1
|
Wang Z, Yang H, Li Z, Liu J. Non-Thermal Treatment Mediated by Curcumin for Enhancing Food Product Quality. Foods 2024; 13:3980. [PMID: 39683052 DOI: 10.3390/foods13233980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing antibiotic resistance is one of the world's greatest health problems, and biocide use in food disinfection, alongside other application fields, could increase antibiotic resistance. Effective and eco-friendly food decontamination treatment with minimal chemical intervention in food production is urgently needed. Synergistic antimicrobial interaction of photoactive compounds and blue-light-emitting diodes have recently been proven effective in agricultural and environmental applications. Curcumin-based non-thermal treatment has been reviewed in this work for the development of a safe and effective decontamination tool that could be adapted to the food industry. The antimicrobial mechanism of the synergistic interaction and the inhibitory efficacy against foodborne pathogens (bacteria in both vegetative form and spore, as well as in biofilms) are discussed. Further studies on curcumin and its derivative, as well as light illumination patterns, were compared for enhanced bactericidal efficacy. Moreover, studies relating to photodynamic inactivation treatment for food sanitation and food quality enhancement (cereal grains and other food products) were summarized, as well as the impact on food organoleptic and nutritional quality.
Collapse
Affiliation(s)
- Ziyuan Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry, Comprehensive Utilization of Edible By-Products, Beijing Technology and Business University, Beijing 100048, China
| | - Haihong Yang
- National Center of Technology Innovation for Grain Industry, Comprehensive Utilization of Edible By-Products, Beijing Technology and Business University, Beijing 100048, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry, Comprehensive Utilization of Edible By-Products, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Lee SG, Kim SJ, Bang WS, Yuk HG. Combined antibacterial effect of 460 nm light-emitting diode illumination and chitosan against Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes on fresh-cut melon, and the impact of combined treatment on fruit quality. Food Sci Biotechnol 2024; 33:191-202. [PMID: 38186619 PMCID: PMC10766941 DOI: 10.1007/s10068-023-01324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/08/2023] [Accepted: 04/26/2023] [Indexed: 01/09/2024] Open
Abstract
This study evaluated the combined antibacterial effect of 460 nm LED illumination and chitosan on Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes on fresh-cut melon surface and its impact on the quality of melon at a total dose of 2.4 kJ/cm2 at 4 and 10 °C. Results showed that the antibacterial effect of LED illumination in combination with chitosan (0.5 and 1.0%) was much better than that of LED illumination alone, showing their synergistic effect. Among the pathogens, L. monocytogenes was the most susceptible pathogen to LED illumination. Although the color of melons became paler after LED illumination, there was little to no change in ascorbic acid content, total flavonoid content, or antioxidant capacity of the illuminated fruits compared with non-illuminated fruits. Thus, these results suggest that chitosan-mediated 460 nm LED illumination could be applied to inactivate foodborne pathogens on fresh-cut melons during storage at food establishments.
Collapse
Affiliation(s)
- Seok-Gyu Lee
- Department of Food Science and Technology, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong-gun, Chungbuk 27909 Korea
| | - Su-Jin Kim
- Department of Food and Nutrition, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541 Korea
| | - Woo-Suk Bang
- Department of Food and Nutrition, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541 Korea
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong-gun, Chungbuk 27909 Korea
| |
Collapse
|
3
|
Logue CM, De Cesare A, Tast-Lahti E, Chemaly M, Payen C, LeJeune J, Zhou K. Salmonella spp. in poultry production-A review of the role of interventions along the production continuum. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:289-341. [PMID: 38461002 DOI: 10.1016/bs.afnr.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Salmonella is a significant pathogen of human and animal health and poultry are one of the most common sources linked with foodborne illness worldwide. Global production of poultry meat and products has increased significantly over the last decade or more as a result of consumer demand and the changing demographics of the world's population, where poultry meat forms a greater part of the diet. In addition, the relatively fast growth rate of birds which is significantly higher than other meat species also plays a role in how poultry production has intensified. In an effort to meet the greater demand for poultry meat and products, modern poultry production and processing practices have changed and practices to target control and reduction of foodborne pathogens such as Salmonella have been implemented. These strategies are implemented along the continuum from parent and grandparent flocks to breeders, the farm and finished broilers to transport and processing and finally from retail to the consumer. This review focuses on common practices, interventions and strategies that have potential impact for the control of Salmonella along the poultry production continuum from farm to plate.
Collapse
Affiliation(s)
- Catherine M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, United States.
| | | | - Elina Tast-Lahti
- European Center for Disease Prevention and Control (ECDC), Sweden
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, France
| | - Cyrielle Payen
- Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, France
| | - Jeff LeJeune
- Food System and Food Safety, Food and Agricultural Organization of the United Nations, Italy
| | - Kang Zhou
- Food System and Food Safety, Food and Agricultural Organization of the United Nations, Italy
| |
Collapse
|
4
|
Jiang M, Gan Y, Li Y, Qi Y, Zhou Z, Fang X, Jiao J, Han X, Gao W, Zhao J. Protein-polysaccharide-based delivery systems for enhancing the bioavailability of curcumin: A review. Int J Biol Macromol 2023; 250:126153. [PMID: 37558039 DOI: 10.1016/j.ijbiomac.2023.126153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
In recent years, a wide attention has been paid to curcumin in medicine due to its excellent physiological activities, including anti-inflammatory, antioxidant, antibacterial, and nerve damage repair. However, the low solubility, poor stability, and rapid metabolism of curcumin make its bioavailability low, which affects its development and application. As a unique biopolymer structure, protein-polysaccharide (PRO-POL)-based delivery system has the advantages of low toxicity, biocompatibility, biodegradability, and delayed release. Many scholars have investigated PRO-POL -based delivery systems to improve the bioavailability of curcumin. In this paper, we focus on the interactions between different proteins (e.g. casein, whey protein, soybean protein isolate, pea protein, zein, etc.) and polysaccharides (chitosan, sodium alginate, hyaluronic acid, pectin, etc.) and their effects on complexes diameter, surface charge, encapsulation drive, and release characteristics. The mechanism of the PRO-POL-based delivery system to enhance the bioavailability of curcumin is highlighted. In addition, the application of PRO-POL complexes loaded with curcumin is summarized, aiming to provide a reference for the construction and application of PRO-POL delivery systems.
Collapse
Affiliation(s)
- Mengyuan Jiang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yulu Gan
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yongli Li
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yuanzheng Qi
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Zhe Zhou
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Xin Fang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Junjie Jiao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Xiao Han
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Weijia Gao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Jinghui Zhao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China; Jilin Province Key Laboratory of Tooth Department and Bone Remodeling, Changchun 130021, China.
| |
Collapse
|
5
|
Sun Y, Chen YL, Xu CP, Gao J, Feng Y, Wu QF. Disinfection of influenza a viruses by Hypocrellin a-mediated photodynamic inactivation. Photodiagnosis Photodyn Ther 2023; 43:103674. [PMID: 37364664 DOI: 10.1016/j.pdpdt.2023.103674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/11/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Influenza A viruses can be transmitted indirectly by surviving on the surface of an object. Photodynamic inactivation (PDI) is a promising approach for disinfection of pathogens. METHODS PDI was generated using Hypocrellin A (HA) and red light emitting diode (625-635 nm, 280 W/m2). Effects of the HA-mediated PDI on influenza viruses H1N1 and H3N2 were evaluated by the reduction of viral titers compared to virus control. After selection of the HA concentrations and illumination times, the applicability of PDI was assessed on surgical masks. Reactive oxygen species (ROS) were determined using a 2'-7'-dichlorodihydrofluorescein diacetate fluorescence probe. RESULTS In solution, 10 μM HA inactivated up to 5.11 ± 0.19 log10 TCID50 of H1N1 and 4.89 ± 0.38 log10 TCID50 of H3N2 by illumination for 5 and 30 min, respectively. When surgical masks were contaminated by virus before HA addition, PDI inactivated 99.99% (4.33 ± 0.34 log reduction) of H1N1 and 99.40% (2.22 ± 0.39 log reduction) of H3N2 under the selected condition. When the masks were pretreated with HA before virus addition, PDI decontaminated 99.92% (3.11 ± 0.19 log reduction) of H1N1 and 98.71% (1.89 ± 0.20 log reduction) of H3N2 virus. The fluorescence intensity of 2',7'-dichlorofluorescein in photoactivated HA was significantly higher than the cell control (P > 0.05), indicating that HA efficiently generated ROS. CONCLUSIONS HA-mediated PDI is effective for the disinfection of influenza viruses H1N1 and H3N2. The approach could be an alternative to decontaminating influenza A viruses on the surfaces of objects.
