1
|
Douillard FP, Derman Y, Jian C, Korpela K, Saxén H, Salonen A, de Vos WM, Korkeala H, Lindström M. Case report: Aberrant fecal microbiota composition of an infant diagnosed with prolonged intestinal botulism. Gut Pathog 2024; 16:20. [PMID: 38581020 PMCID: PMC10996148 DOI: 10.1186/s13099-024-00614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Intestinal botulism is primarily reported in small babies as a condition known as infant botulism. The condition results from the ingestion of environmental or foodborne spores of botulinum neurotoxin (BoNT) producing Clostridia, usually Clostridium botulinum, and subsequent spore germination into active botulinum neurotoxinogenic cultures in the gut. It is generally considered that small babies are susceptible to C. botulinum colonization because of their immature gut microbiota. Yet, it is poorly understood which host factors contribute to the clinical outcome of intestinal botulism. We previously reported a case of infant botulism where the infant recovered clinically in six weeks but continued to secrete C. botulinum cells and/or BoNT in the feces for seven months. CASE PRESENTATION To further understand the microbial ecology behind this exceptionally long-lasting botulinum neurotoxinogenic colonization, we characterized the infant fecal microbiota using 16S rRNA gene amplicon sequencing over the course of disease and recovery. C. botulinum could be detected in the infant fecal samples at low levels through the acute phase of the disease and three months after recovery. Overall, we observed a temporal delay in the maturation of the infant fecal microbiota associated with a persistently high-level bifidobacterial population and a low level of Lachnospiraceae, Bacteroidaceae and Ruminococcaceae compared to healthy infants over time. CONCLUSION This study brings novel insights into the infant fecal composition associated with intestinal botulism and provides a basis for a more systematic analysis of the gut microbiota of infants diagnosed with botulism. A better understanding of the gut microbial ecology associated with infant botulism may support the development of prophylactic strategies against this life-threatening disease in small babies.
Collapse
Affiliation(s)
- François P Douillard
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Yağmur Derman
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harri Saxén
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Kato S, Nagasawa T, Uehara O, Shimizu S, Sugiyama N, Hasegawa-Nakamura K, Noguchi K, Hatae M, Kakinoki H, Furuichi Y. Increase in Bifidobacterium is a characteristic of the difference in the salivary microbiota of pregnant and non-pregnant women. BMC Oral Health 2022; 22:260. [PMID: 35764953 PMCID: PMC9238123 DOI: 10.1186/s12903-022-02293-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/21/2022] [Indexed: 12/30/2022] Open
Abstract
Background The establishment of symbiotic microbiota in pregnant women is important for both the mother and her offspring. Little is known about the salivary symbiotic bacteria in pregnancy, and analysis of composition of microbiome (ANCOM) is useful to detect small differences in the number of bacteria. The aim of this study was to investigate the differences in the salivary bacteria between healthy pregnant and non-pregnant women using ANCOM. Methods Unstimulated saliva samples were collected from 35 healthy pregnant women at 35 weeks gestation and 30 healthy non-pregnant women during menstruation. All participants underwent a periodontal examination. Estradiol and progesterone levels were examined by enzyme-linked immunosorbent assay. DNA extracted from the saliva was assessed by 16S ribosomal RNA amplicon sequencing and real-time PCR. Results Salivary estradiol and progesterone levels were significantly increased in pregnant women. The alpha and beta diversities were higher in pregnant women than in non-pregnant women. The largest effect size difference noted when the microbiota of the pregnant and non-pregnant women were analyzed was that for Bifidobacteriales. Levels of Bifidobacterium dentium, but not of Bifidobacterium adolescentis, were significantly increased in pregnant women, and the levels were significantly correlated with progesterone concentration. Conclusion The results suggest that Bifidobacterium and progesterone levels are elevated in the saliva of healthy pregnant women compared with non-pregnant women.
