1
|
Improving an Industrial Sherry Base Wine by Yeast Enhancement Strategies. Foods 2022; 11:foods11081104. [PMID: 35454691 PMCID: PMC9030371 DOI: 10.3390/foods11081104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
There is growing interest in yeast selection for industrial fermentation applications since it is a factor that protects a wine’s identity. Although it is strenuous evaluating the oenological characteristics of yeasts in selection processes, in many cases the most riveting yeasts produce some undesirable organoleptic characteristics in wine. The aim of the present work is to improve an industrial yeast strain by reducing its hydrogen sulfide (H2S) production. To accomplish this, two different improvement approaches were used on said yeast: hybridization by mass mating and adaptive laboratory evolution, both performed through spore generation and conjugation, thus increasing genetic variability. Three evolved variants with lower H2S production were obtained and used as starters to carry out fermentation at an industrial level. Wine quality was analyzed by its principal oenological parameters and volatile aroma compounds, which were both corroborated by sensory evaluations. Significant differences between the produced wines have been obtained and a substantial improvement in aromatic quality has been achieved. Both hybrids were the most different to the control due to terpenes and esters production, while the evolved strain was very similar to the parental strain. Not only have organoleptic defects been reduced at an industrial level, more floral and fruitier wines have been produced.
Collapse
|
2
|
New Isolated Autochthonous Strains of S. cerevisiae for Fermentation of Two Grape Varieties Grown in Poland. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Many commercial strains of the Saccharomyces cerevisiae species are used around the world in the wine industry, while the use of native yeast strains is highly recommended for their role in shaping specific, terroir-associated wine characteristics. In recent years, in Poland, an increase in the number of registered vineyards has been observed, and Polish wines are becoming more recognizable among consumers. In the fermentation process, apart from ethyl alcohol, numerous microbial metabolites are formed. These compounds shape the wine bouquet or become precursors for the creation of new products that affect the sensory characteristics and quality of the wine. The aim of this work was to study the effect of the grapevine varieties and newly isolated native S. cerevisiae yeast strains on the content of selected wine fermentation metabolites. Two vine varieties—Regent and Seyval blanc were used. A total of 16 different yeast strains of the S. cerevisiae species were used for fermentation: nine newly isolated from vine fruit and seven commercial cultures. The obtained wines differed in terms of the content of analyzed oenological characteristics and the differences depended both on the raw material (vine variety) as well as the source of isolation and origin of the yeast strain used (commercial vs. native). Generally, red wines characterized a higher content of tested analytes than white wines, regardless of the yeast strain used. The red wines are produced with the use of native yeast strains characterized by higher content of amyl alcohols and esters.
Collapse
|
3
|
Selection Process of a Mixed Inoculum of Non-Saccharomyces Yeasts Isolated in the D.O.Ca. Rioja. FERMENTATION 2021. [DOI: 10.3390/fermentation7030148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of non-Saccharomyces yeasts in sequential fermentations with S. cerevisiae has been proposed to improve the organoleptic characteristics involved in the quality of wine. The present study set out to select a non-Saccharomyces inoculum from the D.O.Ca. Rioja for use in winemaking. Strains included in the study belonged to Torulaspora delbrueckii, Lachancea thermotolerans, Metschnikowia pulcherrima, Zygosaccharomyces bailii, Williopsis pratensis, Debaryomyces hansenii, Pichia kluyveri, Sporidiobolus salmonicolor, Candida spp., Cryptococcus spp. and two mixed inocula of Lachancea thermotolerans-Torulaspora delbrueckii in a 30/70 ratio. In the first stage of the process, SO2 resistance and presence of enzymatic activities related to wine aroma and wine color and fining (esterase, esterase-lipase, lipase, leucine arylamidase, valine arylamidase, cystine arylamidase, β-glucosidase, pectinase, cellulose, xylanase and glucanase) were studied. In the later stages, selection criteria such as fermentative behavior, aroma compound production or influence on phenolic compounds were studied in laboratory scale vinifications. Taking into account the results obtained in the different stages of the process, a mixed inoculum of Lachancea thermotolerans-Torulaspora delbrueckii in a 30/70 ratio was finally selected. This inoculum stood out for its high implantation capacity, the production of compounds of interest such as glycerol and lactic acid and the consequent modulation of wine acidity. Given these characteristics, the selected inoculum is suitable for the production of quality wines.
