1
|
Fenton LK, Marshall JR, Schuerger AC, Smith JK, Kelley KL. Aeolian Biodispersal of Terrestrial Microorganisms on Mars Through Saltation Bombardment of Spacecraft. ASTROBIOLOGY 2024. [PMID: 39453416 DOI: 10.1089/ast.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
A major unknown in the field of planetary protection is the degree to which natural atmospheric processes remove terrestrial microorganisms from robotic and crewed spacecraft that could potentially contaminate Mars (i.e., forward contamination). We present experiments in which we measured the removal rate of Bacillus subtilis HA101 spores from aluminum surfaces under the bombardment of naturally rounded sand grains. To simulate grain impacts, we constructed a pneumatic sand-feed system and gun to accelerate grains to a desired speed, with independent control of impacting grain mass, flux, and angle. Spore counts of the resulting bombarded surfaces when using scanning electron microscopy indicate that although spores directly impacted by sand grains would likely be killed, those immediately adjacent to grain impacts might be released into the environment intact. The experiments demonstrate a linear relationship between the fractional dislodgement rate of spores and grain impact speed, which can be used to estimate input to microbial transport models (e.g., using numerical models of saltation). Even the slowest grain impacts (∼2.7 m/s) dislodged spores. Such slow events may be common and widespread on Mars, which suggests that microbial dislodgement by slow saltation near the surface is largely unavoidable.
Collapse
Affiliation(s)
| | | | - Andrew C Schuerger
- Dept. of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - J Ken Smith
- Arizona State University, Moffett Field, California, USA
| | - Karen L Kelley
- Electron Microscopy Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Setlow P, Christie G. New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed. Microbiol Mol Biol Rev 2023; 87:e0008022. [PMID: 36927044 PMCID: PMC10304885 DOI: 10.1128/mmbr.00080-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The quest for bacterial survival is exemplified by spores formed by some Firmicutes members. They turn up everywhere one looks, and their ubiquity reflects adaptations to the stresses bacteria face. Spores are impactful in public health, food safety, and biowarfare. Heat resistance is the hallmark of spores and is countered principally by a mineralized gel-like protoplast, termed the spore core, with reduced water which minimizes macromolecular movement/denaturation/aggregation. Dry heat, however, introduces mutations into spore DNA. Spores have countermeasures to extreme conditions that are multifactorial, but the fact that spore DNA is in a crystalline-like nucleoid in the spore core, likely due to DNA saturation with small acid-soluble spore proteins (SASPs), suggests that reduced macromolecular motion is also critical in spore dry heat resistance. SASPs are also central in the radiation resistance characteristic of spores, where the contributions of four spore features-SASP; Ca2+, with pyridine-2,6-dicarboxylic acid (CaDPA); photoproduct lyase; and low water content-minimize DNA damage. Notably, the spore environment steers UV photochemistry toward a product that germinated spores can repair without significant mutagenesis. This resistance extends to chemicals and macromolecules that could damage spores. Macromolecules are excluded by the spore coat which impedes the passage of moieties of ≥10 kDa. Additionally, damaging chemicals may be degraded or neutralized by coat enzymes/proteins. However, the principal protective mechanism here is the inner membrane, a compressed structure lacking lipid fluidity and presenting a barrier to the diffusion of chemicals into the spore core; SASP saturation of DNA also protects against genotoxic chemicals. Spores are also resistant to other stresses, including high pressure and abrasion. Regardless, overarching mechanisms associated with resistance seem to revolve around reduced molecular motion, a fine balance between rigidity and flexibility, and perhaps efficient repair.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Liang D, Liu S, Li M, Zhu Y, Zhao L, Sun L, Ma Y, Zhao G. Effects of Different Bacteriostats on the Dynamic Germination of Clostridium perfringens Spores. Foods 2023; 12:foods12091834. [PMID: 37174372 PMCID: PMC10177833 DOI: 10.3390/foods12091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Bacteriostats, as chemical substances that inhibit bacterial growth, are widely used in the sterilization process; however, their effects on spindle spores are unclear. In this study, the effects of bacteriostats, including nine commonly used food additives and four detergents, on the growth of Clostridium perfringens spores were investigated. The results showed that 0.07‱ ethylenediaminetetraacetate had a good inhibitory effect on C. perfringens spore growth, and the spore turbidity decreased by 4.8% after incubation for 60 min. Furthermore, 0.3‱ tea polyphenols, 0.8‱ D-isoascorbic acid, and 0.75‱ potassium sorbate promoted leakage of contents during spore germination. Among the four detergents, 5‱ glutaraldehyde solution presented the best inhibitory effect on the growth of C. perfringens spores, and the spore turbidity decreased by 5.6% after incubation for 60 min. Further analysis of the inactivation mechanism of spores by the bacteriostats was performed by comparing the leakage of UV-absorbing substances during germination. The results revealed that bacteriostats could not directly kill the spores, but could inactivate them by inhibiting germination or damaging the spore structure during germination, thus preventing the formation of bacterial vegetative bodies. These findings provide important information and reference for the mechanism underlying the effects of different bacteriostatic agents on spore growth.
