1
|
Hirozawa MT, Ono MA, de Souza Suguiura IM, Garcia S, Bordini JG, Amador IR, Hirooka EY, Ono EYS. Limosilactobacillus reuteri as sustainable biological control agent against toxigenic Fusarium verticillioides. Braz J Microbiol 2023; 54:2219-2226. [PMID: 37531006 PMCID: PMC10484862 DOI: 10.1007/s42770-023-01081-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023] Open
Abstract
Corn contamination with Fusarium verticillioides (Sacc.) Nirenberg is a worldwide problem that affects yield and grain quality resulting in severe economic losses and implications for food safety. Control of F. verticillioides is a challenge, but lactic acid bacteria (LAB) has high potential as a biological control agent. In this study, the antifungal effect of Limosilactobacillus reuteri (formerly Lactobacillus reuteri) LR-92 against F. verticillioides 97L was investigated. Cell-free supernatant (CFS) from L. reuteri showed concentration-dependent fungicidal and fungistatic activity against F. verticillioides 97L. The antifungal compounds from CFS showed heat stability and pH dependence, and antifungal activity was not affected by treatment with proteolytic enzymes. High-performance liquid chromatography analysis indicated that L. reuteri LR-92 produces lactic and acetic acids. After liquid-liquid extraction, electrospray ionization mass spectrometry analysis of the active ethyl acetate fraction containing antifungal compounds revealed the production of 3-phenyllactic acid, cyclo-(L-Pro-L-Leu), cyclo-(L-Pro-L-Phe), and cyclo-(L-Phe-trans-4-OH-L-Pro). L. reuteri LR-92 has potential as a biocontrol agent for F. verticillioides and contributes to food safety.
Collapse
Affiliation(s)
- Melissa Tiemi Hirozawa
- State University of Londrina, Department of Biochemistry and Biotechnology, P.O. Box 10, 011, 86057-970, Londrina, Paraná, Brazil
| | - Mario Augusto Ono
- State University of Londrina, Department of Pathological Sciences, P.O. Box 10, 011, 86057-970, Londrina, Paraná, Brazil
| | | | - Sandra Garcia
- State University of Londrina, Department of Food Science and Technology, P.O. Box 10, 011, 86057-970, Londrina, Paraná, Brazil
| | - Jaqueline Gozzi Bordini
- State University of Londrina, Department of Biochemistry and Biotechnology, P.O. Box 10, 011, 86057-970, Londrina, Paraná, Brazil
| | - Ismael Rodrigues Amador
- State University of Londrina, Department of Biochemistry and Biotechnology, P.O. Box 10, 011, 86057-970, Londrina, Paraná, Brazil
| | - Elisa Yoko Hirooka
- State University of Londrina, Department of Food Science and Technology, P.O. Box 10, 011, 86057-970, Londrina, Paraná, Brazil
| | - Elisabete Yurie Sataque Ono
- State University of Londrina, Department of Biochemistry and Biotechnology, P.O. Box 10, 011, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
2
|
Dmitrieva ED, Grinevich VI, Gertsen MM. Degradation of Oil and Petroleum Products by Biocompositions Based on Humic Acids of Peats and Oil-Degrading Microorganisms. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
3
|
A refined medium to enhance the antimicrobial activity of postbiotic produced by Lactiplantibacillus plantarum RS5. Sci Rep 2021; 11:7617. [PMID: 33828119 PMCID: PMC8027010 DOI: 10.1038/s41598-021-87081-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/01/2021] [Indexed: 02/01/2023] Open
Abstract
Postbiotic RS5, produced by Lactiplantibacillus plantarum RS5, has been identified as a promising alternative feed supplement for various livestock. This study aimed to lower the production cost by enhancing the antimicrobial activity of the postbiotic RS5 by improving the culture density of L. plantarum RS5 and reducing the cost of growth medium. A combination of conventional and statistical-based approaches (Fractional Factorial Design and Central Composite Design of Response Surface Methodology) was employed to develop a refined medium for the enhancement of the antimicrobial activity of postbiotic RS5. A refined medium containing 20 g/L of glucose, 27.84 g/L of yeast extract, 5.75 g/L of sodium acetate, 1.12 g/L of Tween 80 and 0.05 g/L of manganese sulphate enhanced the antimicrobial activity of postbiotic RS5 by 108%. The cost of the production medium was reduced by 85% as compared to the commercially available de Man, Rogosa and Sharpe medium that is typically used for Lactobacillus cultivation. Hence, the refined medium has made the postbiotic RS5 more feasible and cost-effective to be adopted as a feed supplement for various livestock industries.