Collapse
Affiliation(s)
- Yao Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu-Lu Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chang-Ping Xu
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jian Gao
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yan Feng
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| | - Qiao-Feng Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Minor M, Sabillón L. Effectiveness of Ultra-High Irradiance Blue Light-Emitting Diodes in Inactivating Escherichia coli O157:H7 on Dry Stainless Steel and Cast-Iron Surfaces. Foods 2023; 12:3072. [PMID: 37628070 PMCID: PMC10453762 DOI: 10.3390/foods12163072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The use of blue light-emitting diodes (LEDs) is emerging as a promising dry decontamination method. In the present study, LEDs emitting ultra-high irradiance (UHI) density at 405 nm (842 mW/cm2) and 460 nm (615 mW/cm2) were used to deliver high-intensity photoinactivation treatments ranging from 221 to 1107 J/cm2. The efficacy of these treatments to inactivate E. coli O157:H7 dry cells was evaluated on clean and soiled stainless steel and cast-iron surfaces. On clean metal surfaces, the 405 and 460 nm LED treatment with a 221 J/cm2 dose resulted in E. coli reductions ranging from 2.0 to 4.1 log CFU/cm2. Increasing the treatment energy dose to 665 J/cm2 caused further significant reductions (>8 log CFU/cm2) in the E. coli population. LED treatments triggered a significant production of intracellular reactive oxygen species (ROS) in E. coli cells, as well as a significant temperature increase on metal surfaces. In the presence of organic matter, intracellular ROS generation in E. coli cells dropped significantly, and treatments with higher energy doses (>700 J/cm2) were required to uphold antimicrobial effectiveness. The mechanism of the bactericidal effect of UHI blue LED treatments is likely to be a combination of photothermal and photochemical effects. This study showed that LEDs emitting monochromatic blue light at UHI levels may serve as a viable and time-effective method for surface decontamination in dry food processing environments.
Collapse
Affiliation(s)
- Martha Minor
- Department of Family & Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Luis Sabillón
- Department of Family & Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA;
- Center of Excellence in Sustainable Food and Agricultural Systems, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
7
|
Lan X, Liu Y, Wang L, Wang H, Hu Z, Dong H, Yu Z, Yuan Y. A review of curcumin in food preservation: Delivery system and photosensitization. Food Chem 2023; 424:136464. [PMID: 37247602 DOI: 10.1016/j.foodchem.2023.136464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
As a natural polyphenol, curcumin has been used as an alternative to synthetic preservatives in food preservation. Different from previous reviews that mainly focus on the pH-responsive discoloration of curcumin to detect changes in food quality in real time, this paper focuses on the perspective of the delivery system and photosensitization of curcumin for food preservation. The delivery system is an effective means to overcome the challenges of curcumin like instability, hydrophobicity, and low bioavailability. Curcumin as a photosensitizer can effectively sterilize to preserve food. The practical fresh-keeping effects of the delivery system and photosensitization of curcumin on foods (fruits/vegetables, animal-derived food, and grain) were summarized comprehensively, including shelf-life extension, maintenance of physicochemical properties, nutritional quality, and sensory. Future research should focus on the development of novel curcumin-loaded materials used for food preservation, and most importantly, the biosafety and accumulation toxicity associated with these materials should be explored.
Collapse
Affiliation(s)
- Xiang Lan
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Yueyue Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lei Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Haiyan Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Zhe Hu
- Hisense Ronshen (Guangdong) Refrigerator Co., Ltd., Foshan 528303, China
| | - Hao Dong
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Zhiwen Yu
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Prasad A, Roopesh MS. Bacterial biofilm reduction by 275 and 455 nm light pulses emitted from light emitting diodes. J Food Saf 2023. [DOI: 10.1111/jfs.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Amritha Prasad
- Department of Agricultural Food and Nutritional Science, University of Alberta Edmonton Alberta Canada
| | - M. S. Roopesh
- Department of Agricultural Food and Nutritional Science, University of Alberta Edmonton Alberta Canada
| |
Collapse
|
9
|
Chitosan enhances antibacterial efficacy of 405 nm light-emitting diode illumination against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella spp. on fresh-cut melon. Food Res Int 2023; 164:112372. [PMID: 36737959 DOI: 10.1016/j.foodres.2022.112372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
This study aimed to evaluate the influence of chitosan on the antibacterial efficacy of 405 nm LED illumination against Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes on fresh-cut melons. The antibacterial efficacy of LED illumination (a total dose of 1.3 kJ/cm2) with or without chitosan (0.5 and 1.0 %) against these three pathogens was determined at 4 and 10 °C, respectively. Non-illuminated and chitosan-treated fruits were stored in the dark for 36 h under the same temperature. Color changes, ascorbic acid content, and total flavonoid content of illuminated and non-illuminated fruits were also analyzed. The results showed that the populations of all three pathogens on the non-illuminated and chitosan-treated fruits remained unchanged during storage. Regardless of bacterial species and chitosan concentrations, LED illumination in combination with chitosan greatly reduced the bacterial populations by 1.5 - 3.5 log/cm2, which was greater than LED illumination alone. Among the three pathogens, L. monocytogenes was the most susceptible to chitosan-mediated LED illumination. However, the whiteness index of illuminated fruits significantly increased by 1.3-fold compared to that of non-illuminated fruits, regardless of the presence of chitosan. Unlike color, no significant difference was observed in ascorbic acid and total flavonoid contents between illuminated and non-illuminated fruits. Although the fruit color was changed by LED illumination, these results indicate that adding chitosan could enhance the antibacterial efficacy of 405 nm LED illumination against major foodborne pathogens on fresh-cut melons without changing nutritional quality.
Collapse
|
10
|
Lee IH, Kim SH, Kang DH. Quercetin mediated antimicrobial photodynamic treatment using blue light on Escherichia coli O157:H7 and Listeria monocytogenes. Curr Res Food Sci 2022; 6:100428. [PMID: 36632435 PMCID: PMC9826937 DOI: 10.1016/j.crfs.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
Interest in using an antimicrobial photodynamic treatment (aPDT) for the microbial decontamination of food has been growing. In this study, quercetin, a substance found ubiquitously in plants, was used as a novel exogenous photosensitizer with 405 nm blue light (BL) for the aPDT on foodborne pathogens, and the inactivation mechanism was elucidated. The inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in PBS solution by the quercetin and BL combination treatment reached a log reduction of 6.2 and more than 7.55 at 80 J/cm2 (68 min 21 s), respectively. When EDTA was added to investigate the reason for different resistance between two bacteria, the effect of aPDT was enhanced against E. coli O157:H7 but not L. monocytogenes. This result indicated that the lipopolysaccharide of Gram-negative bacteria operated as a protective barrier. It was experimentally demonstrated that quercetin generated the superoxide anion and hydrogen peroxide as the reactive oxygen species that oxidize and inactivate cell components. The damage to the bacterial cell membrane by aPDT was evaluated by propidium iodide, where the membrane integrity significantly (P < 0.05) decreased from 40 J/cm2 compared to control. In addition, DNA integrity of bacteria was significantly (P < 0.05) more decreased after aPDT than BL treatment. The inactivation results could be applied in liquid food industries for decontamination of foodborne pathogens, and the mechanisms data was potentially utilized for further studies about aPDT using quercetin.