Collapse
Affiliation(s)
- Dong Liang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengnan Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
| | - Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
| | - Lijun Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
| | - Lingxia Sun
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
| | - Yangyang Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
4
|
Minns CH, Louden EM, Chyba CF. Spore Survival During Abrasive Saltation on Mars: A Comment on Bak et al. ASTROBIOLOGY 2022; 22:1029-1031. [PMID: 35939264 PMCID: PMC9508446 DOI: 10.1089/ast.2021.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
In original experiments, Bak et al. (Wind-Driven Saltation: An Overlooked Challenge for Life on Mars. Astrobiology 2019;19(4):497-505) suggest a new mechanism for the destruction of spores on Mars: abrasion by wind-driven saltation. Bak et al. found that the tumbling of spores on grain surfaces (simulating saltation) was, by far, most lethal at the outset of their experiments. They suggest that it may be sharp edges of the freshly crushed basalt particles used in their experiments that destroy the spores and that these edges abrade away over the course of each experiment. But prior Mars analogue experiments, observations of particles from terrestrial deserts, and imaging from Mars landers suggest that most martian dust has been rounded by billions of years of aeolian processes. If so, saltation on Mars is more likely well simulated by the later stages of the Bak et al. experiments, reducing implied lethality by orders of magnitude. Experiments could test this by beginning with particles that had been already abraded. Even assuming the highest lethality found in their experiments, saltation "hop" distances on Mars suggest that abrasion would not prevent ∼1% of released spores from remaining viable while traveling hundreds or even thousands of kilometers.
Collapse
Affiliation(s)
- Charles H. Minns
- Department of Physics and Astronomy, University College London, Gower Street, London, UK
| | - Emma M.C. Louden
- Department of Astronomy, Yale University, New Haven, Connecticut, USA
| | - Christopher F. Chyba
- Department of Astrophysical Sciences and School of Public and International Affairs, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
5
|
Bak EN, Bregnhøj M, Nørnberg P, Jensen SJK, Thøgersen J, Finster K. Spore Survival During Abrasive Saltation on Mars: A Reply to the Comment by Minns et al. ASTROBIOLOGY 2022; 22:1032-1033. [PMID: 35950960 DOI: 10.1089/ast.2022.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Ebbe Norskov Bak
- Department of Biology, Microbiology section, Aarhus University, Aarhus, Denmark
| | - Mikkel Bregnhøj
- Department of Biology, Microbiology section, Aarhus University, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Per Nørnberg
- Department of Biology, Microbiology section, Aarhus University, Aarhus, Denmark
| | | | - Jan Thøgersen
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Kai Finster
- Department of Biology, Microbiology section, Aarhus University, Aarhus, Denmark
- Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Dutheil de la Rochère A, Evstratov A, Bayle S, Sabourin L, Frering A, Lopez-Cuesta JM. Exploring the antimicrobial properties of dark-operating ceramic-based nanocomposite materials for the disinfection of indoor air. PLoS One 2019; 14:e0224114. [PMID: 31644566 PMCID: PMC6808436 DOI: 10.1371/journal.pone.0224114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
As people spend more and more time inside, the quality of indoor air becomes crucial matter. This study explores the germicidal potential of two dark-operating germicidal composite materials designed to be applied for the indoor air disinfection under flow conditions. The first material, MnO2/AlPO4/γ-Al2O3 beads, is a donor-acceptor interactive composite capable of creating hydroxyl radicals HO∙. The second one is a ZnO/γ-Al2O3 material with intercropped hexagons on its surface. To determine the antimicrobial efficiency of these materials in life-like conditions, a pilot device was constructed that allows the test of the materials in dynamic conditions and agar diffusion inhibitory tests were also conducted. The results of the tests showed that the MnO2/AlPO4/γ-Al2O3 material has a germicidal effect in static conditions whereas ZnO/γ-Al2O3 does not. In dynamic conditions, the oxidizing MnO2/AlPO4/γ-Al2O3 material is the most efficient when using low air speed whereas the ZnO/γ-Al2O3 one becomes more efficient than the other materials when increasing the air linear speed. This ZnO/γ-Al2O3 dark-operating germicidal material manifests the ability to proceed the mechanical destruction of bacterial cells. Actually, the antimicrobial efficiency of materials in dynamic conditions varies regarding the air speed through the materials and that static tests are not representative of the behavior of the material for air disinfection. Depending on the conditions, the best strategy to inactivate microorganisms changes and abrasive structures are a field that needs further exploration as they are in most of the conditions tested the best way to quickly decrease the number of microorganisms.
Collapse
Affiliation(s)
| | - Alexeï Evstratov
- Centre des Matériaux des Mines d’Alès, IMT-Mines Alès, Alès, France
| | - Sandrine Bayle
- Laboratoire de Génie de l’Environnement Industriel, IMT-Mines-Alès, Alès, France
| | - Lionel Sabourin
- Centre des Matériaux des Mines d’Alès, IMT-Mines Alès, Alès, France
| | - Arnaud Frering
- Centre des Matériaux des Mines d’Alès, IMT-Mines Alès, Alès, France
| | | |
Collapse
|
7
|
Bak EN, Larsen MG, Jensen SK, Nørnberg P, Moeller R, Finster K. Wind-Driven Saltation: An Overlooked Challenge for Life on Mars. ASTROBIOLOGY 2019; 19:497-505. [PMID: 30407074 DOI: 10.1089/ast.2018.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Numerous studies have demonstrated that the martian surface environment is hostile to life because of its rough radiation climate and the reactive chemistry of the regolith. Physical processes such as erosion and transport of mineral particles by wind-driven saltation have hitherto not been considered as a life hazard. We report a series of experiments where bacterial endospores (spores of Bacillus subtilis) were exposed to a simulated saltating martian environment. We observed that 50% of the spores that are known to be highly resistant to radiation and oxidizing chemicals were destroyed by saltation-mediated abrasion within one minute. Scanning electron micrographs show that the spores were not only damaged by abrasion but were eradicated during the saltation process. We suggest that abrasion mediated by wind-driven saltation should be included as a factor that defines the habitability of the martian surface environment. The process may efficiently protect the martian surface from forward contamination with terrestrial microbial life-forms. Abrasion mediated by wind-driven saltation should also be considered as a major challenge to indigenous martian surface life if it exists/existed.