Collapse
|
4
|
Stimulation of Bovicin HC5 Production and Selection of Improved Bacteriocin-Producing Streptococcus equinus HC5 Variants. Probiotics Antimicrob Proteins 2020; 13:899-913. [PMID: 32865761 DOI: 10.1007/s12602-020-09703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bovicin HC5 is a peptide that has inhibitory activity against various pathogenic microorganisms and food spoilage bacteria. Aiming to improve the productivity of this bacteriocin, we evaluated several potential factors that could stimulate the synthesis of bovicin HC5 and selected variants of Streptococcus equinus (Streptococcus bovis) HC5 with enhanced bacteriocin production by adaptive laboratory evolution (ALE). The highest production of the bacteriocin (1.5-fold) was observed when Strep. equinus HC5 was cultivated with lactic acid (100 mmol/L). For the ALE experiment, Strep. equinus HC5 cells were subjected to acid-shock (pH 3.0 for 2 h) and maintained in continuous culture for approximately 140 generations (40 days) in media with lactic acid (100 mmol/L) and pH-controlled at 5.5 ± 0.2. An adapted variant was selected showing a distinct phenotype (sedimentation, pigmentation) compared with the parental strain. Bacteriocin production increased 2-fold in this adapted Strep. equinus HC5 variant, which appears to be associated with changes in the cell envelope of the adapted variant and enhanced bacteriocin release into the culture media. In addition, the adapted variant showed higher levels of expression of all bovicin HC5 biosynthetic genes compared with the parental strain during the early and late stages of growth. Results presented here indicate that ALE is a promising strategy for selecting strains of lactic acid bacteria with increased production of bacteriocins.
Collapse
|
5
|
Lim YH, Foo HL, Loh TC, Mohamad R, Abdul Rahim R. Rapid Evaluation and Optimization of Medium Components Governing Tryptophan Production by Pediococcus acidilactici TP-6 Isolated from Malaysian Food via Statistical Approaches. Molecules 2020; 25:E779. [PMID: 32054138 PMCID: PMC7071007 DOI: 10.3390/molecules25040779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/05/2022] Open
Abstract
Tryptophan is one of the most extensively used amino acids in livestock industry owing to its effectiveness in enhancing the growth performance of animals. Conventionally, the production of tryptophan relies heavily on genetically modified Escherichia coli but its pathogenicity is a great concern. Our recent study demonstrated that a lactic acid bacterium (LAB), Pediococcus acidilactici TP-6 that isolated from Malaysian food was a promising tryptophan producer. However, the tryptophan production must enhance further for viable industrial application. Hence, the current study evaluated the effects of medium components and optimized the medium composition for tryptophan production by P. acidilactici TP-6 statistically using Plackett-Burman Design, and Central Composite Design. The optimized medium containing molasses (14.06 g/L), meat extract (23.68 g/L), urea (5.56 g/L) and FeSO4 (0.024 g/L) significantly enhanced the tryptophan production by 150% as compared to the control de Man, Rogosa and Sharpe medium. The findings obtained in this study revealed that rapid evaluation and effective optimization of medium composition governing tryptophan production by P. acidilactici TP-6 were feasible via statistical approaches. Additionally, the current findings reveal the potential of utilizing LAB as a safer alternative tryptophan producer and provides insight for future exploitation of various amino acid productions by LAB.
Collapse
Affiliation(s)
- Ye Heng Lim
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (Y.H.L.); (R.M.); (R.A.R.)
| | - Hooi Ling Foo
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (Y.H.L.); (R.M.); (R.A.R.)