Collapse
Affiliation(s)
- In-Hwan Lee
- Department of Agricultural Biotechnology, Center of Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo-Hwan Kim
- Department of Agricultural Biotechnology, Center of Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Hyun Kang
- Department of Agricultural Biotechnology, Center of Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea,Institutes of Green Bio Science and Technology, Seoul National University, Pyeong-Chang, Gangwon-do, 25354, Republic of Korea,Corresponding author. Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Braga GÚL, Silva-Junior GJ, Brancini GTP, Hallsworth JE, Wainwright M. Photoantimicrobials in agriculture. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112548. [PMID: 36067596 DOI: 10.1016/j.jphotobiol.2022.112548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Classical approaches for controlling plant pathogens may be impaired by the development of pathogen resistance to chemical pesticides and by limited availability of effective antimicrobial agents. Recent increases in consumer awareness of and/or legislation regarding environmental and human health, and the urgent need to improve food security, are driving increased demand for safer antimicrobial strategies. Therefore, there is a need for a step change in the approaches used for controlling pre- and post-harvest diseases and foodborne human pathogens. The use of light-activated antimicrobial substances for the so-called antimicrobial photodynamic treatment is known to be effective not only in a clinical context, but also for use in agriculture to control plant-pathogenic fungi and bacteria, and to eliminate foodborne human pathogens from seeds, sprouted seeds, fruits, and vegetables. Here, we take a holistic approach to review and re-evaluate recent findings on: (i) the ecology of naturally-occurring photoantimicrobials, (ii) photodynamic processes including the light-activated antimicrobial activities of some plant metabolites, and (iii) fungus-induced photosensitization of plants. The inhibitory mechanisms of both natural and synthetic light-activated substances, known as photosensitizers, are discussed in the contexts of microbial stress biology and agricultural biotechnology. Their modes-of-antimicrobial action make them neither stressors nor toxins/toxicants (with specific modes of poisonous activity), but a hybrid/combination of both. We highlight the use of photoantimicrobials for the control of plant-pathogenic fungi and quantify their potential contribution to global food security.
Collapse
Affiliation(s)
- Gilberto Ú L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | | | - Guilherme T P Brancini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, United Kingdom.
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
12
|
Yu X, Zou Y, Zhang Z, Wei T, Ye Z, Yuk HG, Zheng Q. Recent advances in antimicrobial applications of curcumin-mediated photodynamic inactivation in foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Efficacy of 405 nm Light-Emitting Diode Illumination and Citral Used Alone and in Combination for Inactivation of Vibrio parahaemolyticus on Shrimp. Foods 2022; 11:foods11142008. [PMID: 35885251 PMCID: PMC9324625 DOI: 10.3390/foods11142008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
Vibrio parahaemolyticus is a widely distributed pathogen, which is frequently the lead cause of infections related to seafood consumption. The objective of the present study was to investigate the antimicrobial effect of the combination of 405 nm light-emitting diode (LED) and citral on V. parahaemolyticus. The antimicrobial effect of LED illumination and citral was evaluated on V. parahaemolyticus not only in phosphate-buffered saline (PBS) but also on shrimp. Quality changes of shrimp were determined by sensory evaluation. Changes in bacteria cell membrane morphology, cell membrane permeability, cell lipid oxidation level, and DNA degradation were examined to provide insights into the antimicrobial mechanism. The combination of LED treatments and citral had better antimicrobial effects than either treatment alone. LED combined with 0.1 mg/mL of citral effectively reduced V. parahaemolyticus from 6.5 log CFU/mL to below the detection limit in PBS. Combined treatment caused a 3.5 log reduction of the pathogen on shrimp within 20 min and a 6 log reduction within 2 h without significant changes in the sensory score. Furthermore, combined LED and citral treatment affected V. parahaemolyticus cellular morphology and outer membrane integrity. The profile of the comet assay and DNA fragmentation analysis revealed that combination treatment did not cause a breakdown of bacterial genomic DNA. In conclusion, LED may act synergistically with citral. They have the potential to be developed as novel microbial intervention strategies.
Collapse
|
14
|
Shi YG, Lin S, Chen WX, Jiang L, Gu Q, Li DH, Chen YW. Dual-Stage Blue-Light-Guided Membrane and DNA-Targeted Photodynamic Inactivation Using Octyl Gallate for Ultraefficient Eradication of Planktonic Bacteria and Sessile Biofilms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7547-7565. [PMID: 35687111 DOI: 10.1021/acs.jafc.2c01667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the synergistic bactericidal activity and mechanism of dual-stage light-guided membrane and DNA-targeted photodynamic inactivation (PDI) by the combination of blue light (BL, 420 nm) and the food additive octyl gallate (OG) against Vibrio parahaemolyticus in planktonic and biofilm growth modes. While OG serves as an outstanding exogenous photosensitizer, the planktonic cells were not visibly detectable after the OG-mediated PDI treatment with 0.2 mM OG within 15 min (191.7 J/cm2), and its biofilm was nearly eradicated within 60 min (383.4 J/cm2). Gram-positive Staphylococcus aureus was more susceptible to the PDI than Gram-negative V. parahaemolyticus. The cellular wall and proteins, as well as DNA, were the vulnerable targets for PDI. The membrane integrity could be initially disrupted by OG bearing a hydrophilic head and a hydrophobic tail via transmembrane insertion. The enhancement of OG uptake due to the first-stage light-assisted photochemical internalization (PCI) promoted the accumulation of OG in cells. It further boosted the second-stage light irradiation of the photosensitizer-inducing massive cell death. Upon the second-stage BL irradiation, reactive oxygen species (ROS) generated through the OG-mediated PDI in situ could extensively deconstruct membranes, proteins, and DNA, as well as biofilms, while OG could be activated by BL to carry out photochemical reactions involving the formation of OG-bacterial membrane protein (BMP) covalent conjugates and the interactions with DNA. This dual-stage light-guided subcellular dual-targeted PDI strategy exhibits encouraging effects on the eradication of planktonic bacteria and sessile biofilms, which provides a new insight into the development of an ultraeffective antimicrobial and biofilm removing/reducing technique to improve microbiological safety in the food industry.
Collapse
|
15
|
Kim DK, Shin M, Kim HS, Kang DH. Inactivation efficacy of combination treatment of blue light-emitting diodes (LEDs) and riboflavin to control E. coli O157:H7 and S. Typhimurium in apple juice. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Li X, Sheng L, Sbodio AO, Zhang Z, Sun G, Blanco-Ulate B, Wang L. Photodynamic control of fungicide-resistant Penicillium digitatum by vitamin K3 water-soluble analogue. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Gelatin/Chitosan Films Incorporated with Curcumin Based on Photodynamic Inactivation Technology for Antibacterial Food Packaging. Polymers (Basel) 2022; 14:polym14081600. [PMID: 35458350 PMCID: PMC9032248 DOI: 10.3390/polym14081600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Photodynamic inactivation (PDI) is a new type of non-thermal sterilization technology that combines visible light with photosensitizers to generate a bioactive effect against foodborne pathogenic bacteria. In the present investigation, gelatin (GEL)/chitosan (CS)-based functional films with PDI potency were prepared by incorporating curcumin (Cur) as a photosensitizer. The properties of GEL/CS/Cur (0.025, 0.05, 0.1, 0.2 mmol/L) films were investigated by evaluating the surface morphology, chemical structure, light transmittance, and mechanical properties, as well as the photochemical and thermal stability. The results showed a strong interaction and good compatibility between the molecules present in the GEL/CS/Cur films. The addition of Cur improved different film characteristics, including thickness, mechanical properties, and solubility. More importantly, when Cur was present at a concentration of 0.1 mM, the curcumin-mediated PDI inactivated >4.5 Log CFU/mL (>99.99%) of Listeria monocytogenes, Escherichia coli, and Shewanella putrefaciens after 70 min (15.96 J/cm2) of irradiation with blue LED (455 ± 5) nm. Moreover, Listeria monocytogenes and Shewanella putrefaciens were completely inactivated after 70 min of light exposure when the Cur concentration was 0.2 mM. In contrast, the highest inactivation effect was observed in Vibrio parahaemolyticus. This study showed that the inclusion of Cur in the biopolymer-based film transport system in combination with photodynamic activation represents a promising option for the preparation of food packaging films.
Collapse
|
18
|
Yu X, Zheng P, Zou Y, Ye Z, Wei T, Lin J, Guo L, Yuk HG, Zheng Q. A review on recent advances in LED-based non-thermal technique for food safety: current applications and future trends. Crit Rev Food Sci Nutr 2022; 63:7692-7707. [PMID: 35369810 DOI: 10.1080/10408398.2022.2049201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Light-emitting diodes (LEDs) is an eco-friendly light source with broad-spectrum antimicrobial activity. Recent studies have extensively been conducted to evaluate its efficacy in microbiological safety and the potential as a preservation method to extend the shelf-life of foods. This review aims to present the latest update of recent studies on the basics (physical, biochemical and mechanical basics) and antimicrobial activity of LEDs, as well as its application in the food industry. The highlight will be focused on the effects of LEDs on different types (bacteria, yeast/molds, viruses) and forms (planktonic cells, biofilms, endospores, fungal toxin) of microorganisms. The antimicrobial activity of LEDs on various food matrices was also evaluated, together with further analysis on the food-related factors that lead to the differences in LEDs efficiency. Besides, the applications of LEDs on the food-related conditions, packaged food, and equipment that could enhance LEDs efficiency were discussed to explore the future trends of LEDs technology in the food industry. Overall, the present review provides important insights for future research and the application of LEDs in the food industry.