Collapse
Affiliation(s)
- E N Bak
- 1 Department of Bioscience, Aarhus University , Aarhus, Denmark
| | - M G Larsen
- 1 Department of Bioscience, Aarhus University , Aarhus, Denmark
| | - S K Jensen
- 2 Department of Chemistry, Aarhus University , Aarhus, Denmark
| | - P Nørnberg
- 1 Department of Bioscience, Aarhus University , Aarhus, Denmark
| | - R Moeller
- 3 Institute of Aerospace Medicine , Radiation Biology Department, Space Microbiology Research Group, German Aerospace Center (DLR e.V.), Cologne (Köln), Germany
| | - K Finster
- 1 Department of Bioscience, Aarhus University , Aarhus, Denmark
- 4 Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University , Aarhus, Denmark
| |
Collapse
|
8
|
Lopes RP, Mota MJ, Gomes AM, Delgadillo I, Saraiva JA. Application of High Pressure with Homogenization, Temperature, Carbon Dioxide, and Cold Plasma for the Inactivation of Bacterial Spores: A Review. Compr Rev Food Sci Food Saf 2018; 17:532-555. [PMID: 33350128 DOI: 10.1111/1541-4337.12311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
Abstract
Formation of highly resistant spores is a concern for the safety of low-acid foods as they are a perfect vehicle for food spoilage and/or human infection. For spore inactivation, the strategy usually applied in the food industry is the intensification of traditional preservation methods to sterilization levels, which is often accompanied by decreases of nutritional and sensory properties. In order to overcome these unwanted side effects in food products, novel and emerging sterilization technologies are being developed, such as pressure-assisted thermal sterilization, high-pressure carbon dioxide, high-pressure homogenization, and cold plasma. In this review, the application of these emergent technologies is discussed, in order to understand the effects on bacterial spores and their inactivation and thus ensure food safety of low-acid foods. In general, the application of these novel technologies for inactivating spores is showing promising results. However, it is important to note that each technique has specific features that can be more suitable for a particular type of product. Thus, the most appropriate sterilization method for each product (and target microorganisms) should be assessed and carefully selected.
Collapse
Affiliation(s)
- Rita P Lopes
- QOPNA, Chemistry Dept., Univ. of Aveiro, Campus Univ. de Santiago, 3810-193 Aveiro, Portugal
| | - Maria J Mota
- QOPNA, Chemistry Dept., Univ. of Aveiro, Campus Univ. de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M Gomes
- Escola Superior de Biotecnologia, Univ. Católica Portuguesa, 4200-072 Porto, Portugal
| | - Ivonne Delgadillo
- QOPNA, Chemistry Dept., Univ. of Aveiro, Campus Univ. de Santiago, 3810-193 Aveiro, Portugal
| | - Jorge A Saraiva
- QOPNA, Chemistry Dept., Univ. of Aveiro, Campus Univ. de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Ghosh S, Niu S, Yankova M, Mecklenburg M, King SM, Ravichandran J, Kalia RK, Nakano A, Vashishta P, Setlow P. Analysis of killing of growing cells and dormant and germinated spores of Bacillus species by black silicon nanopillars. Sci Rep 2017; 7:17768. [PMID: 29259282 PMCID: PMC5736721 DOI: 10.1038/s41598-017-18125-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 12/01/2017] [Indexed: 12/20/2022] Open
Abstract
Black silicon (bSi) wafers with a high density of high-aspect ratio nanopillars have recently been suggested to have mechanical bactericidal activity. However, it remains unclear whether bSi with the nanopillars can kill only growing bacterial cells or also dormant spores that are harder to kill. We have reexamined the cidal activity of bSi on growing cells, dormant and germinated spores of B. subtilis, and dormant spores of several other Bacillus species by incubation on bSi wafers with and without nanopillars. We found that the bSi wafers with nanopillars were indeed very effective in rupturing and killing the growing bacterial cells, while wafers without nanopillars had no bactericidal effect. However, bSi wafers with or without nanopillars gave no killing or rupture of dormant spores of B. subtilis, Bacillus cereus or Bacillus megaterium, although germinated B. subtilis spores were rapidly killed. This work lays a foundation for novel bactericidal applications of bSi by elucidating the limits of mechanical bactericidal approaches.
Collapse
Affiliation(s)
- Sonali Ghosh
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, 06030-3305, USA.,Department of Chemistry, School of Health and Natural Sciences, University of Saint Joseph, West Hartford, CT, 06117-2791, USA
| | - Shanyuan Niu
- Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, 90089-0241, USA
| | - Maya Yankova
- Central Electron Microscopy Facility, UConn Health, Farmington, CT, 06030-1610, USA
| | - Matthew Mecklenburg
- Center for Electron Microscopy and Microanalysis, University of Southern California, Los Angeles, CA, 90089-0101, USA
| | - Stephen M King
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, 06030-3305, USA.,Central Electron Microscopy Facility, UConn Health, Farmington, CT, 06030-1610, USA
| | - Jayakanth Ravichandran
- Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, 90089-0241, USA
| | - Rajiv K Kalia
- Collaboratory for Advanced Computing and Simulations and Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, 90089-0242, USA
| | - Aiichiro Nakano
- Collaboratory for Advanced Computing and Simulations and Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, 90089-0242, USA
| | - Priya Vashishta
- Collaboratory for Advanced Computing and Simulations and Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA, 90089-0242, USA.