Collapse
|
3
|
Vieira ADS, de Souza CB, Padilha M, Zoetendal EG, Smidt H, Saad SMI, Venema K. Impact of a fermented soy beverage supplemented with acerola by-product on the gut microbiota from lean and obese subjects using an in vitro model of the human colon. Appl Microbiol Biotechnol 2021; 105:3771-3785. [PMID: 33937924 PMCID: PMC8102275 DOI: 10.1007/s00253-021-11252-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/26/2021] [Accepted: 03/21/2021] [Indexed: 11/26/2022]
Abstract
The aim of this study was to evaluate the effects of soy-based beverages manufactured with water-soluble soy extract, containing probiotic strains (Lactobacillus acidophilus LA-5 and Bifidobacterium longum BB-46) and/or acerola by-product (ABP) on pooled faecal microbiota obtained from lean and obese donors. Four fermented soy beverages (FSs) ("placebo" (FS-Pla), probiotic (FS-Pro), prebiotic (FS-Pre), and synbiotic (FS-Syn)) were subjected to in vitro digestion, followed by inoculation in the TIM-2 system, a dynamic in vitro model that mimics the conditions of the human colon. Short- and branched-chain fatty acids (SCFA and BCFA) and microbiota composition were determined. Upon colonic fermentation in the presence of the different FSs formulations, acetic and lactic acid production was higher than the control treatment for faecal microbiota from lean individuals (FMLI). Additionally, SCFA production by the FMLI was higher than for the faecal microbiota from obese individuals (FMOI). Bifidobacterium spp. and Lactobacillus spp. populations increased during simulated colonic fermentation in the presence of FS-Syn in the FMLI and FMOI. FS formulations also changed the composition of the FMOI, resulting in a profile more similar to the FMLI. The changes in the composition and the increase in SCFA production observed for the FMLI and FMOI during these in vitro fermentations suggest a potential modulation effect of these microbiotas by the consumption of functional FSs. KEY POINTS: • Soy beverages increased Bifidobacterium abundance in microbiota from obese individuals. • The synbiotic beverage increased Bifidobacterium abundance in microbiota from lean individuals. • The synbiotic beverage changed the microbiota from obese individuals, approaching the lean profiles.
Collapse
Affiliation(s)
- Antonio Diogo Silva Vieira
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Carlota Bussolo de Souza
- Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, Villafloraweg 1, 5928 SZ, Venlo, The Netherlands
| | - Marina Padilha
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Erwin Gerard Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, Villafloraweg 1, 5928 SZ, Venlo, The Netherlands.
| |
Collapse
|
4
|
Human milk and mucosa-associated disaccharides impact on cultured infant fecal microbiota. Sci Rep 2020; 10:11845. [PMID: 32678209 PMCID: PMC7366668 DOI: 10.1038/s41598-020-68718-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are a mixture of structurally diverse carbohydrates that contribute to shape a healthy gut microbiota composition. The great diversity of the HMOs structures does not allow the attribution of specific prebiotic characteristics to single milk oligosaccharides. We analyze here the utilization of four disaccharides, lacto-N-biose (LNB), galacto-N-biose (GNB), fucosyl-α1,3-GlcNAc (3FN) and fucosyl-α1,6-GlcNAc (6FN), that form part of HMOs and glycoprotein structures, by the infant fecal microbiota. LNB significantly increased the total levels of bifidobacteria and the species Bifidobacterium breve and Bifidobacterium bifidum. The Lactobacillus genus levels were increased by 3FN fermentation and B. breve by GNB and 3FN. There was a significant reduction of Blautia coccoides group with LNB and 3FN. In addition, 6FN significantly reduced the levels of Enterobacteriaceae family members. Significantly higher concentrations of lactate, formate and acetate were produced in cultures containing either LNB or GNB in comparison with control cultures. Additionally, after fermentation of the oligosaccharides by the fecal microbiota, several Bifidobacterium strains were isolated and identified. The results presented here indicated that each, LNB, GNB and 3FN disaccharide, might have a specific beneficial effect in the infant gut microbiota and they are potential prebiotics for application in infant foods.