Collapse
Affiliation(s)
- Xinpeng Yu
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yuan Zou
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhiwei Ye
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Junfang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Liqiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| | - Qianwang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
19
|
do Prado-Silva L, Brancini GT, Braga GÚ, Liao X, Ding T, Sant’Ana AS. Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022; 180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
This review presents principles and novelties in the field of tissue optical clearing (TOC) technology, as well as application for optical monitoring of drug delivery and effective antimicrobial phototherapy. TOC is based on altering the optical properties of tissue through the introduction of immersion optical cleaning agents (OCA), which impregnate the tissue of interest. We also analyze various methods and kinetics of delivery of photodynamic agents, nanoantibiotics and their mixtures with OCAs into the tissue depth in the context of antimicrobial and antifungal phototherapy. In vitro and in vivo studies of antimicrobial phototherapies, such as photodynamic, photothermal plasmonic and photocatalytic, are summarized, and the prospects of a new TOC technology for effective killing of pathogens are discussed.
Collapse
|
21
|
Hyun JE, Moon SK, Lee SY. Application of blue light-emitting diode in combination with antimicrobials or photosensitizers to inactivate Escherichia coli O157:H7 on fresh-cut apples and cherry tomatoes. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Shi YG, Zhu CM, Li DH, Shi ZY, Gu Q, Chen YW, Wang JQ, Ettelaie R, Chen JS. New Horizons in Microbiological Food Safety: Ultraefficient Photodynamic Inactivation Based on a Gallic Acid Derivative and UV-A Light and Its Application with Electrospun Cyclodextrin Nanofibers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14961-14974. [PMID: 34843236 DOI: 10.1021/acs.jafc.1c04827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An excellent bactericidal effect of octyl gallate (OG)-mediated photodynamic inactivation (PDI) against foodborne pathogens (Escherichia coli and Staphylococcus aureus) was evaluated in relation to the mode of action. UV-A irradiation (wavelength, 365 nm; irradiance, 8.254 ± 0.18 mW/cm2) of the bacterial suspension containing 0.15 mM OG could lead to a >5-log reduction of viable cell counts within 30 min for E. coli and only 5 min for S. aureus. Reactive oxygen species (ROS) formation was considered the main reason for the bactericidal effect of OG + UV-A light treatment because toxic ROS induced by OG-mediated PDI could attack the cellular wall, proteins, and DNA of microbes. Moreover, the bactericidal effect, as well as the yields of ROS, depended on OG concentrations, irradiation time, and laser output power. Furthermore, we prepared an edible photodynamic antimicrobial membrane comprising electrospun cyclodextrin nanofibers (NFs) by embedding OG. The resultant OG/HPβCD NFs (273.6 μg/mL) under UV-A irradiation for 30 min (14.58 J/cm) could cause a great reduction (>5-log) of viable bacterial counts of E. coli. The in situ photodynamic antibacterial activity of OG/HPβCD NF-based packaging was evaluated during the Chinese giant salamander storage. Overall, this research highlights the dual functionalities (antibacterial and photodynamic properties) of OG as both an antibacterial agent and photosensitizer and the effectiveness of electrospun NFs containing OG as an active antibacterial packaging material for food preservation upon UV light illumination.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Chen-Min Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Dong-Hui Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Ze-Yu Shi
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Jie-Qian Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| | - Rammile Ettelaie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Jian-She Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Zhejiang, Hangzhou 310035, China
| |
Collapse
|
23
|
Le TD, Phasupan P, Visaruthaphong K, Chouwatat P, Thi Thu V, Nguyen LT. Development of an antimicrobial photodynamic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) packaging film for food preservation. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Shi YG, Jiang L, Lin S, Jin WG, Gu Q, Chen YW, Zhang K, Ettelaie R. Ultra-efficient antimicrobial photodynamic inactivation system based on blue light and octyl gallate for ablation of planktonic bacteria and biofilms of Pseudomonas fluorescens. Food Chem 2021; 374:131585. [PMID: 34802804 DOI: 10.1016/j.foodchem.2021.131585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/04/2022]
Abstract
Pseudomonas fluorescens is a Gram-negative spoilage bacterium and dense biofilm producer, causing food spoilage and persistent contamination. Here, we report an ultra-efficient photodynamic inactivation (PDI) system based on blue light (BL) and octyl gallate (OG) to eradicate bacteria and biofilms of P. fluorescens. OG-mediated PDI could lead to a > 5-Log reduction of viable cell counts within 15 min for P. fluorescens. The activity is exerted through rapid penetration of OG towards the cells with the generation of a high-level toxic reactive oxygen species triggered by BL irradiation. Moreover, OG plus BL irradiation can efficiently not only prevent the formation of biofilms but also scavenge the existing biofilms. Additionally, it was shown that the combination of OG/poly(lactic acid) electrospun nanofibers and BL have great potential as antimicrobial packagings for maintaining the freshness of the salamander storge. These prove that OG-mediated PDI can provide a superior platform for eradicating bacteria and biofilm.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Lai Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shan Lin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Wen-Gang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ke Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Rammile Ettelaie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
25
|
Nájera AI, Nieto S, Barron LJR, Albisu M. A Review of the Preservation of Hard and Semi-Hard Cheeses: Quality and Safety. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189789. [PMID: 34574712 PMCID: PMC8469587 DOI: 10.3390/ijerph18189789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022]
Abstract
Cheese is a dairy product with potential health benefits. Cheese consumption has increased due to the significant diversity of varieties, versatility of product presentation, and changes in consumers’ lifestyles. Spoilage of hard and semi-hard cheeses can be promoted by their maturation period and/or by their long shelf-life. Therefore, preservation studies play a fundamental role in maintaining and/or increasing their shelf-life, and are of significant importance for the dairy sector. The aim of this review is to discuss the most effective methods to ensure the safety and sensory quality of ripened cheeses. We review traditional methods, such as freezing, and modern and innovative technologies, such as high hydrostatic pressures, chemical and natural vegetable origin preservatives, vacuum and modified atmosphere packaging, edible coatings and films, and other technologies applied at the end of storage and marketing stages, including light pulses and irradiation. For each technology, the main advantages and limitations for industrial application in the dairy sector are discussed. Each type of cheese requires a specific preservation treatment and optimal application conditions to ensure cheese quality and safety during storage. The environmental impact of the preservation technologies and their contribution to the sustainability of the food chain are discussed.
Collapse
Affiliation(s)
- Ana Isabel Nájera
- Lactiker Research Group, Faculty of Pharmacy, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 01006 Vitoria-Gasteiz, Spain;
- Correspondence: (A.I.N.); (M.A.); Tel.: +34-945-013-077 (A.I.N.); +34-945-013-072 (M.A.)
| | - Sonia Nieto
- Efficient and Sustainable Processes Department, Bizkaia Technology Park, AZTI, P.O. Box 609, 48160 Derio, Spain;
| | - Luis Javier R. Barron
- Lactiker Research Group, Faculty of Pharmacy, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 01006 Vitoria-Gasteiz, Spain;
| | - Marta Albisu
- Lactiker Research Group, Faculty of Pharmacy, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 01006 Vitoria-Gasteiz, Spain;
- Correspondence: (A.I.N.); (M.A.); Tel.: +34-945-013-077 (A.I.N.); +34-945-013-072 (M.A.)
| |
Collapse
|
26
|
Prasad A, Gänzle M, Roopesh MS. Antimicrobial activity and drying potential of high intensity blue light pulses (455 nm) emitted from LEDs. Food Res Int 2021; 148:110601. [PMID: 34507746 DOI: 10.1016/j.foodres.2021.110601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/30/2023]
Abstract
Decontamination of low water activity (aw) foods, like pet foods is a challenging task. Treatment using light emitting diode (LED) is an emerging decontamination method, that can induce photodynamic inactivation in bacteria. The objective of this study was to understand the effect of selected product and process parameters on the antibacterial efficacy of treatment using light pulses of 455 nm wavelength on dry powdered Salmonella and pet foods equilibrated to 0.75 aw. The surface temperature increase, weight loss, and aw decrease in the samples were determined after LED treatments with different doses. S. Typhimurium on pet foods showed better sensitivity to 455 nm LED treatment than the powdered S. Typhimurium. For instance, 455 nm LED treatment with 785.7 J/cm2 dose produced a log reduction of 1.44 log (CFU/g) in powdered S. Typhimurium population compared to 3.22 log (CFU/g) on pet food. The LED treatment was less effective against 5-strain cocktail of Salmonella in low aw pet foods. The treated samples showed significant reduction in weight and aw showing the heating and drying potential of 455 nm LED treatment. Significant lipid oxidation was observed in the treated pet foods. Overall, the dose, treatment time, and sample type influenced the Salmonella inactivation efficacy of 455 nm LED treatment in low aw conditions.