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, 06030-3305, USA.
| |
Collapse
|
10
|
Abstract
Spores of various Bacillus and Clostridium species are among the most resistant life forms known. Since the spores of some species are causative agents of much food spoilage, food poisoning, and human disease, and the spores of Bacillus anthracis are a major bioweapon, there is much interest in the mechanisms of spore resistance and how these spores can be killed. This article will discuss the factors involved in spore resistance to agents such as wet and dry heat, desiccation, UV and γ-radiation, enzymes that hydrolyze bacterial cell walls, and a variety of toxic chemicals, including genotoxic agents, oxidizing agents, aldehydes, acid, and alkali. These resistance factors include the outer layers of the spore, such as the thick proteinaceous coat that detoxifies reactive chemicals; the relatively impermeable inner spore membrane that restricts access of toxic chemicals to the spore core containing the spore's DNA and most enzymes; the low water content and high level of dipicolinic acid in the spore core that protect core macromolecules from the effects of heat and desiccation; the saturation of spore DNA with a novel group of proteins that protect the DNA against heat, genotoxic chemicals, and radiation; and the repair of radiation damage to DNA when spores germinate and return to life. Despite their extreme resistance, spores can be killed, including by damage to DNA, crucial spore proteins, the spore's inner membrane, and one or more components of the spore germination apparatus.
Collapse
|
11
|
Goossens PL, Tournier JN. Crossing of the epithelial barriers by Bacillus anthracis: the Known and the Unknown. Front Microbiol 2015; 6:1122. [PMID: 26500645 PMCID: PMC4598578 DOI: 10.3389/fmicb.2015.01122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
Anthrax, caused by Bacillus anthracis, a Gram-positive spore-forming bacterium, is initiated by the entry of spores into the host body. There are three types of human infection: cutaneous, inhalational, and gastrointestinal. For each form, B. anthracis spores need to cross the cutaneous, respiratory or digestive epithelial barriers, respectively, as a first obligate step to establish infection. Anthrax is a toxi-infection: an association of toxemia and rapidly spreading infection progressing to septicemia. The pathogenicity of Bacillus anthracis mainly depends on two toxins and a capsule. The capsule protects bacilli from the immune system, thus promoting systemic dissemination. The toxins alter host cell signaling, thereby paralyzing the immune response of the host and perturbing the endocrine and endothelial systems. In this review, we will mainly focus on the events and mechanisms leading to crossing of the respiratory epithelial barrier, as the majority of studies have addressed inhalational infection. We will discuss the critical gaps of knowledge that need to be addressed to gain a comprehensive view of the initial steps of inhalational anthrax. We will then discuss the few data available on B. anthracis crossing the cutaneous and digestive epithelia.
Collapse
Affiliation(s)
- Pierre L Goossens
- Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur , Paris, France
| | - Jean-Nicolas Tournier
- Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur , Paris, France ; Unité Interactions Hôte-Agents Pathogènes, Institut de Recherche Biomédicale des Armées , Brétigny-sur-Orge, France ; Ecole du Val-de-Grâce , Paris, France
| |
Collapse
|
12
|
Rao L, Bi X, Zhao F, Wu J, Hu X, Liao X. Effect of High-pressure CO2Processing on Bacterial Spores. Crit Rev Food Sci Nutr 2015; 56:1808-25. [DOI: 10.1080/10408398.2013.787385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Abstract
Since the first application of high hydrostatic pressure (HHP) for food preservation more than 100 years ago, a wealth of knowledge has been gained on molecular mechanisms underlying the HHP-mediated destruction of microorganisms. However, one observation made back then is still valid, i.e. that HHP alone is not sufficient for the complete inactivation of bacterial endospores. To achieve "commercial sterility" of low-acid foods, i.e. inactivation of spores capable of growing in a specific product under typical storage conditions, a combination of HHP with other hurdles is required (most effectively with heat (HPT)). Although HPT processes are not yet industrially applied, continuous technical progress and increasing consumer demand for minimally processed, additive-free food with long shelf life, makes HPT sterilization a promising alternative to thermal processing.In recent years, considerable progress has been made in understanding the response of spores of the model organism B. subtilis to HPT treatments and detailed insights into some basic mechanisms in Clostridium species shed new light on differences in the HPT-mediated inactivation of Bacillus and Clostridium spores. In this chapter, current knowledge on sporulation and germination processes, which presents the basis for understanding development and loss of the extreme resistance properties of spores, is summarized highlighting commonalities and differences between Bacillus and Clostridium species. In this context, the effect of HPT treatments on spores, inactivation mechanism and kinetics, the role of population heterogeneity, and influence factors on the results of inactivation studies are discussed.