Collapse
|
4
|
Guzzon R, Roman T, Larcher R, Francesca N, Guarcello R, Moschetti G. Biodiversity and oenological attitude of Saccharomyces cerevisiae strains isolated in the Montalcino district: biodiversity of S. cerevisiae strains of Montalcino wines. FEMS Microbiol Lett 2021; 368:6123716. [PMID: 33512473 DOI: 10.1093/femsle/fnaa202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
The biodiversity of Saccharomyces cerevisiae was studied in the Montalcino area (Italy). Two wineries were involved in the study, which compared the genotypic and oenological characteristics of the S. cerevisiae strains isolated in spontaneous fermentations. After isolation yeasts were identified by 26S rRNA gene sequence analysis, and S. cerevisiae strains were characterized through interdelta sequence analysis (ISA). Oenological tests were performed in synthetic grape must by varying the magnitude of the main wine-imiting factors. The evolution of alcoholic fermentation was monitored by measuring sugar consumption and flow cytometry. The results revealed the prevalence of S. cerevisiae from the third day of fermentation and the presence of a wide range of S. cerevisiae strains having ISA profiles characteristic of each winery. From an oenological point of view, the features of such strains, in terms of resistance to wine-limiting factors, seemed to be linked to the main oenological variables applied in the production process of each winery. Extreme fermentation temperatures and copper residues are the variables that mostly depress the yeast population, in terms of fermentation rate and cell viability. Flow cytometry revealed the different impact of limiting factors on the viability of yeast by the quantification of the ratio between live/dead yeast cells of each strain, suggesting different mechanisms of inhibition, for instance stuck of cell growth or cell killing, in response to the different stress factors.
Collapse
Affiliation(s)
- Raffaele Guzzon
- Centro di Trasferimento tecnologico. Fondazione Edmund Mach. Via Mach 1, 38010, San Michele all'Adige (TN) Italy
| | - Tomas Roman
- Centro di Trasferimento tecnologico. Fondazione Edmund Mach. Via Mach 1, 38010, San Michele all'Adige (TN) Italy
| | - Roberto Larcher
- Centro di Trasferimento tecnologico. Fondazione Edmund Mach. Via Mach 1, 38010, San Michele all'Adige (TN) Italy
| | - Nicola Francesca
- Department of Agricultural and Forestry Science. Food and Agricultural Microbiology Unit. University of Palermo. Viale delle Scienze 4, 90128, Palermo Italy
| | - Rosa Guarcello
- Department of Agricultural and Forestry Science. Food and Agricultural Microbiology Unit. University of Palermo. Viale delle Scienze 4, 90128, Palermo Italy
| | - Giancarlo Moschetti
- Department of Agricultural and Forestry Science. Food and Agricultural Microbiology Unit. University of Palermo. Viale delle Scienze 4, 90128, Palermo Italy
| |
Collapse
|
5
|
Aponte M, Romano R, Villano C, Blaiotta G. Dominance of S. cerevisiae Commercial Starter Strains during Greco di Tufo and Aglianico Wine Fermentations and Evaluation of Oenological Performances of Some Indigenous/Residential Strains. Foods 2020; 9:foods9111549. [PMID: 33114667 PMCID: PMC7692326 DOI: 10.3390/foods9111549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
In order to evaluate dominance/implantation of starter cultures for wine fermentation, both commercial starters and wild strains were monitored during the fermentation of Greco di Tufo (GR) and Aglianico of Taurasi (AGL) musts. Preliminary characterization of commercial strains was carried out by several molecular markers. Five fermentations—four starter-inoculated and one spontaneous—were carried out in duplicates by using grapes from GR and AGL. Trials were monitored, and yeast cultures were isolated within the dominant microflora. Comparison of Interdelta patterns allowed to assess the real occurrence of both starters and indigenous strains. A high genetic diversity within S. cerevisiae strains was detected. In starter-led fermentations (except for few cases), in addition to the starter strains, indigenous S. cerevisiae biotypes were found, as well. Native strains isolated from replicates of the same fermentation showed different genetic profiles. Spontaneous fermentations were conducted, during the first 5 days, by non-Saccharomyces yeasts and, afterwards, by a high number (16 in the AGL and 20 in the GR) of S. cerevisiae biotypes. Indigenous biotypes isolated by GR revealed a high variability in oenological features and, in several cases, showed better performances than those recorded for commercial strains. The study further highlighted the low dominance of some commercial starter cultures. Moreover, autochthonous yeast strains proved to be sometimes more aggressive in terms of fermentation vigor in GR must, likely because better adapted to ecological and technological conditions occurring during winemaking. Finally, the use of such strains for production of autochthonous “pied de cuve” may be a useful strategy for lowering production cost of winemaking.