Collapse
Affiliation(s)
- Amritha Prasad
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada; College of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430086, China
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
27
|
Antibacterial potency of riboflavin-mediated photodynamic inactivation against Salmonella and its influences on tuna quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Assessing the photodynamic efficacy of different photosensitizer-light treatments against foodborne bacteria based on the number of absorbed photons. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112249. [PMID: 34237541 DOI: 10.1016/j.jphotobiol.2021.112249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/15/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
Increasing interests in photodynamic treatment (PDT) for food preservation require a holistic method to evaluate and compare different photosensitizer (PS)-light treatments. In this report, the absorbed photons were used as the basis to assess the antimicrobial photodynamic efficacy of two PSs, chlorophyllin sodium magnesium salt (Chl-Mg) and chlorophyllin sodium copper salt (Chl-Cu), under blue and white light against two typical foodborne pathogens, Gram-negative Escherichia coli, and Gram-positive Staphylococcus aureus. The results showed that the phototoxicity of a PS was predominantly decided by the absorbed photons rather than the characteristics of light sources. Photosensitized Chl-Mg exhibited superior antimicrobial activity as compared to that of ChlCu. The applied treatments were found to be more effective against S. aureus than E. coli. Bacterial inactivation kinetics as a function of the number of absorbed photons could be described by Weibull model with R2 from 0.947-0.962, and kinetics constants D in the range of 0.202 × 1017 photons/cm2-2.409 × 1018 photons/cm2. The kinetics models may find promising applications in the design, assessment, and optimization of PDT processes.
Collapse
|
29
|
Antibacterial mechanism of riboflavin-mediated 460 nm light emitting diode illumination against Listeria monocytogenes in phosphate-buffered saline and on smoked salmon. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Hyun JE, Moon SK, Lee SY. Antibacterial activity and mechanism of 460–470 nm light-emitting diodes against pathogenic bacteria and spoilage bacteria at different temperatures. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Iqbal Z, Ahmed S, Tabassum N, Bhattacharya R, Bose D. Role of probiotics in prevention and treatment of enteric infections: a comprehensive review. 3 Biotech 2021; 11:242. [PMID: 33968585 PMCID: PMC8079594 DOI: 10.1007/s13205-021-02796-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Microorganisms that inhabits human digestive tract affect global health and enteric disorders. Previous studies have documented the effectiveness and mode of action of probiotics and classified as human-friendly biota and a competitor to enteric pathogens. Statistical studies reported more than 1.5 billion cases of gastrointestinal infections caused by enteric pathogens and their long-term exposure can lead to mental retardation, temporary or permanent physical weakness, and leaving the patient susceptible for opportunistic pathogens, which can cause fatality. We reviewed previous literature providing evidence about therapeutic approaches regarding probiotics to cure enteric infections efficiently by producing inhibitory substances, immune system modulation, improved barrier function. The therapeutic effects of probiotics have shown success against many foodborne pathogens and their therapeutic effectiveness has been exponentially increased using genetically engineered probiotics. The bioengineered probiotic strains are expected to provide a better and alternative approach than traditional antibiotic therapy against enteric pathogens, but the novelty of these strains also raise doubts about the possible untapped side effects, for which there is a need for further studies to eliminate the concerns relating to the use and safety of probiotics. Many such developments and optimization of the classical techniques will revolutionize the treatments for enteric infections.
Collapse
Affiliation(s)
- Zunaira Iqbal
- Department of Microbiology, University of Central Punjab, Johar Town, 1-Khayaban-e-Jinnah Road, Lahore, Pakistan
| | - Shahzaib Ahmed
- Department of Biotechnology, University of Central Punjab, Johar Town, 1-Khayaban-e-Jinnah Road, Lahore, Pakistan
| | - Natasha Tabassum
- Department of Biotechnology, University of Central Punjab, Johar Town, 1-Khayaban-e-Jinnah Road, Lahore, Pakistan
| | - Riya Bhattacharya
- Faculty of Applied Sciences and Biotechnology, School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh India
| | - Debajyoti Bose
- Faculty of Applied Sciences and Biotechnology, School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh India
| |
Collapse
|
32
|
Zheng Z, Xie Y, Ma S, Tu J, Li J, Liang S, Xu Y, Shi C. Effect of 405-nm light-emitting diode on environmental tolerance of Cronobacter sakazakii in powdered infant formula. Food Res Int 2021; 144:110343. [PMID: 34053539 DOI: 10.1016/j.foodres.2021.110343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/05/2023]
Abstract
Cronobacter sakazakii is an opportunistic pathogen that can survive extreme desiccation, heat, acid, and osmotic stress. This can increase the risk of infection, resulting in severe diseases, mainly in neonates. The inactivation effect of 405 ± 5-nm light-emitting diode (LED) illumination on C. sakazakii with different initial concentrations and C. sakazakii strains isolated from powdered infant formula (PIF) and baby rice cereal (BRC) were firstly evaluated. Then, the effect of 405 ± 5-nm LED on the tolerance of diverse environmental conditions of C. sakazakii in PIF was investigated. Conditions involving desiccation [PIF, Water activity (aw): 0.2-0.5], heat (45, 50, and 55 °C), acid (simulated gastric fluid: SGF, pH 4.75 ± 0.25), and bile salt (0.2%, bile salt solution) were used to study the effects of 405-nm LED on C. sakazakii resistance. The transcription levels of ten tolerance-associated genes and changes in bacterial cell membrane were examined to understand the response of C. sakazakii to LED illumination. The results showed that 405-nm LED effectively inactivated C. sakazakii ATCC 29544 with initial concentration from 8 to 1 log CFU/g in PIF and strains isolated from PIF and BRC. Moreover, 405-nm LED could decrease the tolerance of C. sakazakii in PIF to desiccation, heat treatment at 50 and 55 °C, SGF, and bile salt to different degrees, but the resistance to the heat treatment at 45 °C was not influenced by LED illumination. In addition, the transcription levels of the ten tolerance-associated genes measured in the LED-illuminated C. sakazakii cells were significantly downregulated compared with those in unilluminated controls. The damage on cell membrane was confirmed for LED-treated cells by LIVE/DEAD® assay. These results indicate that 405-nm LED illumination may be effective at reducing the environmental resistance of C. sakazakii in PIF. Furthermore, this study suggests the potential for applying 405-nm LED technology in the prevention and control of pathogens in food processing, production, and storage environments.
Collapse
Affiliation(s)
- Zhanwen Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yawen Xie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sheng Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhong Tu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiahui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yunfeng Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
33
|
Antimicrobial activity of 405 nm light-emitting diode (LED) in the presence of riboflavin against Listeria monocytogenes on the surface of smoked salmon. Food Sci Biotechnol 2021; 30:609-618. [PMID: 33936853 DOI: 10.1007/s10068-021-00895-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 10/21/2022] Open
Abstract
This study investigated the antimicrobial activity of 405 nm light-emitting diode (LED) with and without riboflavin against Listeria monocytogenes in phosphate buffered saline (PBS) and on smoked salmon at different storage temperatures and evaluated its impact on food quality. The results show that riboflavin-mediated LED illumination in PBS 25 °C significantly inactivated L. monocytogenes cells by 6.2 log CFU/mL at 19.2 J/cm2, while illumination alone reduced 1.9 log CFU/mL of L. monocytogenes populations at 57.6 J/cm2. L. monocytogenes populations on illuminated smoked salmon decreased by 1.0-2.2 log CFU/cm2 at 1.27-2.76 kJ/cm2 at 4, 12, and 25 °C, regardless of the presence of riboflavin. Although illumination with and without riboflavin caused the lipid peroxidation and color change in smoked salmon, this study demonstrates the potential of a 405 nm LED to preserve the smoked salmon products, reducing the risk of listeriosis.