Collapse
Affiliation(s)
- Christian A Lenz
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, 85354, Freising, Germany
| | | |
Collapse
|
14
|
Thomas P, Sekhar AC, Mujawar MM. Vulnerability of Bacillus spores and of related genera to physical impaction injury with particular reference to spread-plating. J Appl Microbiol 2014; 117:1358-72. [PMID: 25073977 DOI: 10.1111/jam.12613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/30/2022]
Abstract
AIMS To examine whether bacterial spores are vulnerable to impaction injury during standard spread-plating or to other modes of physical impaction. METHODS AND RESULTS Employing heat-challenged spores of Bacillus pumilus, Bacillus subtilis, Bacillus thuringiensis, Lysinibacillus, Paenibacillus and Brevibacillus spp. from day-4 to day-10 nutrient agar (NA) plates in 50% ethanol, plating the spore suspension to the extent of just drying the agar surface on fresh NA (50-60 s; SP-B) was tested in comparison with the spreader-independent approach of spotting-and-tilt-spreading (SATS), or a brief plating (<10 s; SP-A). Spore CFU was significantly reduced with SP-B in different organisms (23-40%) over SATS independent of the spore size. Comparing 4-, 7- and 10-day-old B. pumilus spores, the former two displayed significant CFU reduction in SP-B indicating a spore age-related effect. Continuous plating for 2-5 min showed a reduction in spore CFU in all organisms depending on plating duration. CFU reduction effect with SP-B was less manifest on refrigerated plates where no friction was experienced but acute on prewarmed and surface-dried plates. Spreader movement over agar surface subsequent to the exhaustion of free moisture proved highly detrimental to spores. A simulated plating study by plating the spores over a plastic film till drying showed a significant reduction in spore CFU. DAPI staining and glass bead-vortexing studies confirmed spore disruption through physical impaction. CONCLUSIONS Bacterial spores are vulnerable to injury during spread-plating or with other forms of physical impaction with variable effects on different genotypes independent of the spore size but altered by spore age. SIGNIFICANCE AND IMPACT OF THE STUDY Implications during spore CFU estimations employing spread-plating and during spore surveillance, and the recommendation of SATS as an easier and safer alternative for spore CFU enumeration.
Collapse
Affiliation(s)
- P Thomas
- Division of Biotechnology, Indian Institute of Horticultural Research, Bangalore, India
| | | | | |
Collapse
|
15
|
Zhen H, Han T, Fennell DE, Mainelis G. Release of free DNA by membrane-impaired bacterial aerosols due to aerosolization and air sampling. Appl Environ Microbiol 2013; 79:7780-9. [PMID: 24096426 PMCID: PMC3837826 DOI: 10.1128/aem.02859-13] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/01/2013] [Indexed: 12/22/2022] Open
Abstract
We report here that stress experienced by bacteria due to aerosolization and air sampling can result in severe membrane impairment, leading to the release of DNA as free molecules. Escherichia coli and Bacillus atrophaeus bacteria were aerosolized and then either collected directly into liquid or collected using other collection media and then transferred into liquid. The amount of DNA released was quantified as the cell membrane damage index (ID), i.e., the number of 16S rRNA gene copies in the supernatant liquid relative to the total number in the bioaerosol sample. During aerosolization by a Collison nebulizer, the ID of E. coli and B. atrophaeus in the nebulizer suspension gradually increased during 60 min of continuous aerosolization. We found that the ID of bacteria during aerosolization was statistically significantly affected by the material of the Collison jar (glass > polycarbonate; P < 0.001) and by the bacterial species (E. coli > B. atrophaeus; P < 0.001). When E. coli was collected for 5 min by filtration, impaction, and impingement, its ID values were within the following ranges: 0.051 to 0.085, 0.16 to 0.37, and 0.068 to 0.23, respectively; when it was collected by electrostatic precipitation, the ID values (0.011 to 0.034) were significantly lower (P < 0.05) than those with other sampling methods. Air samples collected inside an equine facility for 2 h by filtration and impingement exhibited ID values in the range of 0.30 to 0.54. The data indicate that the amount of cell damage during bioaerosol sampling and the resulting release of DNA can be substantial and that this should be taken into account when analyzing bioaerosol samples.
Collapse
Affiliation(s)
- Huajun Zhen
- Rutgers University, Department of Environmental Sciences, New Brunswick, New Jersey, USA
| | | | | | | |
Collapse
|
16
|
Dual effects of single-walled carbon nanotubes coupled with near-infrared radiation on Bacillus anthracis spores: inactivates spores and stimulates the germination of surviving spores. J Biol Eng 2013; 7:19. [PMID: 23965258 PMCID: PMC3765415 DOI: 10.1186/1754-1611-7-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus anthracis is a pathogen that causes life-threatening disease--anthrax. B. anthracis spores are highly resistant to extreme temperatures and harsh chemicals. Inactivation of B. anthracis spores is important to ensure the environmental safety and public health. The 2001 bioterrorism attack involving anthrax spores has brought acute public attention and triggered extensive research on inactivation of B. anthracis spores. Single-walled carbon nanotubes (SWCNTs) as a class of emerging nanomaterial have been reported as a strong antimicrobial agent. In addition, continuous near infrared (NIR) radiation on SWCNTs induces excessive local heating which can enhance SWCNTs' antimicrobial effect. In this study, we investigated the effects of SWCNTs coupled with NIR treatment on Bacillus anthracis spores. RESULTS AND DISCUSSION The results showed that the treatment of 10 μg/mL SWCNTs coupled with 20 min NIR significantly improved the antimicrobial effect by doubling the percentage of viable spore number reduction compared with SWCNTs alone treatment (88% vs. 42%). At the same time, SWCNTs-NIR treatment activated the germination of surviving spores and their dipicolinic acid (DPA) release during germination. The results suggested the dual effect of SWCNTs-NIR treatment on B. anthracis spores: enhanced the sporicidal effect and stimulated the germination of surviving spores. Molecular level examination showed that SWCNTs-NIR increased the expression levels (>2-fold) in 3 out of 6 germination related genes tested in this study, which was correlated to the activated germination and DPA release. SWCNTs-NIR treatment either induced or inhibited the expression of 3 regulatory genes detected in this study. When the NIR treatment time was 5 or 25 min, there were 3 out of 7 virulence related genes that showed significant decrease on expression levels (>2 fold decrease). CONCLUSIONS The results of this study demonstrated the dual effect of SWCNTs-NIR treatment on B. anthracis spores, which enhanced the sporicidal effect and stimulated the germination of surviving spores. SWCNTs-NIR treatment also altered the expression of germination, regulatory, and virulence-related genes in B. anthracis.