Collapse
Affiliation(s)
- Maria Aponte
- Division of Microbiology, Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy;
| | - Raffaele Romano
- Division of Food Science and Technology, Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, Naples, Italy;
| | - Clizia Villano
- Division of Vine and Wine Sciences, Department of Agricultural Sciences, University of Naples Federico II, Viale Italia, 83100 Avellino, Italy;
| | - Giuseppe Blaiotta
- Division of Vine and Wine Sciences, Department of Agricultural Sciences, University of Naples Federico II, Viale Italia, 83100 Avellino, Italy;
- Correspondence: ; Tel.: +39-081-25-32-610
| |
Collapse
|
6
|
Wojdyło A, Samoticha J, Chmielewska J. The influence of different strains of Oenococcus oeni malolactic bacteria on profile of organic acids and phenolic compounds of red wine cultivars Rondo and Regent growing in a cold region. J Food Sci 2020; 85:1070-1081. [PMID: 32125714 DOI: 10.1111/1750-3841.15061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/16/2019] [Accepted: 01/02/2020] [Indexed: 11/30/2022]
Abstract
Wines produced from grapes cultivated in cool climate areas are characterized by high levels of organic acids. One method to correct this is malolactic fermentation (MLF). The aim of this study was to determine the effectiveness of different strains of Oenococcus oeni bacteria (Viniflora CH11, Viniflora CH16, Viniflora CH35, Viniflora Oenos, SIHA LACT Oeno) during the biological acidity reduction process. Red wine from Rondo and Regent cultivars was obtained by ethanol fermentation of the pulp, at 20 °C for 14 days. The profile of organic acids was examined with a particular focus on changes in the content of l-malic and l-lactic acids. Additionally, the impact on profile and quantity of phenolic compounds and antioxidant capacity was measured. The results showed that MLF had a positive influence on content of organic acids through the reduction of l-malic acid content with a simultaneous increase of the amount of l-lactic acid. The best effect was obtained with the CH11 and CH35 bacterial strains. The biological acidity reduction process had no significant (P > 0.05) impact on phenolic content or antioxidant capacity. However, the wine making process (ethanol fermentation, maturation) contributed to the reduction of polyphenols and in consequence lower antioxidant capacity of the final tested wines. PRACTICAL APPLICATION: The present study provides useful information on the impact of different Oenococcus oeni bacterial strains on MLF in red wines, reduction of l-malic to l-lactic acid, and stability of phenolic compounds during MLF and the maturation period. Also, this article provides information about phenolic compounds and antioxidant capacity during malolactic fermentation and maturity of red wines made from hybrids of Vitis vinifera such as Rondo and Regent cultivars.
