Pham TH, Cheng TC, Wang PC, Chen SC. Genotypic diversity, and molecular and pathogenic characterization of Photobacterium damselae subsp. piscicida isolated from different fish species in Taiwan.
JOURNAL OF FISH DISEASES 2020;
43:757-774. [PMID:
32419196 DOI:
10.1111/jfd.13173]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Photobacteriosis, caused by Photobacterium damselae subsp. piscicida (Phdp), is a serious disease in marine fish species worldwide. To date, the epidemiological characterization of this pathogen in Taiwan remains limited. In this study, we collected 39 Phdp isolates obtained from different farmed fish for phenotypic and genotypic analysis. Phenotype bioassays using API-20E and API-20NE systems showed that the Phdp is a homogeneous group. However, genotyping using the pulsed-field gel electrophoresis (PFGE) technique revealed genetic variability among Phdp isolates when 13 and 11 different PFGE band patterns were obtained with SmaI and NotI as restriction enzymes, respectively. Phylogenetic analysis using 16S rDNA and the Fur gene clustered Taiwanese isolates and other species of P. damselae in the same clade. In contrast, the ToxR phylogenetic tree, a powerful discriminatory marker, separated the two subspecies. Furthermore, the virulence-associated genes, AIP56, P55, PDP_0080, Sod and Irp1, were detected from all isolates. Virulence testing with nine representative isolates in cobia (Rachycentron canadum) and Asian sea bass (Lates calcarifer) showed that some were highly pathogenic with 80%-100% mortality rates. This study provides epidemiological data of Phdp infections in farmed fish in Taiwan, which is necessary to develop comprehensive prevention and control strategies for the disease.
Collapse