Collapse
|
34
|
Kim DK, Kang DH. Efficacy of light-emitting diodes emitting 395, 405, 415, and 425 nm blue light for bacterial inactivation and the microbicidal mechanism. Food Res Int 2021; 141:110105. [PMID: 33641972 DOI: 10.1016/j.foodres.2021.110105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 11/18/2022]
Abstract
We investigated the bactericidal effects against Escherichia coli O157:H7 of light-emitting diodes (LEDs) emitting blue light of four different peak wavelengths ranging from 395 to 425 nm in water. Furthermore, we investigated inactivation in the presence of reactive oxygen species (ROS) scavengers to elucidate the contribution of bacterial inactivation. An aluminum chamber was constructed and coated in carbon to block exterior light, and a single blue light LED with a rear heat sink was attached to the chamber lid. Effective inactivation of the pathogen was observed for all blue light LED irradiation at 305, 405, 415, and 425 nm. The log-linear with shoulder and tail model and log-linear model described the survival of the bacteria after blue light LED treatments. Not just the effects of ROS but also photophysical effects were shown with the addition of mannitol, a ROS scavenger. The integrity of the cell membrane was damaged regardless of the presence of ROS, which indicates that photophysical effects were sufficient to induce damage to the cell membrane. In addition, activity of succinate-coenzyme Q reductase, which participates in respiratory metabolism to generate energy, decreased in the absence of ROS and decreased further in the presence of ROS.
Collapse
Affiliation(s)
- Do-Kyun Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
35
|
Bhavya ML, Shewale SR, Rajoriya D, Hebbar HU. Impact of Blue LED Illumination and Natural Photosensitizer on Bacterial Pathogens, Enzyme Activity and Quality Attributes of Fresh-Cut Pineapple Slices. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02581-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Pascoe MJ, Maillard JY. The role of melanin in Aspergillus tolerance to biocides and photosensitizers. Lett Appl Microbiol 2020; 72:375-381. [PMID: 33300193 DOI: 10.1111/lam.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/15/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
Cationic biocides are widely utilized for surface disinfection. Photosensitizers such as toluidine blue O (TBO) produce reactive oxygen species following light excitation and are being investigated as novel biocides for similar applications. Aspergillus brasiliensis conidia contain melanin which protects against environmental stressors. The negative charge and antioxidant properties of melanin may confer resistance to photosensitizers and other biocides. In this study, the yeasticidal and fungicidal activity benzalkonium chloride (BZC), sodium dichloroisocyanurate (NaDCC) and TBO with red light were examined using quantitative suspension tests. All three biocides were highly effective against Candida albicans and > 5·0 log10 reductions in viability were attainable within 5 minutes. Wild-type A. brasiliensis conidia were highly tolerant to treatment and 0·4 log10 reductions in viability were observed within the same time frame when treated with TBO or BZC. NaDCC was markedly more effective. Inhibition of melanin biosynthesis by culturing with 100 μg ml-1 kojic acid resulted in a hypopigmented phenotype with significantly increased sensitivity to all three biocides. These observations indicate that melanin is a significant contributor towards A. brasiliensis tolerance of biocides and photosensitizers and demonstrate that cationic biocides are poorly suited to applications where the control of A. brasiliensis is required.
Collapse
Affiliation(s)
- M J Pascoe
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | - J-Y Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
37
|
Žudytė B, Velička M, Šablinskas V, Lukšienė Ž. Understanding Escherichia coli damages after chlorophyllin-based photosensitization. JOURNAL OF BIOPHOTONICS 2020; 13:e202000144. [PMID: 32729182 DOI: 10.1002/jbio.202000144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Pathogenic strains of bacteria are causing various illnesses all around the world and have a major socio-economic impact. Thus, fast- and low-cost methods for the microbial control of foods are needed. One of them might be photosensitization. This study looks deeper into the mechanism of Escherichia coli damage by chlorophyllin-based photosensitization. Fluorimetric data indicate that after 15 minute incubation with chlorophyllin (Chl) (1.5 × 10-5 M Chl) 0.73 ± 0.03 μM of this compound was associated with E. coli cell surface. After photoactivation (405 nm, 6-30 J/cm2 ) significant reduction (88.2%) of bacterial viability was observed. Higher concentration of Chl (5 × 10-4 M Chl) reduced viability of bacteria more than by 98%. Results indicated that reactive oxygen species (ROS) took place in this inactivation. Colloidal surface enhanced Raman scattering (SERS) spectroscopy was employed to detect the molecular changes in the treated bacteria. It was found that Chl-based based photosensitization triggers multiple surface structure changes in E. coli what induce lethal unrepairable damages and inactivation of pathogen.
Collapse
Affiliation(s)
- Bernadeta Žudytė
- Institute of Photonics and Nanotechnology, Vilnius University, Vilnius, Lithuania
| | - Martynas Velička
- Institute of Chemical Physics, Vilnius University, Vilnius, Lithuania
| | - Valdas Šablinskas
- Institute of Chemical Physics, Vilnius University, Vilnius, Lithuania
| | - Živilė Lukšienė
- Institute of Photonics and Nanotechnology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
38
|
Hyun JE, Lee SY. Blue light-emitting diodes as eco-friendly non-thermal technology in food preservation. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Effect of Light-Emitting Diodes (LEDs) on the Quality of Fruits and Vegetables During Postharvest Period: a Review. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02534-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Le TD, Phasupan P, Nguyen LT. Antimicrobial photodynamic efficacy of selected natural photosensitizers against food pathogens: Impacts and interrelationship of process parameters. Photodiagnosis Photodyn Ther 2020; 32:102024. [PMID: 32980551 DOI: 10.1016/j.pdpdt.2020.102024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/29/2020] [Accepted: 09/14/2020] [Indexed: 01/19/2023]
Abstract
Photodynamic treatment (PDT) could be a viable option to decontaminate food or food contact surfaces. Such applications require a rigorous method to assess the efficacy of different photosensitizer-light source systems. It is also essential to determine suitable treatment conditions to achieve desirable microbial inhibition for a given process. In this connection, we evaluated and compared the antimicrobial activity of two natural photosensitizers (aloe emodin, curcumin) under PDT based on the number of absorbed photons. The degree of bacterial inactivation was then correlated to the absorbed photons as well as the process parameters through kinetics study. The results showed that aloe emodin was more effective than curcumin against both S. aureus and E. coli when the number of absorbed photons was matched. Aloe emodin reduced about 2.3 log units of S. aureus and 1.1 log units of E. coli more than curcumin. E. coli was more resistant to PDT than S. aureus. Inactivation kinetics of S. aureus and E. coli as a function of the number of absorbed photons can be described by the Weibull model with D values of 1.296 × 1017 photons/cm2 and 2.446 × 1018 photons/cm2, R2 of 0.969 and 0.968, respectively. The interrelationship between the concentration of photosensitizer, radiant fluence, and degree of bacterial inactivation could be used to determine and optimize treatment conditions of PDT processes.