Collapse
Affiliation(s)
- Aneta Wojdyło
- Dept. of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław Univ. of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| | - Justyna Samoticha
- Dept. of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław Univ. of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| | - Joanna Chmielewska
- Dept. of Fermentation and Cereal Technology, Wrocław Univ. of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| |
Collapse
|
7
|
Samoticha J, Wojdyło A, Chmielewska J, Nofer J. Effect of Different Yeast Strains and Temperature of Fermentation on Basic Enological Parameters, Polyphenols and Volatile Compounds of Aurore White Wine. Foods 2019; 8:foods8120599. [PMID: 31757009 PMCID: PMC6963419 DOI: 10.3390/foods8120599] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/21/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to investigate the content of phenolics by Ultra Performance Liquid Chromatography–Photodiode Array (UPLC–PDA), and volatile compounds by Gas Chromatography–Mass Spectroscopy (GC–MS), antioxidant capacity by 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) and ferric-reducing antioxidant power (FRAP) assay, and color of Comission Internationale de l’Eclairage system (CIE) L*a*b* cv. Aurora white wine depending on fermentation conditions (a temperature of 12 °C vs. 20 °C and type of natural and commercial yeast (Saccharomyces cerevisiae vs. Saccharomyces bayanus)). The final wine differed in the content of total phenolic compounds (201.0–287.2 mg/L), except for the variants fermented at 20 °C with S. cerevisiae (321.9 and 329.4 mg/L for S. cerevisiae as Challenge Aroma White and SIHA® Cryaroma type, respectively). A decrease in antioxidant activity ranging from 43.3% to 65.4% (ABTS and FRAP assay) in the matured wine vs. must was demonstrated. S. cerevisiae wine was also characterized by the highest content of total volatile compounds (3.7–4.2 mg/L vs. 1.3 mg/L in the must). In general, the wine obtained with S. cerevisiae had higher alcohol content, antioxidant capacity, and was richer in polyphenolic and volatile compounds.
Collapse
Affiliation(s)
- Justyna Samoticha
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
- Correspondence: ; Tel.: +48-71-3207706
| | - Joanna Chmielewska
- Department of Fermentation and Cereal Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| | - Joanna Nofer
- Department of Chemistry, 25 Norwida Street, 50-375 Wrocław, Poland
| |
Collapse
|
8
|
Gil-Díaz M, Valero E, Cabellos JM, García M, Arroyo T. The impact of active dry yeasts in commercial wineries from the Denomination of Origen "Vinos de Madrid", Spain. 3 Biotech 2019; 9:382. [PMID: 31656720 DOI: 10.1007/s13205-019-1913-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/21/2019] [Indexed: 11/25/2022] Open
Abstract
This paper has studied the success of implantation for 16 commercial active dry yeasts (ADYs) during industrial fermentation (30) and the impact of these yeasts during spontaneous fermentations (19) in 10 wineries from the Denomination of Origin "Vinos de Madrid" over two consecutive years. Yeasts strains were identified by molecular techniques, pulsed field electrophoresis and microsatellite analysis. According to these techniques, all the ADYs were different with the exceptions of two strains, L2056 and Rh, which showed the same karyotype and loci size. The results showed that inoculating fermentations with ADYs did not ensure their dominance throughout the fermentation; the implantation level of ADYs was above 80% in only 9 of the 30 commercial fermentations studied; while in 16 fermentations, the dominance of the inoculated ADYs was below 50%. The type of vinification with the best implantation results overall were those associated with red wine fermentations. ADYs affected spontaneous fermentations, although their impact was observed to decrease in the second year of the study. Therefore, specific adaptation studies are necessary before using commercial yeasts during the fermentation process. At the same time, a study was carried out on the frequency of commercial strains in IMIDRA's yeast collection, made up of strains isolated from spontaneous fermentations of the different areas and cellars since the beginning of the Denomination of Origin "Vinos de Madrid" in 1990. Six different ADYs were found with a frequency of less than 5%.