Collapse
|
5
|
Donated Human Milk as a Determinant Factor for the Gut Bifidobacterial Ecology in Premature Babies. Microorganisms 2020; 8:microorganisms8050760. [PMID: 32438679 PMCID: PMC7285294 DOI: 10.3390/microorganisms8050760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Correct establishment of the gut microbiome is compromised in premature babies, with Bifidobacterium being one of the most affected genera. Prematurity often entails the inability to successfully breastfeed, therefore requiring the implementation of other feeding modes; breast milk expression from a donor mother is the recommended option when their own mother’s milk is not available. Some studies showed different gut microbial profiles in premature infants fed with breast milk and donor human milk, however, it is not known how this affects the species composition of the genus Bifidobacterium. The objective of this study was to assess the effect of donated human milk on shaping the gut bifidobacterial populations of premature babies during the first three months of life. We analyzed the gut bifidobacterial communities of 42 premature babies fed with human donor milk or own-mother milk by the 16S rRNA–23S rRNA internal transcriber spaces (ITS) region sequencing and q-PCR. Moreover, metabolic activity was assessed by gas chromatography. We observed a specific bifidobacterial profile based on feeding type, with higher bifidobacterial diversity in the human donor milk group. Differences in specific Bifidobacterium species composition may contribute to the development of specific new strategies or treatments aimed at mimicking the impact of own-mother milk feeding in neonatal units.
Collapse
|
6
|
Luck B, Engevik MA, Ganesh BP, Lackey EP, Lin T, Balderas M, Major A, Runge J, Luna RA, Sillitoe RV, Versalovic J. Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function. Sci Rep 2020; 10:7737. [PMID: 32385412 PMCID: PMC7210968 DOI: 10.1038/s41598-020-64173-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 04/12/2020] [Indexed: 12/17/2022] Open
Abstract
We hypothesized that early-life gut microbiota support the functional organization of neural circuitry in the brain via regulation of synaptic gene expression and modulation of microglial functionality. Germ-free mice were colonized as neonates with either a simplified human infant microbiota consortium consisting of four Bifidobacterium species, or with a complex, conventional murine microbiota. We examined the cerebellum, cortex, and hippocampus of both groups of colonized mice in addition to germ-free control mice. At postnatal day 4 (P4), conventionalized mice and Bifidobacterium-colonized mice exhibited decreased expression of synapse-promoting genes and increased markers indicative of reactive microglia in the cerebellum, cortex and hippocampus relative to germ-free mice. By P20, both conventional and Bifidobacterium-treated mice exhibited normal synaptic density and neuronal activity as measured by density of VGLUT2+ puncta and Purkinje cell firing rate respectively, in contrast to the increased synaptic density and decreased firing rate observed in germ-free mice. The conclusions from this study further reveal how bifidobacteria participate in establishing functional neural circuits. Collectively, these data indicate that neonatal microbial colonization of the gut elicits concomitant effects on the host CNS, which promote the homeostatic developmental balance of neural connections during the postnatal time period.
Collapse
Affiliation(s)
- Berkley Luck
- Department of Pathology, Texas Children's Hospital, Houston, Texas, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Integrative Molecular and Biomedical Sciences (IMBS), Baylor College of Medicine, Houston, Texas, United States of America
| | - Melinda A Engevik
- Department of Pathology, Texas Children's Hospital, Houston, Texas, United States of America.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America.