Collapse
Affiliation(s)
- Truong Dang Le
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology (AIT), 58 Moo 9, Km. 42, Paholyothin Highway, Klong Luang, Pathum Thani, 12120, Thailand
| | - Pimonpan Phasupan
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology (AIT), 58 Moo 9, Km. 42, Paholyothin Highway, Klong Luang, Pathum Thani, 12120, Thailand
| | - Loc Thai Nguyen
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology (AIT), 58 Moo 9, Km. 42, Paholyothin Highway, Klong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
41
|
Hadi J, Dunowska M, Wu S, Brightwell G. Control Measures for SARS-CoV-2: A Review on Light-Based Inactivation of Single-Stranded RNA Viruses. Pathogens 2020; 9:E737. [PMID: 32911671 PMCID: PMC7558314 DOI: 10.3390/pathogens9090737] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 is a single-stranded RNA virus classified in the family Coronaviridae. In this review, we summarize the literature on light-based (UV, blue, and red lights) sanitization methods for the inactivation of ssRNA viruses in different matrixes (air, liquid, and solid). The rate of inactivation of ssRNA viruses in liquid was higher than in air, whereas inactivation on solid surfaces varied with the type of surface. The efficacy of light-based inactivation was reduced by the presence of absorptive materials. Several technologies can be used to deliver light, including mercury lamp (conventional UV), excimer lamp (UV), pulsed-light, and light-emitting diode (LED). Pulsed-light technologies could inactivate viruses more quickly than conventional UV-C lamps. Large-scale use of germicidal LED is dependent on future improvements in their energy efficiency. Blue light possesses virucidal potential in the presence of exogenous photosensitizers, although femtosecond laser (ultrashort pulses) can be used to circumvent the need for photosensitizers. Red light can be combined with methylene blue for application in medical settings, especially for sanitization of blood products. Future modelling studies are required to establish clearer parameters for assessing susceptibility of viruses to light-based inactivation. There is considerable scope for improvement in the current germicidal light-based technologies and practices.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Magdalena Dunowska
- School of Veterinary Science, Massey University Manawatu (Turitea) Tennent Drive, Palmerston North 4474, New Zealand;
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
- New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea) Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
42
|
Majiya H, Galstyan A. Dye extract of calyces of Hibiscus sabdariffa has photodynamic antibacterial activity: A prospect for sunlight-driven fresh produce sanitation. Food Sci Nutr 2020; 8:3200-3211. [PMID: 32724585 PMCID: PMC7382145 DOI: 10.1002/fsn3.1580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/23/2022] Open
Abstract
Photodynamic sanitation of fresh produce could help reduce spoilage and disease transmissions where conventional methods of sanitation are not available, and sunlight is available for free. In this study, we evaluated the photostability and photodynamic antibacterial activity of the dye extracts of calyces of Hibiscus sabdariffa. The dye extracts were very photostable in water but bleached in acetate-HCl buffer (pH 4.6), phosphate buffer saline (pH 7.2), and tris base-HCl buffer (pH 8.6). The photostability correlated with the photodynamic antibacterial activity of the dye extracts. Both the methanol and water dye extracts at the concentration of 0.0625 mg/ml caused complete inactivation of Bacillus subtilis (reductions of 8.5 log CFU/ml) within 2 min either with the visible light exposure at 10 mW/cm2 or in the dark without the light exposure. Reductions of 4.8 log CFU/ml and 2.2 log CFU/ml of Escherichia coli were observed when 1 mg/ml of methanol and water dye extracts were used, respectively, in water with the light exposure at 10 mW/cm2 for 20 min. Discussions are included about the ease of the dye extractions of the calyces of H. sabdariffa even in water without the need of energy for heating and the suitability of the dye extracts for the fresh produce sanitation. Dye extract of calyces of H. sabdariffa has photodynamic and nonphotodynamic antibacterial activity which could be exploited for the development of a low-tech sunlight-driven fresh produce sanitation system that is cheap, sustainable, and environmentally friendly.
Collapse
Affiliation(s)
- Hussaini Majiya
- Department of MicrobiologyIbrahim Badamasi Babangida UniversityLapaiNigeria
- Center for Soft NanoscienceUniversity of MünsterMunsterGermany
| | | |
Collapse
|
43
|
Seidi Damyeh M, Mereddy R, Netzel ME, Sultanbawa Y. An insight into curcumin-based photosensitization as a promising and green food preservation technology. Compr Rev Food Sci Food Saf 2020; 19:1727-1759. [PMID: 33337095 DOI: 10.1111/1541-4337.12583] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Consumer awareness on the side effects of chemical preservatives has increased the demand for natural preservation technologies. An efficient and sustainable alternative to current conventional preservation techniques should guarantee food safety and retain its quality with minimal side effects. Photosensitization, utilizing light and a natural photosensitizer, has been postulated as a viable and green alternative to the current conventional preservation techniques. The potential of curcumin as a natural photosensitizer is reviewed in this paper as a practical guide to develop a safe and effective decontamination tool for industrial use. The fundamentals of the photosensitization mechanism are discussed, with the main emphasis on the natural photosensitizer, curcumin, and its application to inactivate microorganisms as well as to enhance the shelf life of foods. Photosensitization has shown promising results in inactivating a wide spectrum of microorganisms with no reported microbial resistance due to its particular lethal mode of targeting nucleic acids. Curcumin as a natural photosensitizer has recently been investigated and demonstrated efficacy in decontamination and delaying spoilage. Moreover, studies have shown the beneficial impact of an appropriate encapsulation technique to enhance the cellular uptake of photosensitizers, and therefore, the phototoxicity. Further studies relating to improved delivery of natural photosensitizers with inherent poor solubility should be conducted. Also, detailed studies on various food products are warranted to better understand the impact of encapsulation on curcumin photophysical properties, photo-driven release mechanism, and nutritional and organoleptic properties of treated foods.
Collapse
Affiliation(s)
- Maral Seidi Damyeh
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Coopers Plains, QLD, Australia
| | - Ram Mereddy
- Department of Agriculture and Fisheries, Queensland Government, Coopers Plains, QLD, Australia
| | - Michael E Netzel
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Coopers Plains, QLD, Australia
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Coopers Plains, QLD, Australia
| |
Collapse
|
44
|
Ricciardi EF, Pedros-Garrido S, Papoutsis K, Lyng JG, Conte A, Del Nobile MA. Novel Technologies for Preserving Ricotta Cheese: Effects of Ultraviolet and Near-Ultraviolet-Visible Light. Foods 2020; 9:E580. [PMID: 32380636 PMCID: PMC7278879 DOI: 10.3390/foods9050580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 12/01/2022] Open
Abstract
Ricotta cheese is a potential growth medium for a wide range of microorganisms. The aim of the current study was to investigate the efficacy of ultraviolet (UV-C) and near-ultraviolet-visible light (NUV-vis) in microbial decontamination of ricotta artificially inoculated with Pseudomonas fluorescens. Cheese samples were stored at 4 °C, and microbiological and sensory analyses were performed for 9 days. From the microbiological point of view, control samples became unacceptable after less than 5 days, whereas ricotta treated by both UV-C and NUV-vis light remained acceptable for more than 6 days. Similar effects of UV-C and NUV-vis light were also recorded in terms of sensory quality. The shelf life of the samples subjected to the treatments was thus extended by 50%, suggesting the potential application of UV-C and NUV-vis light for cheese decontamination.
Collapse
Affiliation(s)
- Emilio Francesco Ricciardi
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25-71122 Foggia, Italy; (E.F.R.); (M.A.D.N.)
| | - Selene Pedros-Garrido
- School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland; (S.P.-G.); (K.P.); (J.G.L.)
| | - Kostas Papoutsis
- School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland; (S.P.-G.); (K.P.); (J.G.L.)
| | - James G. Lyng
- School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland; (S.P.-G.); (K.P.); (J.G.L.)
| | - Amalia Conte
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25-71122 Foggia, Italy; (E.F.R.); (M.A.D.N.)
| | - Matteo A. Del Nobile
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25-71122 Foggia, Italy; (E.F.R.); (M.A.D.N.)
| |
Collapse
|
45
|
Prasad A, Du L, Zubair M, Subedi S, Ullah A, Roopesh MS. Applications of Light-Emitting Diodes (LEDs) in Food Processing and Water Treatment. FOOD ENGINEERING REVIEWS 2020. [PMCID: PMC7223679 DOI: 10.1007/s12393-020-09221-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Light-emitting diode (LED) technology is an emerging nonthermal food processing technique that utilizes light energy with wavelengths ranging from 200 to 780 nm. Inactivation of bacteria, viruses, and fungi in water by LED treatment has been studied extensively. LED technology has also shown antimicrobial efficacy in food systems. This review provides an overview of recent studies of LED decontamination of water and food. LEDs produce an antibacterial effect by photodynamic inactivation due to photosensitization of light absorbing compounds in the presence of oxygen and DNA damage; however, such inactivation is dependent on the wavelength of light energy used. Commercial applications of LED treatment include air ventilation systems in office spaces, curing, medical applications, water treatment, and algaculture. As low penetration depth and high-intensity usage can challenge optimal LED treatment, optimization studies are required to select the right light wavelength for the application and to standardize measurements of light energy dosage.
