1
|
Segura PC, Wattiez R, Vande Wouwer A, Leroy B, Dewasme L. Dynamic modeling of Rhodospirillum rubrum PHA production triggered by redox stress during VFA photoheterotrophic assimilations. J Biotechnol 2022; 360:45-54. [PMID: 36273668 DOI: 10.1016/j.jbiotec.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
Polyhydroxyalkanoates (PHA) represent an environmentally friendly alternative to petroleum based plastics for a broad range of applications from packaging to biomedical devices. In the prospect of an industrial PHA production, it is highly valuable to accurately control the incorporation of different repeating units into the polymer, to produce a polyester with specific material characteristics. In this study, we develop macroscopic dynamic models predicting the polymer production and composition when mixtures containing up to four volatile fatty acids (VFA) are used as substrates. These models successfully reproduce the sequential (and preferential) substrate consumption and polymer production/reconsumption patterns, experimentally observed during biomass growth, thanks to simple kinetic structures based on Monod and inhibition factors. These models can serve as a basis for numerical simulation and process analysis, as well as process intensification through model-based optimization and control.
Collapse
Affiliation(s)
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, University of Mons, 7000 Mons, Belgium
| | - Alain Vande Wouwer
- Systems, Estimation, Control and Optimization Group (SECO), University of Mons, 7000 Mons, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, University of Mons, 7000 Mons, Belgium
| | - Laurent Dewasme
- Systems, Estimation, Control and Optimization Group (SECO), University of Mons, 7000 Mons, Belgium.
| |
Collapse
|
2
|
Cabecas Segura P, De Meur Q, Alloul A, Tanghe A, Onderwater R, Vlaeminck SE, Wouwer AV, Wattiez R, Dewasme L, Leroy B. Preferential photoassimilation of volatile fatty acids by purple non-sulfur bacteria: Experimental kinetics and dynamic modelling. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Study of the production of poly(hydroxybutyrate- co-hydroxyhexanoate) and poly(hydroxybutyrate- co-hydroxyvalerate- co-hydroxyhexanoate) in Rhodospirillum rubrum. Appl Environ Microbiol 2022; 88:e0158621. [PMID: 35080906 DOI: 10.1128/aem.01586-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly(hydroxybutyrate-co-hydroxyhexanoate) (P(HB-co-HHx)) and poly(hydroxybutyrate-co-hydroxyvalerate-co-hydroxyhexanoate) P(HB-co-HV-co-HHx) demonstrate interesting mechanical and thermal properties as well as excellent biocompatibility making them suitable for multiple applications and notably biomedical purposes. The production of such polymer was described in Rhodospirillum rubrum (Rs. rubrum), a purple non-sulfur bacteria in a nutrient-lacking environment where the HHx synthesis is triggered by the presence of hexanoate in the medium. However, the production of P(HB-co-HHx) under nutrient-balanced growth conditions has not been described so far in Rs. rubrum and the assimilation of hexanoate is poorly documented. In this study, we demonstrate using proteomic analysis and mutant fitness assay, that hexanoate assimilation involve β-oxidation and the ethylmalonyl-CoA (EMC) and methylbutanoyl-CoA (MBC) pathways, both being anaplerotic pathways already described in Rs. rubrum. Polyhydroxyalkanoate (PHA) production is likely to involve the de novo fatty acid synthesis pathway. Concerning the polymer composition, HB is the main component of the polymer, probably as acetyl-CoA and butyryl-CoA are intermediates of hexanoate assimilation pathways. When no essential nutrient is lacking in the medium, the synthesis of PHA seems to help maintain the redox balance of the cell. In this framework, we showed that the fixation of CO2 is required to sustain the growth. An increase in the proportion of HHx in the polymer was observed when redox stress was engendered in the cell under bicarbonate limiting growth conditions. The addition of isoleucine or valerate in the medium also increased the HHx content of the polymer and allowed the production of a terpolymer of P(HB-co-HV-co-HHx). Importance The use of purple bacteria, which can assimilate volatile fatty acids for biotechnological applications has risen since they reduce the production costs of added-value compounds such as PHA. P(HB-co-HHx) and P(HB-co-HV-co-HHx) have demonstrated interesting properties notably for biomedical application. In a nutrient-lacking environment, Rs. rubrum is known to synthesize such polymer when hexanoate is used as carbon source. However, their production in non-nutrient lacking growth conditions has not been described so far in Rs. rubrum and the assimilation of hexanoate is poorly documented. As the carbon source and its assimilation directly impact the polymer composition, we studied under non-nutrient lacking growth conditions, the assimilation path of hexanoate and PHA production in Rs. rubrum. Proteomic analysis and mutant fitness assay allowed to explain PHA production and composition. Increase in HHx content of the polymer and production of P(HB-co-HV-co-HHx) was possible using the knowledge gained on metabolism under hexanoate growth conditions.