Collapse
|
17
|
Corre JP, Piris-Gimenez A, Moya-Nilges M, Jouvion G, Fouet A, Glomski IJ, Mock M, Sirard JC, Goossens PL. In vivo germination of Bacillus anthracis spores during murine cutaneous infection. J Infect Dis 2012; 207:450-7. [PMID: 23148288 DOI: 10.1093/infdis/jis686] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Germination is a key step for successful Bacillus anthracis colonization and systemic dissemination. Few data are available on spore germination in vivo, and the necessity of spore and host cell interactions to initiate germination is unclear. METHODS To investigate the early interactions between B. anthracis spores and cutaneous tissue, spores were inoculated in an intraperitoneal cell-free device in guinea pigs or into the pinna of mice. Germination and bacterial growth were analyzed through colony-forming unit enumeration and electron microscopy. RESULTS In the guinea pig model, germination occurred in vivo in the absence of cell contact. Similarly, in the mouse ear, germination started within 15 minutes after inoculation, and germinating spores were found in the absence of surrounding cells. Germination was not observed in macrophage-rich draining lymph nodes, liver, and spleen. Edema and lethal toxin production were not required for germination, as a toxin-deficient strain was as effective as a Sterne-like strain. B. anthracis growth was locally controlled for 6 hours. CONCLUSIONS Spore germination involving no cell interactions can occur in vivo, suggesting that diffusible germinants or other signals appear sufficient. Different host tissues display drastic differences in germination-triggering capacity. Initial control of bacterial growth suggests a therapeutic means to exploit host innate defenses to hinder B. anthracis colonization.
Collapse
Affiliation(s)
- Jean-Philippe Corre
- Toxines et Pathogénie Bactériennes, Pathogénie des Toxi-Infections Bactériennes, Centre National de la Recherche Scientifique, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mechanical disruption of lysis-resistant bacterial cells by use of a miniature, low-power, disposable device. J Clin Microbiol 2011; 49:2533-9. [PMID: 21543569 DOI: 10.1128/jcm.02171-10] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular detection of microorganisms requires microbial cell disruption to release nucleic acids. Sensitive detection of thick-walled microorganisms such as Bacillus spores and Mycobacterium cells typically necessitates mechanical disruption through bead beating or sonication, using benchtop instruments that require line power. Miniaturized, low-power, battery-operated devices are needed to facilitate mechanical pathogen disruption for nucleic acid testing at the point of care and in field settings. We assessed the lysis efficiency of a very small disposable bead blender called OmniLyse relative to the industry standard benchtop Biospec Mini-BeadBeater. The OmniLyse weighs approximately 3 g, at a size of approximately 1.1 cm(3) without the battery pack. Both instruments were used to mechanically lyse Bacillus subtilis spores and Mycobacterium bovis BCG cells. The relative lysis efficiency was assessed through real-time PCR. Cycle threshold (C(T)) values obtained at all microbial cell concentrations were similar between the two devices, indicating that the lysis efficiencies of the OmniLyse and the BioSpec Mini-BeadBeater were comparable. As an internal control, genomic DNA from a different organism was spiked at a constant concentration into each sample upstream of lysis. The C(T) values for PCR amplification of lysed samples using primers specific to this internal control were comparable between the two devices, indicating negligible PCR inhibition or other secondary effects. Overall, the OmniLyse device was found to effectively lyse tough-walled organisms in a very small, disposable, battery-operated format, which is expected to facilitate sensitive point-of-care nucleic acid testing.
Collapse
|
19
|
Burgess SA, Lindsay D, Flint SH. Thermophilic bacilli and their importance in dairy processing. Int J Food Microbiol 2010; 144:215-25. [DOI: 10.1016/j.ijfoodmicro.2010.09.027] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/15/2010] [Accepted: 09/25/2010] [Indexed: 11/24/2022]
|
20
|
Nguyen Thi Minh H, Dantigny P, Perrier-Cornet JM, Gervais P. Germination and inactivation of Bacillus subtilis spores induced by moderate hydrostatic pressure. Biotechnol Bioeng 2010; 107:876-83. [DOI: 10.1002/bit.22849] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Chen G, Driks A, Tawfiq K, Mallozzi M, Patil S. Bacillus anthracis and Bacillus subtilis spore surface properties and transport. Colloids Surf B Biointerfaces 2009; 76:512-8. [PMID: 20074921 DOI: 10.1016/j.colsurfb.2009.12.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 11/13/2009] [Accepted: 12/15/2009] [Indexed: 11/16/2022]
Abstract
Effective decontamination of environments contaminated by Bacillus spores remains a significant challenge since Bacillus spores are highly resistant to killing and could plausibly adhere to many non-biological as well as biological surfaces. Decontamination of Bacillus spores can be significantly improved if the chemical basis of spore adherence is understood. In this research, we investigated the surface adhesive properties of Bacillus subtilis and Bacillus anthracis spores. The spore thermodynamic properties obtained from contact angle measurements indicated that both species were monopolar with a preponderance of electron-donating potential. This was also the case for spores of both species missing their outer layers, due to mutation. Transport of wild type and mutant spores of these two species was further analyzed in silica sand under unsaturated water conditions. A two-region solute transport model was used to simulate the spore transport with the assumption that the spore retention occurred within the immobile region only. Bacillus spore adhesion to the porous media was related to the interactions between the spores and the porous media. Our data indicated that spore surface structures played important roles in spore surface properties, since mutant spores missing outer layers had different surface thermodynamic and transport properties as compared to wild type spores. The changes in surface thermodynamic properties were further evidenced by infrared spectroscopy analysis.
