament de Medicina i Cirurgia Animals, Àrea de Medicina i Cirurgia Animal, Universitat Autònoma de Barcelona, Edifici V, Campus de la UAB, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - J J Cairó
- Grup d'Enginyeria Cel·lular i Tissular, Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Edifici Q, Campus de la UAB, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - F Gòdia
- Grup d'Enginyeria Cel·lular i Tissular, Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Edifici Q, Campus de la UAB, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - A Pla
- Divisió de Teràpies Avançades/XCELIA, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain
| | - J Vives
- Divisió de Teràpies Avançades/XCELIA, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005, Barcelona, Spain.
| |
Collapse
|