| | - Bhanu Priya Ganesh
- Department of Neurology, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Elizabeth P Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tao Lin
- Department of Pathology, Texas Children's Hospital, Houston, Texas, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Miriam Balderas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas, United States of America
| | - Angela Major
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jessica Runge
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ruth Ann Luna
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Roy V Sillitoe
- Department of Pathology, Texas Children's Hospital, Houston, Texas, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - James Versalovic
- Department of Pathology, Texas Children's Hospital, Houston, Texas, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas, United States of America
| |
Collapse
|
7
|
Abstract
Our research investigated the protective and preventive roles of B. longum R0175 in a rat model of acute liver failure. The results illustrated that this probiotic strain exhibited protective effects in rats with acute liver failure. Thus, B. longum R0175 showed clinical application prospects that required further exploration. Acute liver failure is a severe liver disorder that poses considerable global challenges. Previous studies on Bifidobacterium longum R0175 have mainly focused on its psychotropic functions. The current research focused on the protective efficacy of B. longum R0175 against acute liver failure caused by d-galactosamine (d-GalN) in rats and further tested the hypothesis that B. longum R0175 exerted liver-protective effects by affecting the intestinal microbiota and fecal metabolites and by inhibiting inflammation. We found that oral gavage of B. longum R0175 markedly reduced the severity of liver injury in d-GalN-treated rats, as evidenced by decreased serum levels of aspartate aminotransferase (AST) and total bile acids (TBAs) (P < 0.05). Moreover, the plasma concentrations of proinflammatory cytokines (interleukin 1β [IL-1β] and tumor necrosis factor-α [TNF-α]) and chemokines (granulocyte-macrophage colony-stimulating factor [GM-CSF], macrophage chemoattractant protein 1 [MCP-1], chemokine [C-X-C motif] ligand 1 [CXCL1], chemokine [C-C motif] ligand 5 [CCL5], and macrophage inflammatory protein-1α [MIP-1α]) were also markedly reduced (P < 0.05). Pretreatment with B. longum R0175 partially reversed the gut microbiota dysbiosis in rats with liver injury by increasing the relative abundances of potentially beneficial bacteria, such as Alloprevotella spp., and decreasing the relative abundances of potentially harmful bacteria, such as Acetatifactor muris, Butyricimonas spp., and Oscillibacter spp. Furthermore, B. longum R0175 administration partially improved the metabolic function of the intestinal microbes, as indicated by the decreased level of lithocholic acid found in the feces. IMPORTANCE Our research investigated the protective and preventive roles of B. longum R0175 in a rat model of acute liver failure. The results illustrated that this probiotic strain exhibited protective effects in rats with acute liver failure. Thus, B. longum R0175 showed clinical application prospects that required further exploration.
Collapse
|
8
|
Arboleya S, Watkins C, Stanton C, Ross RP. Gut Bifidobacteria Populations in Human Health and Aging. Front Microbiol 2016; 7:1204. [PMID: 27594848 PMCID: PMC4990546 DOI: 10.3389/fmicb.2016.01204] [Citation(s) in RCA: 375] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022] Open
Abstract
The intestinal microbiota has increasingly been shown to have a vital role in various aspects of human health. Indeed, several studies have linked alterations in the gut microbiota with the development of different diseases. Among the vast gut bacterial community, Bifidobacterium is a genus which dominates the intestine of healthy breast-fed infants whereas in adulthood the levels are lower but relatively stable. The presence of different species of bifidobacteria changes with age, from childhood to old age. Bifidobacterium longum, B. breve, and B. bifidum are generally dominant in infants, whereas B. catenulatum, B. adolescentis and, as well as B. longum are more prevalent in adults. Increasingly, evidence is accumulating which shows beneficial effects of supplementation with bifidobacteria for the improvement of human health conditions ranging from protection against infection to different extra- and intra-intestinal positive effects. Moreover, bifidobacteria have been associated with the production of a number of potentially health promoting metabolites including short chain fatty acids, conjugated linoleic acid and bacteriocins. The aim of this mini-review is to describe the bifidobacteria compositional changes associated with different stages in life, highlighting their beneficial role, as well as their presence or absence in many disease states.