Collapse
Affiliation(s)
- Gang Chen
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, United States.
| | | | | | | | | |
Collapse
|
22
|
Structural and genetic analysis of X-ray scattering by spores of Bacillus subtilis. J Bacteriol 2009; 191:7620-2. [PMID: 19837800 DOI: 10.1128/jb.01200-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dormant spores of Bacillus subtilis exhibit two prominent X-ray scattering peaks. These peaks persisted in spores lacking most alpha/beta-type small, acid-soluble protein or the CotE protein responsible for assembly of much spore coat protein, but they were absent from spores of strains lacking the late sporulation-specific transcription factor GerE.
Collapse
|
23
|
Ramanan RN, Ling TC, Ariff AB. The performance of a glass bead shaking technique for the disruption of Escherichia coli cells. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0047-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Role of DNA protection and repair in resistance of Bacillus subtilis spores to ultrahigh shock pressures simulating hypervelocity impacts. Appl Environ Microbiol 2008; 74:6682-9. [PMID: 18791028 DOI: 10.1128/aem.01091-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Impact-induced ejections of rocks from planetary surfaces are frequent events in the early history of the terrestrial planets and have been considered as a possible first step in the potential interplanetary transfer of microorganisms. Spores of Bacillus subtilis were used as a model system to study the effects of a simulated impact-caused ejection on rock-colonizing microorganisms using a high-explosive plane wave setup. Embedded in different types of rock material, spores were subjected to extremely high shock pressures (5 to 50 GPa) lasting for fractions of microseconds to seconds. Nearly exponential pressure response curves were obtained for spore survival and linear dependency for the induction of sporulation-defective mutants. Spores of strains defective in major small, acid-soluble spore proteins (SASP) (alpha/beta-type SASP) that largely protect the spore DNA and spores of strains deficient in nonhomologous-end-joining DNA repair were significantly more sensitive to the applied shock pressure than were wild-type spores. These results indicate that DNA may be the sensitive target of spores exposed to ultrahigh shock pressures. To assess the nature of the critical physical parameter responsible for spore inactivation by ultrahigh shock pressures, the resulting peak temperature was varied by lowering the preshock temperature, changing the rock composition and porosity, or increasing the water content of the samples. Increased peak temperatures led to increased spore inactivation and reduced mutation rates. The data suggested that besides the potential mechanical stress exerted by the shock pressure, the accompanying high peak temperatures were a critical stress parameter that spores had to cope with.
Collapse
|
25
|
Abstract
Spores of Bacillus subtilis have a thick outer layer of relatively insoluble protein called the coat, which protects spores against a number of treatments and may also play roles in spore germination. However, elucidation of precise roles of the coat in spore properties has been hampered by the inability to prepare spores lacking all or most coat material. In this work, we show that spores of a strain with mutations in both the cotE and gerE genes, which encode proteins involved in coat assembly and expression of genes encoding coat proteins, respectively, lack most extractable coat protein as seen by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as well as the great majority of the coat as seen by atomic force microscopy. However, the cotE gerE spores did retain a thin layer of insoluble coat material that was most easily seen by microscopy following digestion of these spores with lysozyme. These severely coat-deficient spores germinated relatively normally with nutrients and even better with dodecylamine but not with a 1:1 chelate of Ca(2+) and dipicolinic acid. These spores were also quite resistant to wet heat, to mechanical disruption, and to treatment with detergents at an elevated temperature and pH but were exquisitely sensitive to killing by sodium hypochlorite. These results provide new insight into the role of the coat layer in spore properties.
Collapse
|
26
|
Protozoal digestion of coat-defective Bacillus subtilis spores produces "rinds" composed of insoluble coat protein. Appl Environ Microbiol 2008; 74:5875-81. [PMID: 18689521 DOI: 10.1128/aem.01228-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis spore coat is a multilayer, proteinaceous structure that consists of more than 50 proteins. Located on the surface of the spore, the coat provides resistance to potentially toxic molecules as well as to predation by the protozoan Tetrahymena thermophila. When coat-defective spores are fed to Tetrahymena, the spores are readily digested. However, a residue termed a "rind" that looks like coat material remains. As observed with a phase-contrast microscope, the rinds are spherical or hemispherical structures that appear to be devoid of internal contents. Atomic force microscopy and chemical analyses showed that (i) the rinds are composed of insoluble protein largely derived from both outer and inner spore coat layers, (ii) the amorphous layer of the outer coat is largely responsible for providing spore resistance to protozoal digestion, and (iii) the rinds and intact spores do not contain significant levels of silicon.
Collapse
|
27
|
Kearns E, Magaa S, Lim D. Automated concentration and recovery of micro-organisms from drinking water using dead-end ultrafiltration. J Appl Microbiol 2008; 105:432-42. [DOI: 10.1111/j.1365-2672.2008.03757.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Role of spore coat proteins in the resistance of Bacillus subtilis spores to Caenorhabditis elegans predation. J Bacteriol 2008; 190:6197-203. [PMID: 18586932 DOI: 10.1128/jb.00623-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial spores are resistant to a wide range of chemical and physical insults that are normally lethal for the vegetative form of the bacterium. While the integrity of the protein coat of the spore is crucial for spore survival in vitro, far less is known about how the coat provides protection in vivo against predation by ecologically relevant hosts. In particular, assays had characterized the in vitro resistance of spores to peptidoglycan-hydrolyzing enzymes like lysozyme that are also important effectors of innate immunity in a wide variety of hosts. Here, we use the bacteriovorous nematode Caenorhabditis elegans, a likely predator of Bacillus spores in the wild, to characterize the role of the spore coat in an ecologically relevant spore-host interaction. We found that ingested wild-type Bacillus subtilis spores were resistant to worm digestion, whereas vegetative forms of the bacterium were efficiently digested by the nematode. Using B. subtilis strains carrying mutations in spore coat genes, we observed a correlation between the degree of alteration of the spore coat assembly and the susceptibility to the worm degradation. Surprisingly, we found that the spores that were resistant to lysozyme in vitro can be sensitive to C. elegans digestion depending on the extent of the spore coat structure modifications.