Collapse
|
4
|
Cabecas Segura P, De Meur Q, Tanghe A, Onderwater R, Dewasme L, Wattiez R, Leroy B. Effects of Mixing Volatile Fatty Acids as Carbon Sources on Rhodospirillum rubrum Carbon Metabolism and Redox Balance Mechanisms. Microorganisms 2021; 9:1996. [PMID: 34576891 PMCID: PMC8471276 DOI: 10.3390/microorganisms9091996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Rhodospirillum rubrum has a versatile metabolism, and as such can assimilate a broad range of carbon sources, including volatile fatty acids. These carbon sources are gaining increasing interest for biotechnological processes, since they reduce the production costs for numerous value-added compounds and contribute to the development of a more circular economy. Usually, studies characterizing carbon metabolism are performed by supplying a single carbon source; however, in both environmental and engineered conditions, cells would rather grow on mixtures of volatile fatty acids (VFAs) generated via anaerobic fermentation. In this study, we show that the use of a mixture of VFAs as carbon source appears to have a synergy effect on growth phenotype. In addition, while propionate and butyrate assimilation in Rs. rubrum is known to require an excess of bicarbonate in the culture medium, mixing them reduces the requirement for bicarbonate supplementation. The fixation of CO2 is one of the main electron sinks in purple bacteria; therefore, this observation suggests an adaptation of both metabolic pathways used for the assimilation of these VFAs and redox homeostasis mechanism. Based on proteomic data, modification of the propionate assimilation pathway seems to occur with a switch from a methylmalonyl-CoA intermediate to the methylcitrate cycle. Moreover, it seems that the presence of a mixture of VFAs switches electron sinking from CO2 fixation to H2 and isoleucine production.
Collapse
Affiliation(s)
- Paloma Cabecas Segura
- Laboratory of Proteomics and Microbiology, University of Mons, 7000 Mons, Belgium; (P.C.S.); (Q.D.M.); (R.W.)
| | - Quentin De Meur
- Laboratory of Proteomics and Microbiology, University of Mons, 7000 Mons, Belgium; (P.C.S.); (Q.D.M.); (R.W.)
| | - Audrey Tanghe
- Materia Nova ASBL, Parc Initialis, Avenue Copernic 3, 7000 Mons, Belgium; (A.T.); (R.O.)
| | - Rob Onderwater
- Materia Nova ASBL, Parc Initialis, Avenue Copernic 3, 7000 Mons, Belgium; (A.T.); (R.O.)
| | - Laurent Dewasme
- Systems, Estimation, Control and Optimization Group, University of Mons, 7000 Mons, Belgium;
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, University of Mons, 7000 Mons, Belgium; (P.C.S.); (Q.D.M.); (R.W.)