Collapse
Affiliation(s)
- Silvia Arboleya
- APC Microbiome Institute, University College CorkCork, Ireland; Teagasc Food Research Centre, Moorepark, FermoyCork, Ireland
| | - Claire Watkins
- APC Microbiome Institute, University College CorkCork, Ireland; Teagasc Food Research Centre, Moorepark, FermoyCork, Ireland; School of Microbiology, University College CorkCork, Ireland
| | - Catherine Stanton
- APC Microbiome Institute, University College CorkCork, Ireland; Teagasc Food Research Centre, Moorepark, FermoyCork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College CorkCork, Ireland; Teagasc Food Research Centre, Moorepark, FermoyCork, Ireland; School of Science, Engineering and Food Science, University College CorkCork, Ireland
| |
Collapse
|
9
|
Jost T, Lacroix C, Braegger C, Chassard C. Stability of the maternal gut microbiota during late pregnancy and early lactation. Curr Microbiol 2013; 68:419-27. [PMID: 24258611 DOI: 10.1007/s00284-013-0491-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/02/2013] [Indexed: 02/08/2023]
Abstract
Scarce research has been performed to assess whether the human maternal gut microbiota undergoes changes during the perinatal period. Therefore, in the present study, gut microbiota composition of seven healthy mothers(to-be) was assessed at different time points during the perinatal period (i.e. weeks 3-7 prepartum and days 3-6, 9-14, and 25-30 postpartum) using quantitative polymerase chain reaction (qPCR) and pyrosequencing, and was complemented by short-chain fatty acids (SCFA) and calprotectin quantification using high-performance liquid chromatography and enzyme-linked immunosorbent assay, respectively. qPCR revealed the predominance of members of the Firmicutes, Bacteroides, and Bifidobacterium without detectable changes over the perinatal period. Pyrosequencing supported these data in terms of microbiota stability for any population at any taxonomic level, although ratios of members of the Actinobacteria and Bacteroidetes differed between the two methods. However, the number of operational taxonomic units observed by pyrosequencing was subjected to fluctuations and the relative abundance of Streptococcus decreased numerically postpartum (P = 0.11), which may indicate that aberrancies in subdominant populations occur perinatally. Furthermore, total fecal SCFA concentrations, particularly the branched-chain fatty acids isobutyrate and isovalerate, were higher than for non-pregnant subjects throughout the perinatal period. This suggests metabolic changes and increased energy extraction via proteolytic, in addition to saccharolytic fermentation, accompanied by low-grade inflammation based on fecal calprotectin levels. Our data show that the maternal gut microbiota remained stable over the perinatal period despite altered metabolic activity and low-grade inflammation; however, it remains to be confirmed whether changes preceded earlier during pregnancy and succeeded later postpartum.
Collapse
Affiliation(s)
- Ted Jost
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland,
| | | | | | | |
Collapse
|
10
|
Molecular clues to understand the aerotolerance phenotype of Bifidobacterium animalis subsp. lactis. Appl Environ Microbiol 2011; 78:644-50. [PMID: 22101052 DOI: 10.1128/aem.05455-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxygen is one of the abiotic factors negatively affecting the survival of Bifidobacterium strains used as probiotics, mainly due to the induction of lethal oxidative damage. Aerobic conditions are present during the process of manufacture and storage of functional foods, and aerotolerance is a desired trait for bifidobacteria intended for use in industry. In the present study, the molecular response of Bifidobacterium animalis subsp. lactis IPLA4549 to aerobic conditions is presented. Molecular targets affected by oxygen were studied using two-dimensional electrophoresis (2DE) and quantitative reverse transcriptase (qRT) PCR. Globally, oxygen stress induced a shift in the glycolytic pathway toward the production of acetic acid with a concomitant increase in ATP formation. Several changes in the expression of genes coding for enzymes involved in redox reactions were detected, although the redox ratio remained unaltered. Interestingly, cells grown under aerobic conditions were characterized by higher activity of coproporphyrinogen III oxidase, which can directly detoxify molecular oxygen, and by higher NADH oxidase specific activity, which can oxidize NADH using hydrogen peroxide. In turn, this is in agreement with the glycolytic shift toward acetate production, in that more NADH molecules may be available due to the lower level of lactic acid formation. These findings further our ability to elucidate the mechanisms by which B. animalis copes with an oxygen-containing atmosphere.