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Teck Chwen Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Rosfarizan Mohamad
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (Y.H.L.); (R.M.); (R.A.R.)
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Raha Abdul Rahim
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (Y.H.L.); (R.M.); (R.A.R.)
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Office of Vice Chancellor, Universiti Teknikal Malaysia Melaka, Jalan Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia
| |
Collapse
|
6
|
Lim YH, Foo HL, Loh TC, Mohamad R, Abdul Rahim R, Idrus Z. Optimized medium via statistical approach enhanced threonine production by Pediococcus pentosaceus TL-3 isolated from Malaysian food. Microb Cell Fact 2019; 18:125. [PMID: 31331395 PMCID: PMC6643317 DOI: 10.1186/s12934-019-1173-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Threonine is an essential amino acid that is extensively used in livestock industry as feed supplement due to its pronounced effect in improving the growth performance of animals. Application of genetically engineered bacteria for amino acid production has its share of controversies after eosinophils myalgia syndrome outbreak in 1980s. This has urged for continuous search for a food grade producer as a safer alternative for industrial amino acid production. Lactic acid bacteria (LAB) appear as an exceptional candidate owing to their non-pathogenic nature and reputation of Generally Recognized as Safe (GRAS) status. Recently, we have identified a LAB, Pediococcus pentosaceus TL-3, isolated from Malaysian food as a potential threonine producer. Thus, the objective of this study was to enhance the threonine production by P. pentosaceus TL-3 via optimized medium developed by using Plackett-Burman design (PBD) and central composite design (CCD). RESULTS Molasses, meat extract, (NH4)2SO4, and MnSO4 were identified as the main medium components for threonine production by P. pentosaceus TL-3. The optimum concentration of molasses, meat extract, (NH4)2SO4 and MnSO4 were found to be 30.79 g/L, 25.30 g/L, 8.59 g/L, and 0.098 g/L respectively based on model obtained in CCD with a predicted net threonine production of 123.07 mg/L. The net threonine production by P. pentosaceus TL-3 in the optimized medium was enhanced approximately 2 folds compared to the control. CONCLUSIONS This study has revealed the potential of P. pentosaceus TL-3 as a safer alternative to produce threonine. Additionally, the current study has identified the key medium components affecting the production of threonine by P. pentosaceus TL-3, followed by optimization of their concentrations by means of statistical approach. The findings of this study could act as a guideline for the future exploration of amino acid production by LAB.
Collapse
Affiliation(s)
- Ye Heng Lim
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Hooi Ling Foo
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Teck Chwen Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Zulkifli Idrus
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Sidooski T, Brandelli A, Bertoli SL, Souza CKD, Carvalho LFD. Physical and nutritional conditions for optimized production of bacteriocins by lactic acid bacteria – A review. Crit Rev Food Sci Nutr 2018; 59:2839-2849. [DOI: 10.1080/10408398.2018.1474852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Thiago Sidooski
- Chemical Engineering Department, University of Blumenau, São Paulo, Blumenau, SC, Brazil
| | - Adriano Brandelli
- Laboratory of Biochemistry and Applied Microbiology, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sávio Leandro Bertoli
- Chemical Engineering Department, University of Blumenau, São Paulo, Blumenau, SC, Brazil
| | | | | |
Collapse
|
8
|
Barbosa AAT, Mantovani HC, Jain S. Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Crit Rev Biotechnol 2017; 37:852-864. [PMID: 28049350 DOI: 10.1080/07388551.2016.1262323] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacteriocins produced by lactic acid bacteria (LAB) are well-recognized for their potential as natural food preservatives. These antimicrobial peptides usually do not change the sensorial properties of food products and can be used in combination with traditional preservation methods to ensure microbial stability. In recent years, fruit products are increasingly being associated with food-borne pathogens and spoilage microorganisms, and bacteriocins are important candidates to preserve these products. Bacteriocins have been extensively studied to preserve foods of animal origin. However, little information is available for their use in vegetable products, especially in minimally processed ready-to-eat fruits. Although, many bacteriocins possess useful characteristics that can be used to preserve fruit products, to date, only nisin, enterocin AS-48, bovicin HC5, enterocin 416K1, pediocin and bificin C6165 have been tested for their activity against spoilage and pathogenic microorganisms in these products. Among these, only nisin and pediocin are approved to be commercially used as food additives, and their use in fruit products is still limited to certain countries. Considering the increasing demand for fresh-tasting fruit products and concern for public safety, the study of other bacteriocins with biochemical characteristics that make them candidates for the preservation of these products are of great interest. Efforts for their approval as food additives are also important. In this review, we discuss why the study of bacteriocins as an alternative method to preserve fruit products is important; we detail the biotechnological approaches for the use of bacteriocins in fruit products; and describe some bacteriocins that have been tested and have potential to be tested for the preservation of fruit products.