Collapse
Affiliation(s)
- M Gil-Díaz
- Departamento de Agroalimentación, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Autovía A2, km 38.2, Alcalá de Henares, 28805 Madrid, Spain
| | - E Valero
- 2Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. de Utrera Km 1, s/n, 41013 Sevilla, Spain
| | - J M Cabellos
- Departamento de Agroalimentación, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Autovía A2, km 38.2, Alcalá de Henares, 28805 Madrid, Spain
| | - M García
- Departamento de Agroalimentación, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Autovía A2, km 38.2, Alcalá de Henares, 28805 Madrid, Spain
| | - T Arroyo
- Departamento de Agroalimentación, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Autovía A2, km 38.2, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
9
|
Impact of co-inoculation of Saccharomyces cerevisiae, Hanseniaspora uvarum and Oenococcus oeni autochthonous strains in controlled multi starter grape must fermentations. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Ruiz-Terán F, Martínez-Zepeda PN, Geyer-de la Merced SY, Nolasco-Cancino H, Santiago-Urbina JA. Mezcal: indigenous Saccharomyces cerevisiae strains and their potential as starter cultures. Food Sci Biotechnol 2018; 28:459-467. [PMID: 30956858 DOI: 10.1007/s10068-018-0490-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 09/03/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022] Open
Abstract
In this study, 19 indigenous mezcal Saccharomyces cerevisiae strains were screened for their tolerance to grow under different stress conditions and their potential use in fermentation. All strains were able to tolerate pH value of 3, significant levels of glucose (30%), ethanol (12% v/v), and temperature of 37 °C. Eleven of them were able to grow in presence of 15% of ethanol, but only CH7 and PA18 strains grew at 42 °C. Both were selected for evaluation of their fermentative abilities in maguey juice and in a synthetic medium incubated at 30 and 40 °C. Temperature of 40 °C had a positive effect on the ethanol production, increasing the productivity and efficiency in maguey fermentation. Ethyl acetate, isobutanol and isoamyl alcohols production was favored at 30 °C. Both evaluated strains presented a good fermentative capacity and production of volatile compounds, suggesting their potential use as starter cultures in mezcal fermentation.
Collapse
Affiliation(s)
- Francisco Ruiz-Terán
- 1Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Paulina N Martínez-Zepeda
- 1Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Sara Y Geyer-de la Merced
- 1Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Hipócrates Nolasco-Cancino
- 2Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, 68120 Oaxaca de Juárez, Oaxaca Mexico
| | - Jorge A Santiago-Urbina
- Dirección de División de Carrera de Agricultura Sustentable y Protegida, Universidad Tecnológica de los Valles Centrales de Oaxaca, 71270 Zimatlán, Oaxaca Mexico
| |
Collapse
|
11
|
A Microtiter Plate Assay as a Reliable Method to Assure the Identification and Classification of the Veil-Forming Yeasts during Sherry Wines Ageing. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3040058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Cordero-Bueso G, Vigentini I, Foschino R, Maghradze D, Cantoral JM. Diversidad genética de levaduras aisladas a partir de uvas de Vitis vinifera ssp. Sylvestris (Gmelin) Hegi en el área Euroasiática. BIO WEB OF CONFERENCES 2017. [DOI: 10.1051/bioconf/20170902019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Puertas B, Jiménez MJ, Cantos-Villar E, Cantoral JM, Rodríguez ME. Use of Torulaspora delbrueckii and Saccharomyces cerevisiae in semi-industrial sequential inoculation to improve quality of Palomino and Chardonnay wines in warm climates. J Appl Microbiol 2017; 122:733-746. [PMID: 27981683 DOI: 10.1111/jam.13375] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 12/01/2022]
Abstract
AIMS We have evaluated for the first time the impact of two commercial yeast strains (Torulaspora delbrueckii TD291 and Saccharomyces cerevisiae QA23) inoculated sequentially in musts of Chardonnay and Palomino Fino grape varieties grown under warm climate (South-west of Spain). METHODS AND RESULTS Semi-industrial scale alcoholic fermentations (AF) were performed during the 2011 and 2012 harvests. Implantation analyses demonstrated that T. delbrueckii is the predominant strain until the end of the AF phase. Wines with sequential inoculation (SI) resulted in the production of low levels of acetic acid (which gives wine an undesirable 'vinegary' character), low acetaldehyde in Chardonnay and high in Palomino wines. The most salient attributes that contribute to the quality of the Chardonnay and Palomino wines produced were aroma intensity, fresh and tropical fruit character. CONCLUSIONS This study demonstrated that SI of T. delbrueckii and S. cerevisiae contribute significantly to the improvement of Chardonnay wine aromas and the creation of new styles of wine for Palomino. SIGNIFICANCE AND IMPACT OF THE STUDY This study has generated new knowledge about the biotechnological potential of T. delbrueckii (TD219) and S. cerevisiae (QA23) for improving the organoleptic properties of Chardonnay and Palomino wines.