Collapse
|
11
|
Coakley M, Banni S, Johnson MC, Mills S, Devery R, Fitzgerald G, Paul Ross R, Stanton C. Inhibitory effect of conjugated alpha-linolenic acid from bifidobacteria of intestinal origin on SW480 cancer cells. Lipids 2008; 44:249-56. [PMID: 19048324 DOI: 10.1007/s11745-008-3269-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 11/04/2008] [Indexed: 11/24/2022]
Abstract
In this study, we assessed the ability of six strains of bifidobacteria (previously shown by us to possess the ability to convert linoleic acid to c9, t11-conjugated linoleic acid (CLA) to grow in the presence of alpha-linolenic acid and to generate conjugated isomers of the fatty acid substrate during fermentation for 42 h. The six strains of bifidobacteria were grown in modified MRS (mMRS) containing alpha-linolenic acid for 42 h at 37 degrees C, after which the fatty acid composition of the growth medium was assessed by gas liquid chromatography (GLC). Indeed, following fermentation of one of the strains, namely Bifidobacterium breve NCIMB 702258, in the presence of 0.41 mg/ml alpha-linolenic acid, 79.1% was converted to the conjugated isomer, C18:3 c9, t11, c15 conjugated alpha-linolenic acid (CALA). To examine the inhibitory effect of the fermented oils produced, SW480 colon cancer cells were cultured in the presence of the extracted fermented oil (10-50 microg/ml) for 5 days. The data indicate an inhibitory effect on cell growth (p <or= 0.001) of CALA, with cell numbers reduced by 85% at a concentration of 180 microM, compared with a reduction of only 50% with alpha-linolenic acid (p <or= 0.01).
Collapse
Affiliation(s)
- Mairéad Coakley
- Teagasc, Biotechnology Centre, Moorepark Food Research Centre, Fermoy, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mathys S, Lacroix C, Mini R, Meile L. PCR and real-time PCR primers developed for detection and identification of Bifidobacterium thermophilum in faeces. BMC Microbiol 2008; 8:179. [PMID: 18847469 PMCID: PMC2588598 DOI: 10.1186/1471-2180-8-179] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 10/10/2008] [Indexed: 11/12/2022] Open
Abstract
Background Culture-independent methods based on the 16S ribosomal RNA molecule are nowadays widely used for assessment of the composition of the intestinal microbiota, in relation to host health or probiotic efficacy. Because Bifidobacterium thermophilum was only recently isolated from human faeces until now, no specific real-time PCR (qPCR) assay has been developed for detection of this species as component of the bifidobacterial community of the human intestinal flora. Results Design of specific primers and probe was achieved based on comparison of 108 published bifidobacterial 16S rDNA sequences with the recently published sequence of the human faecal isolate B. thermophilum RBL67. Specificity of the primer was tested in silico by similarity search against the sequence database and confirmed experimentally by PCR amplification on 17 Bifidobacterium strains, representing 12 different species, and two Lactobacillus strains. The qPCR assay developed was linear for B. thermophilum RBL67 DNA quantities ranging from 0.02 ng/μl to 200 ng/μl and showed a detection limit of 105 cells per gram faeces. The application of this new qPCR assay allowed to detect the presence of B. thermophilum in one sample from a 6-month old breast-fed baby among 17 human faecal samples tested. Additionally, the specific qPCR primers in combination with selective plating experiments led to the isolation of F9K9, a faecal isolate from a 4-month old breast-fed baby. The 16S rDNA sequence of this isolate is 99.93% similar to that of B. thermophilum RBL67 and confirmed the applicability of the new qPCR assay in faecal samples. Conclusion A new B. thermophilum-specific qPCR assay was developed based on species-specific target nucleotides in the 16S rDNA. It can be used to further characterize the composition of the bifidobacterial community in the human gastrointestinal tract. Until recently, B. thermophilum was considered as a species of animal origin, but here we confirm with the application of this new PCR assay the presence of B. thermophilum strains in the human gut.