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, University of Mons, 7000 Mons, Belgium; (P.C.S.); (Q.D.M.); (R.W.)
| |
Collapse
|
5
|
Capson-Tojo G, Batstone DJ, Grassino M, Vlaeminck SE, Puyol D, Verstraete W, Kleerebezem R, Oehmen A, Ghimire A, Pikaar I, Lema JM, Hülsen T. Purple phototrophic bacteria for resource recovery: Challenges and opportunities. Biotechnol Adv 2020; 43:107567. [PMID: 32470594 DOI: 10.1016/j.biotechadv.2020.107567] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Sustainable development is driving a rapid focus shift in the wastewater and organic waste treatment sectors, from a "removal and disposal" approach towards the recovery and reuse of water, energy and materials (e.g. carbon or nutrients). Purple phototrophic bacteria (PPB) are receiving increasing attention due to their capability of growing photoheterotrophically under anaerobic conditions. Using light as energy source, PPB can simultaneously assimilate carbon and nutrients at high efficiencies (with biomass yields close to unity (1 g CODbiomass·g CODremoved-1)), facilitating the maximum recovery of these resources as different value-added products. The effective use of infrared light enables selective PPB enrichment in non-sterile conditions, without competition with other phototrophs such as microalgae if ultraviolet-visible wavelengths are filtered. This review reunites results systematically gathered from over 177 scientific articles, aiming at producing generalized conclusions. The most critical aspects of PPB-based production and valorisation processes are addressed, including: (i) the identification of the main challenges and potentials of different growth strategies, (ii) a critical analysis of the production of value-added compounds, (iii) a comparison of the different value-added products, (iv) insights into the general challenges and opportunities and (v) recommendations for future research and development towards practical implementation. To date, most of the work has not been executed under real-life conditions, relevant for full-scale application. With the savings in wastewater discharge due to removal of organics, nitrogen and phosphorus as an important economic driver, priorities must go to using PPB-enriched cultures and real waste matrices. The costs associated with artificial illumination, followed by centrifugal harvesting/dewatering and drying, are estimated to be 1.9, 0.3-2.2 and 0.1-0.3 $·kgdry biomass-1. At present, these costs are likely to exceed revenues. Future research efforts must be carried out outdoors, using sunlight as energy source. The growth of bulk biomass on relatively clean wastewater streams (e.g. from food processing) and its utilization as a protein-rich feed (e.g. to replace fishmeal, 1.5-2.0 $·kg-1) appears as a promising valorisation route.
Collapse
Affiliation(s)
- Gabriel Capson-Tojo
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia; CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Damien J Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - María Grassino
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Daniel Puyol
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, Móstoles, Spain.
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium; Avecom NV, Industrieweg 122P, 9032 Wondelgem, Belgium.
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands.
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Anish Ghimire
- Department of Environmental Science and Engineering, Kathmandu University, Dhulikhel, Nepal.
| | - Ilje Pikaar
- School of Civil Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Tim Hülsen
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
6
|
Leroy B, De Meur Q, Moulin C, Wegria G, Wattiez R. New insight into the photoheterotrophic growth of the isocytrate lyase-lacking purple bacterium Rhodospirillum rubrum on acetate. MICROBIOLOGY-SGM 2015; 161:1061-1072. [PMID: 25737481 DOI: 10.1099/mic.0.000067] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/27/2015] [Indexed: 11/18/2022]
Abstract
Purple non-sulfur bacteria are well known for their metabolic versatility. One of these bacteria, Rhodospirillum rubrum S1H, has been selected by the European Space Agency to ensure the photoheterotrophic assimilation of volatile fatty acids in its regenerative life support system, MELiSSA. Here, we combined proteomic analysis with bacterial growth analysis and enzymatic activity assays in order to better understand acetate photoassimilation. In this isocitrate lyase-lacking organism, the assimilation of two-carbon compounds cannot occur through the glyoxylate shunt, and the citramalate cycle has been proposed to fill this role, while, in Rhodobacter sphaeroides, the ethylmalonyl-CoA pathway is used for acetate assimilation. Using proteomic analysis, we were able to identify and quantify more than 1700 unique proteins, representing almost one-half of the theoretical proteome of the strain. Our data reveal that a pyruvate : ferredoxin oxidoreductase (NifJ) could be used for the direct assimilation of acetyl-CoA through pyruvate, potentially representing a new redox-balancing reaction. We additionally propose that the ethylmalonyl-CoA pathway could also be involved in acetate assimilation by the examined strain, since specific enzymes of this pathway were all upregulated and activity of crotonyl-CoA reductase/carboxylase was increased in acetate conditions. Surprisingly, we also observed marked upregulation of glutaryl-CoA dehydrogenase, which could be a component of a new pathway for acetate photoassimilation. Finally, our data suggest that citramalate could be an intermediate of the branched-chain amino acid biosynthesis pathway, which is activated during acetate assimilation, rather than a metabolite of the so-called citramalate cycle.
