Delimont NM, Katz BB, Fiorentino NM, Kimmel KA, Haub MD, Rosenkranz SK, Tomich JM, Lindshield BL. Salivary Cystatin SN Binds to Phytic Acid In Vitro and Is a Predictor of Nonheme Iron Bioavailability with Phytic Acid Supplementation in a Proof of Concept Pilot Study.
Curr Dev Nutr 2019;
3:nzz057. [PMID:
31218272 PMCID:
PMC6571437 DOI:
10.1093/cdn/nzz057]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/18/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND
Acute phytic acid intake has been found to decrease iron bioavailability; however, repeated phytic acid consumption leads to iron absorption adaptation. Salivary proline-rich proteins (PRPs) have been shown to inhibit iron chelation to tannins and may mediate similar iron absorption adaptation with phytic acid intake.
OBJECTIVES
The objectives of this study were to determine whether salivary proteins bind to phytic acid in vitro, and to explore a proof of concept in a pilot study that examined the impact of 4-wk, daily phytic acid supplementation on individuals' iron status, bioavailability, and salivary PRP concentrations.
METHODS
High-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization-time of flight were used to characterize in vitro salivary protein-phytic acid interactions. Nonanemic women (n = 7) consumed 350 mg phytic acid supplements 3 times daily for 4 wk, and meal challenges were employed to determine iron bioavailability, iron status, and salivary protein concentrations before and after supplementation periods. Enzyme-linked immunosorbent assay (ELISA) analysis of purified protein fractions and participant saliva identified proteins bound to phytic acid.
RESULTS
In vitro salivary protein-phytic acid interaction identified cystatin SN, a non-proline rich salivary protein, as the specific bound protein to phytic acid. Iron bioavailability (P = 0.32), hemoglobin (P = 0.72), and serum ferritin (P = 0.08) concentrations were not reduced from week 0 to week 4 after phytic acid supplementation. Basic PRPs and cystatin SN concentrations were positively correlated with iron bioavailability at week 4.
CONCLUSIONS
Overall, results suggest that phytic acid binds to the non-PRP cystatin SN and that salivary protein production may improve iron bioavailability with phytic acid consumption.
Collapse