Collapse
Affiliation(s)
- Amritha Prasad
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Lihui Du
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Samir Subedi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - M. S. Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| |
Collapse
|
46
|
Lukseviciute V, Luksiene Z. Inactivation of molds on the surface of wheat sprouts by chlorophyllin-chitosan coating in the presence of visible LED-based light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111721. [PMID: 31790881 DOI: 10.1016/j.jphotobiol.2019.111721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022]
Abstract
The present study clearly demonstrated the significant antifungal activity of chlorophyllin-chitosan complex (Chl-CHS) after activation with visible light. This phenomenon afterwards was successfully applied for better microbial control of highly popular food- germinated wheat sprouts. Obtained results indicated that photoactivated Chl-CHS complex (0.001% Chl-0.1% CHS and 0.005% Chl-0.5% CHS, 405 nm, 76 J/cm2) considerably inhibited (83%) the growth of dominating sprout pathogenic microfungus Fusarium graminearum in vitro. Moreover, obvious delay of fungus growth by 4 days after treatment was observed. The efficiency of antifungal treatment strongly depended on used Chl-CHS complex concentration. The coating of wheat grains with Chl-CHS (0.005% Chl-0.5% CHS) and illumination with visible light (405 nm; 76 J/cm2) inactivated the molds on the surface of grains by 79%. It is important to note, that no grain surface microstructure damage observed by SEM imaging have been found. No inhibiting effects on seed germination process, viability, average weight of grains, length of seedlings and content of chlorophyll a and chlorophyll b in the seedlings or eventually visual quality after Chl-CHS coating of grains and illumination with visible light have been observed. In conclusion, chlorophyllin-chitosan coating in the concert with visible light has great potential as cost-effective, environmentally friendly and sustainable strategy for better microbial control of highly contaminated sprouts.
Collapse
Affiliation(s)
- Viktorija Lukseviciute
- Institute of Photonics and Nanotechnology, Vilnius University, Sauletekio 10, 10223 Vilnius, Lithuania
| | - Zivile Luksiene
- Institute of Photonics and Nanotechnology, Vilnius University, Sauletekio 10, 10223 Vilnius, Lithuania; Faculty of Mathematics and Informatics, Vilnius University, Naugarduko g. 24, Vilnius 03225, Lithuania.
| |
Collapse
|
47
|
Santos AR, Silva AF, Freitas CF, Silva MV, Bona E, Nakamura CV, Hioka N, Mikcha JMG. Response surface methodology can be used to predict photoinactivation of foodborne pathogens using Rose Bengal excited by 530 nm LED. J Food Saf 2019. [DOI: 10.1111/jfs.12736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adriele R. Santos
- Programa de Pós‐Graduação em Ciência de AlimentosUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Alex F. Silva
- Programa de Pós‐Graduação em Ciência da SaúdeUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Camila F. Freitas
- Programa de Pós‐Graduação em QuímicaUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Marcos V. Silva
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha Alegrete, Rio Grande do Sul Brazil
| | - Evandro Bona
- Departamento de AlimentosUniversidade Tecnológica Federal do Paraná—campus Campo Mourão Campo Mourão Puerto Rico Brazil
| | - Celso V. Nakamura
- Departamento de Ciências Básicas da SaúdeUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Noboru Hioka
- Departamento de QuímicaUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Jane M. G. Mikcha
- Departamento de Análises Clínicas e BiomedicinaUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| |
Collapse
|
48
|
Bhavya ML, Hebbar HU. Sono-photodynamic inactivation of Escherichia coli and Staphylococcus aureus in orange juice. ULTRASONICS SONOCHEMISTRY 2019; 57:108-115. [PMID: 31208605 DOI: 10.1016/j.ultsonch.2019.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Efficiency of blue (462 ± 3 nm) light emitting diode (LED) illumination to inactivate Escherichia coli and Staphylococcus aureus in the presence of exogenous photosensitizer (curcumin) was studied in freshly squeezed orange juice. Further, the combinational effect of ultrasound (US), photosensitizer (PS) and blue light (BL) on inactivation of microbes was evaluated. The effect of process parameters such as concentration of PS, US and volume of the juice on E. coli and S. aureus inactivation was also investigated. The US alone and PS + BL treatments resulted in 3.02 ± 0.52 and 1.06 ± 0.13 log reduction of E. coli; 0.18 ± 0.14 and 2.34 ± 0.13 log reduction of S. aureus, respectively. The combination of PS + US + BL treatment at optimized conditions resulted in 2.35 ± 0.16 log reduction of S. aureus. An additive effect on the inactivation of E. coli (4.26 ± 0.32 log reduction) was observed with PS + US + BL combination treatment. The US treatment showed significant change in cloud value, colour and browning index of orange juice. The combinational non-thermal processes (PS + BL and PS + US + BL) did not have any significant effect on total phenolic content, total flavonoid content, and hesperidin content of the orange juice. However, these processes affected ascorbic acid content and antioxidant activity negatively. Thus, this study indicated that photodynamic inactivation of E. coli and S. aureus using LED-based photosensitization in fruit juices could be a potential method for microbial inactivation. Nevertheless, the effect on quality parameters needs to be considered while optimizing the process.
Collapse
Affiliation(s)
- M L Bhavya
- Department of Technology Scale-up, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - H Umesh Hebbar
- Department of Technology Scale-up, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India.
| |
Collapse
|
49
|
Hyun JE, Lee SY. Antibacterial effect and mechanisms of action of 460-470 nm light-emitting diode against Listeria monocytogenes and Pseudomonas fluorescens on the surface of packaged sliced cheese. Food Microbiol 2019; 86:103314. [PMID: 31703869 DOI: 10.1016/j.fm.2019.103314] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/10/2019] [Accepted: 08/24/2019] [Indexed: 01/01/2023]
Abstract
The aim of this study was to investigate the antibacterial effect of 460-470 nm light-emitting diode (LED460-470nm) illumination against pathogens and spoilage bacteria on the surface of agar media and packaged sliced cheese. LED460-470nm illumination highly inhibited the growth of Listeria monocytogenes and Pseudomonas fluorescens on agar media covered with oriented polypropylene (OPP) film (thickness, 0.03 mm). When sliced cheeses inoculated with L. monocytogenes or P. fluorescens and packaged with OPP film were illuminated by an LED460-470 nm at 4 or 25 °C, reduction levels of L. monocytogenes and P. fluorescens on packaged slice cheese were higher at 4 °C than at 25 °C. There were no significant differences in color between non-illuminated and illuminated sliced cheese after storage for 7 d at 4 °C. LED460-470 nm illumination at 4 °C for 4 d caused cellular injury of L. monocytogenes and P. fluorescens related to RNA, protein, and peptidoglycan metabolism, and a disruption of the cell membrane and loss of cytoplasmic components were observed from TEM results. These results suggest that LED460-470 nm illumination, in combination with refrigeration temperatures, may be applied to extend the shelf-life of packaged slice cheese and minimize the risk of foodborne disease, without causing color deterioration.
Collapse
Affiliation(s)
- Jeong-Eun Hyun
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
50
|
Kussovski V, Mantareva V, Durmuş M, Angelov I. Quaternized Zn(II) phthalocyanines for photodynamic strategy against resistant periodontal bacteria. ACTA ACUST UNITED AC 2019; 73:221-228. [PMID: 29306935 DOI: 10.1515/znc-2017-0167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/30/2017] [Indexed: 11/15/2022]
Abstract
Photodynamic inactivation (PDI) has been featured as an effective strategy in the treatment of acute drug-resistant infections. The efficiency of PDI was evaluated against three periodontal pathogenic bacteria that were tested as drug-resistant strains. In vitro studies were performed with four water-soluble cationic Zn(II) phthalocyanines (ZnPc1-4) and irradiation of a specific light source (light-emitting diode, 665 nm) with three doses (15, 36 and 60 J/cm2). The well detectable fluorescence of ZnPcs allowed the cellular imaging, which suggested relatively high uptakes of ZnPcs into bacterial species. Complete photoinactivation was achieved with all studied ZnPc1-4 for Enterococcus faecalis (E. faecalis) at a light dose of 15 J/cm2. The photodynamic response was high for Prevotella intermedia (P. intermedia) after the application of 6 μM of ZnPc1 and a light dose of 36 J/cm2 and for 6 μM of ZnPc2 at 60 J/cm2. P. intermedia was inactivated with ZnPc3 (4 log) and ZnPc4 (2 log) with irradiation at an optimal dose of 60 J/cm2. Similar photoinactivation results (2 log) were achieved for Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) treated with 6 μM ZnPc1 and ZnPc2 at a light dose of 60 J/cm2. The study suggested that PDI with quaternized Zn(II) phthalocyanines and specific light irradiation appears to be a very useful antimicrobial strategy for effective inactivation of drug-resistant periodontal pathogens.
Collapse
Affiliation(s)
- Vesselin Kussovski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev, str., Bl. 26, 1113 Sofia, Bulgaria
| | - Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, str., Bl. 9, 1113 Sofia, Bulgaria, Tel.: +35-92-9606-181
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, Gebze, 41 400 Kocaeli, Turkey
| | - Ivan Angelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, str., Bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|