Collapse
|
29
|
Vepachedu VR, Hirneisen K, Hoover DG, Setlow P. Studies of the release of small molecules during pressure germination of spores of Bacillus subtilis. Lett Appl Microbiol 2007; 45:342-8. [PMID: 17718850 DOI: 10.1111/j.1472-765x.2007.02204.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To measure rates of release of small molecules during pressure germination of Bacillus subtilis spores, and the role of SpoVA proteins in dipicolinic acid (DPA) release. METHODS AND RESULTS Rates of DPA release during B. subtilis spore germination with pressures of 150 or 500 megaPascals were much higher in spores with elevated levels of SpoVA proteins, and spores with a temperature-sensitive mutation in the spoVA operon were temperature-sensitive in DPA release during pressure germination. Spores also released arginine and glutamic acid, but not AMP, during pressure germination. CONCLUSIONS Pressure germination of B. subtilis spores causes release of many small molecules including DPA. SpoVA proteins are involved in the release of DPA, perhaps because SpoVA proteins are a component of a DPA channel in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY This work provides new insight into the mechanism of pressure germination of spores of Bacillus species, a process that has significant potential for usage in the food industry.
Collapse
Affiliation(s)
- V R Vepachedu
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06032-3305, USA
| | | | | | | |
Collapse
|
30
|
Black EP, Setlow P, Hocking AD, Stewart CM, Kelly AL, Hoover DG. Response of Spores to High-Pressure Processing. Compr Rev Food Sci Food Saf 2007. [DOI: 10.1111/j.1541-4337.2007.00021.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Klobutcher LA, Ragkousi K, Setlow P. The Bacillus subtilis spore coat provides "eat resistance" during phagocytic predation by the protozoan Tetrahymena thermophila. Proc Natl Acad Sci U S A 2006; 103:165-70. [PMID: 16371471 PMCID: PMC1324984 DOI: 10.1073/pnas.0507121102] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Indexed: 11/18/2022] Open
Abstract
Bacillus spores are highly resistant to many environmental stresses, owing in part to the presence of multiple "extracellular" layers. Although the role of some of these extracellular layers in resistance to particular stresses is known, the function of one of the outermost layers, the spore coat, is not completely understood. This study sought to determine whether the spore coat plays a role in resistance to predation by the ciliated protozoan Tetrahymena, which uses phagocytosis to ingest and degrade other microorganisms. Wild-type dormant spores of Bacillus subtilis were efficiently ingested by the protozoan Tetrahymena thermophila but were neither digested nor killed. However, spores with various coat defects were killed and digested, leaving only an outer shell termed a rind, and supporting the growth of Tetrahymena. A similar rind was generated when coat-defective spores were treated with lysozyme alone. The sensitivity of spores with different coat defects to predation by T. thermophila paralleled the spores' sensitivities to lysozyme. Spore killing by T. thermophila was by means of lytic enzymes within the protozoal phagosome, not by initial spore germination followed by killing. These findings suggest that a major function of the coat of spores of Bacillus species is to protect spores against predation. We also found that indigestible rinds were generated even from spores in which cross-linking of coat proteins was greatly reduced, implying the existence of a coat structure that is highly resistant to degradative enzymes.
Collapse
Affiliation(s)
- Lawrence A Klobutcher
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | | | | |
Collapse
|
32
|
Black EP, Koziol-Dube K, Guan D, Wei J, Setlow B, Cortezzo DE, Hoover DG, Setlow P. Factors influencing germination of Bacillus subtilis spores via activation of nutrient receptors by high pressure. Appl Environ Microbiol 2005; 71:5879-87. [PMID: 16204500 PMCID: PMC1265928 DOI: 10.1128/aem.71.10.5879-5887.2005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different nutrient receptors varied in triggering germination of Bacillus subtilis spores with a pressure of 150 MPa, the GerA receptor being more responsive than the GerB receptor and even more responsive than the GerK receptor. This hierarchy in receptor responsiveness to pressure was the same as receptor responsiveness to a mixture of nutrients. The levels of nutrient receptors influenced rates of pressure germination, since the GerA receptor is more abundant than the GerB receptor and elevated levels of individual receptors increased spore germination by 150 MPa of pressure. However, GerB receptor variants with relaxed specificity for nutrient germinants responded as well as the GerA receptor to this pressure. Spores lacking dipicolinic acid did not germinate with this pressure, and pressure activation of the GerA receptor required covalent addition of diacylglycerol. However, pressure activation of the GerB and GerK receptors displayed only a partial (GerB) or no (GerK) diacylglycerylation requirement. These effects of receptor diacylglycerylation on pressure germination are similar to those on nutrient germination. Wild-type spores prepared at higher temperatures germinated more rapidly with a pressure of 150 MPa than spores prepared at lower temperatures; this was also true for spores with only one receptor, but receptor levels did not increase in spores made at higher temperatures. Changes in inner membrane unsaturated fatty acid levels, lethal treatment with oxidizing agents, or exposure to chemicals that inhibit nutrient germination had no major effect on spore germination by 150 MPa of pressure, except for strong inhibition by HgCl2.
Collapse
Affiliation(s)
- Elaine P Black
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | | | | | | | | | |
Collapse
|