Collapse
Affiliation(s)
- B Leroy
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Q De Meur
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - C Moulin
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - G Wegria
- Biotech Materia Nova, Parc Initialis, Avenue Copernic 1, 7000 Mons, Belgium
| | - R Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
7
|
Cornet JF, Favier L, Dussap CG. Modeling stability of photoheterotrophic continuous cultures in photobioreactors. Biotechnol Prog 2003; 19:1216-27. [PMID: 12892484 DOI: 10.1021/bp034041l] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Continuous cultures of the purple non-sulfur bacterium Rhodospirillum rubrum were grown in a cylindrical photobioreactor in photoheterotrophic conditions, using acetate as carbon source. A new kinetic and stoichiometric knowledge model was developed, and its ability to simulate experimental results obtained under varying incident light fluxes and residence times is discussed. The model accurately predicts the stable, unstable, or oscillating behavior observed for the reactor productivity. In particular, the values of residence time corresponding to a subcritical bifurcation with a typical hysteresis effect are calculated and analyzed. The robustness of the proposed model allows the engineering operating domain of the photobioreactor function to be set and offers a promising tool for the design and control of such photoheterotrophic processes.
Collapse
Affiliation(s)
- Jean-François Cornet
- Laboratoire de Génie Chimique et Biochimique, Université Blaise Pascal-CUST 24, avenue des Landais, BP 206, F 63174 AUBIERE Cedex, France
| | | | | |
Collapse
|
8
|
Nelis HJ, De Leenheer AP. Profiling and Quantitation of Bacterial Carotenoids by Liquid Chromatography and Photodiode Array Detection. Appl Environ Microbiol 1989; 55:3065-71. [PMID: 16348068 PMCID: PMC203224 DOI: 10.1128/aem.55.12.3065-3071.1989] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An analytical method for the profiling and quantitative determination of carotenoids in bacteria is described. Exhaustive extraction of the pigments from four selected bacterial strains required treatment of the cells with potassium hydroxide or liquefied phenol or both before the addition of the extracting solvent (methanol or diethyl ether). The carotenoids in the extracts were separated by nonaqueous reversed-phase liquid chromatography in conjunction with photodiode array absorption detection. The identity of a peak was considered definitive only when both its retention time and absorption spectrum, before and after chemical reactions, matched those of a reference component. In the absence of the latter, most peaks could be tentatively identified. Two examples illustrate how in the analysis of pigmented bacteria errors may result from using nonchromatographic procedures or liquid chromatographic methods lacking sufficient criteria for peak identification. Carotenoids of interest were determined quantitatively when the authentic reference substance was available or, alternatively, were determined semiquantitatively.
Collapse
Affiliation(s)
- H J Nelis
- Laboratoria voor Medische Biochemie en voor Klinische Analyse, Harelbekestraat 72, B-9000 Ghent, Belgium
| | | |
Collapse
|
9
|
|
10
|
NH+4-N recovery from ammonia-treated straw-whey ensilage and cell biomass formation by Rhodobacter capsulatus ATCC 23782 on silage filtrates. Appl Microbiol Biotechnol 1988. [DOI: 10.1007/bf00451640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|