Collapse
Affiliation(s)
| | | | - Sona Jain
- a Departamento de Morfologia , Universidade Federal de Sergipe , São Cristóvão , Sergipe , Brazil
| |
Collapse
|
9
|
Influence of Environmental Factors on Bacteriocin Production by Human Isolates of Lactococcus lactis MM19 and Pediococcus acidilactici MM33. Probiotics Antimicrob Proteins 2016; 8:53-9. [PMID: 26686688 DOI: 10.1007/s12602-015-9204-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The influence of temperature, initial pH, and carbon and nitrogen sources on bacteriocin secreted by Lactococcus lactis MM19 (MM19) and Pediococcus acidilactici MM33 (MM33) was evaluated. It was found that 30 and 45 °C were the growth temperatures for higher nisin and pediocin production by MM19 and MM33, respectively. The initial pH values for higher production of nisin and pediocin were 9 and 6, respectively. Glucose and wheat peptone E430 were found as suitable carbon and nitrogen sources, respectively, for highest nisin production by MM19 at 30 °C and initial pH of 9. In these conditions, nisin production could be increased by 6.7 times as compared to the control medium (de Man, Rogosa, and Sharpe--MRS broth). Similarly, fructose and pea peptone were suitable carbon and nitrogen sources, respectively, for highest production of pediocin by MM33 at 45 °C and initial pH of 6. In these conditions, pediocin production by MM33 was increased by three times as compared to the control medium (tryptone-glucose-yeast extract-TGE broth).
Collapse
|
10
|
Lactobacillus pentosus B231 Isolated from a Portuguese PDO Cheese: Production and Partial Characterization of Its Bacteriocin. Probiotics Antimicrob Proteins 2016; 6:95-104. [PMID: 24676723 DOI: 10.1007/s12602-014-9157-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacteriocin B231 produced by Lactobacillus pentosus, isolated from an artisanal raw cow's milk protected designation of origin Portuguese cheese, is a small protein with an apparent relative mass of about 5 kDa and active against a large number of Listeria monocytogenes wild-type strains, Listeria ivanovii and Listeria innocua. Bacteriocin B231 production is highly dependent on the type of the culture media used for growth of Lact. pentosus B231. Replacement of glucose with maltose yielded the highest bacteriocin production from eight different carbon sources. Similar results were recorded in the presence of combination of glucose and maltose or galactose. Production of bacteriocin B231 reached maximal levels of 800 AU/ml during the stationary phase of growth of Lact. pentosus B231 in MRS broth at 30 °C. Bacteriocin B231 (in cell-free supernatant) was sensitive to treatment with trypsin and proteinase K, but not affected by the thermal treatment in range of 55-121 °C, or freezing (-20 °C). Bacteriocin production and inhibitory spectrum were evaluated. Gene encoding plantaricin S has been detected in the genomic DNA. Virulence potential and safety of Lact. pentosus B231 were assessed by PCR targeted the genes gelE, hyl, asa1, esp, cylA, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc. The Lact. pentosus B231 strains harbored plantaricin S gene, while the occurrence of virulence, antibiotic resistance and biogenic amine genes was limited to cytolysin, hyaluronidase, aggregation substance, adhesion of collagen protein, gelatinase, tyrosine decarboxylase and vancomycin B genes.
Collapse
|
11
|
Optimization for the maximum bacteriocin production of Lactobacillus brevis DF01 using response surface methodology. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0085-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|