Collapse
Affiliation(s)
- Sophie Mathys
- Laboratory of Food Biotechnology, Institute of Food Science and Nutrition, ETH Zurich, Switzerland.
| | | | | | | |
Collapse
|
13
|
Gueimonde M, Ouwehand A, Huhtinen H, Salminen E, Salminen S. Qualitative and quantitative analyses of the bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel disease. World J Gastroenterol 2007; 13:3985-9. [PMID: 17663515 PMCID: PMC4171173 DOI: 10.3748/wjg.v13.i29.3985] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterize the bifidobacterial microbiota of the colonic mucosa in patients with colon cancer, inflammatory bowel disease or diverticulitis.
METHODS: A sample of the distal colonic mucosa was taken during surgery from a total of 34 patients, twenty-one with diagnosed colorectal cancer, nine with diverticulitis and four with inflammatory bowel disease, requiring surgery for their condition. Bacterial DNA was extracted from the resected mucosal samples and bifidobacterial mucosa-associated microbiota was qualitatively and quantitatively determined by means of qualitative and quantitative PCR.
RESULTS: Bifidobacteria were found in 100% of the samples from patients with diverticulitis or IBD and a 76% of those suffering colon cancer. The species B. longum and B. bifidum were the most widely found, followed by B. animalis, B. catenulatum and B. adolescentis. B. breve, B. dentium and B. angulatum were not detected in any sample. A significantly higher occurrence of B. longum was observed in patients with diverticulitis than in those with colon cancer or IBD (100%, 62% and 75%, respectively, P < 0.05). Similar results were obtained for B. animalis (56%, 0% and 25%, P < 0.05), while B. adolescentis was only found in the mucosa from patients with colon cancer (5 out of 21, 24%). At the quantitative level, patients with colon cancer or IBD showed lower counts of total Bifidobacterium (4.94 and 5.91 vs 6.96 log Cells/sample, respectively, P < 0.05) and of the species B. longum (4.05 and 4.79 vs 6.76, P < 0.05) than those with diverticulitis.
CONCLUSION: Aberrancies in mucosa associated microbiota are present in different intestinal diseases. This may indicate a role of the microbiota in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Miguel Gueimonde
- Instituto de Productos Lacteos de Asturias (IPLA-CSIC). Ctra. Infiesto s/n, 33300, Villaviciosa, Asturias, Spain.
| | | | | | | | | |
Collapse
|
14
|
Gueimonde M, Noriega L, Margolles A, de los Reyes-Gavilán CG. Induction of alpha-L-arabinofuranosidase activity by monomeric carbohydrates in Bifidobacterium longum and ubiquity of encoding genes. Arch Microbiol 2006; 187:145-53. [PMID: 17031615 DOI: 10.1007/s00203-006-0181-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/23/2006] [Accepted: 09/15/2006] [Indexed: 10/24/2022]
Abstract
Bifidobacterium longum can be isolated from human faeces, some strains being considered probiotics. B. longum NIZO B667 produces an exo-acting alpha-L-arabinofuranosidase, AbfB, previously purified by us, that releases L-arabinose from arabinan and arabinoxylan. This activity was subjected to two-seven-fold induction by L-arabinose, D-xylose, L-arabitol and xylitol and to repression by glucose. Maximum activity was obtained at 48 h incubation except for D-xylose that was at 24 h. High concentrations (200 mM) of L-arabitol also caused repression of the arabinofuranosidase. A unique band of activity showing the same migration pattern as the purified AbfB was found in zymograms of cell free extracts, indicating that the activity was likely due to this sole enzyme. The assessment of the influence of inducers and repressors on the activity of AbfB and on the expression of the abfB gene by real time PCR indicated that regulation was transcriptional. DNA amplifications using a pair of degenerated primers flanking an internal fragment within alpha-L-arabinofuranosidase genes of the family 51 of glycoside hydrolases evidenced that these enzymes are widespread in Bifidobacterium. The aminoacidic sequences of bifidobacteria included a fragment of four to six residues in the position 136-141 that was absent in other microorganisms.
Collapse
Affiliation(s)
- Miguel Gueimonde
- Instituto de Productos Lácteos de Asturias, CSIC, Ctra. de Infiesto s/n, apartado 85, 33300 Villaviciosa, Asturias, Spain
| | | | | | | |
Collapse
|