Collapse
Affiliation(s)
- B Puertas
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro Rancho de la Merced, Consejería de Agricultura, Pesca y Desarrollo Rural (CAPDER, Junta de Andalucía), Jerez de la Frontera, Spain
| | - M J Jiménez
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro Rancho de la Merced, Consejería de Agricultura, Pesca y Desarrollo Rural (CAPDER, Junta de Andalucía), Jerez de la Frontera, Spain
| | - E Cantos-Villar
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro Rancho de la Merced, Consejería de Agricultura, Pesca y Desarrollo Rural (CAPDER, Junta de Andalucía), Jerez de la Frontera, Spain
| | - J M Cantoral
- Laboratorio de Microbiología y Genética, CASEM, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - M E Rodríguez
- Laboratorio de Microbiología y Genética, CASEM, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| |
Collapse
|
14
|
Rapid and not culture-dependent assay based on multiplex PCR-SSR analysis for monitoring inoculated yeast strains in industrial wine fermentations. Arch Microbiol 2016; 199:135-143. [PMID: 27631304 DOI: 10.1007/s00203-016-1287-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/12/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
Wine industry needs a simple method for rapid diagnosis of the dominance of inoculated strains that could be performed routinely during the fermentation process. We present a suitable, high-throughput, and low-cost method to monitor rapidly the dominance of inoculated yeast strains in industrial fermentations of red and white wines using an activated carbon cleaning pretreatment, and a rapid DNA extraction method plus multiplex PCR-SSR analysis. We apply this technique directly to samples of fermenting wines without previously isolating yeast colonies. Results are obtained in a maximum time of 4.5 h.
Collapse
|
15
|
Improvement of Malvar Wine Quality by Use of Locally-Selected Saccharomyces cerevisiae Strains. FERMENTATION-BASEL 2016. [DOI: 10.3390/fermentation2010007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
|
17
|
Petruzzi L, Bevilacqua A, Corbo MR, Garofalo C, Baiano A, Sinigaglia M. Selection of autochthonous Saccharomyces cerevisiae strains as wine starters using a polyphasic approach and ochratoxin A removal. J Food Prot 2014; 77:1168-77. [PMID: 24988024 DOI: 10.4315/0362-028x.jfp-13-384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Over the last few years, the selection of autochthonous strains of Saccharomyces cerevisiae as wine starters has been studied; however, researchers have not focused on the ability to remove ochratoxin A (OTA) as a possible trait to use in oenological characterization. In this article, a polyphasic approach, including yeast genotyping, evaluation of phenotypic traits, and fermentative performance in a model system (temperature, 25 and 30°C; sugar level, 200 and 250 g liter(-1)), was proposed as a suitable approach to select wine starters of S. cerevisiae from 30 autochthonous isolates from Uva di Troia cv., a red wine grape variety grown in the Apulian region (Southern Italy). The ability to remove OTA, a desirable trait to improve the safety of wine, was also assessed using enzyme-linked immunosorbent assay. The isolates, identified by PCR-restriction fragment length polymorphism analysis of the internal transcribed spacer region and DNA sequencing, were differentiated at strain level through the amplification of the interdelta region; 11 biotypes (I to XI) were identified and further studied. Four biotypes (II, III, V, VIII) were able to reduce OTA, with the rate of toxin removal from the medium (0.6 to 42.8%, wt/vol) dependent upon the strain and the temperature, and biotypes II and VIII were promising in terms of ethanol, glycerol, and volatile acidity production, as well as for their enzymatic and stress resistance characteristics. For the first time, the ability of S. cerevisiae to remove OTA during alcoholic fermentation was used as an additional trait in the yeast-selection program; the results could have application for evaluating the potential of autochthonous S. cerevisiae strains as starter cultures for the production of typical wines with improved quality and safety.
Collapse
Affiliation(s)
- Leonardo Petruzzi
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy. .
| | - Maria Rosaria Corbo
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Carmela Garofalo
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Antonietta Baiano
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| |
Collapse
|
18
|
Rodriguez ME, Orozco H, Cantoral JM, Matallana E, Aranda A. Acetyltransferase SAS2 and sirtuin SIR2, respectively, control flocculation and biofilm formation in wine yeast. FEMS Yeast Res 2014; 14:845-57. [PMID: 24920206 DOI: 10.1111/1567-1364.12173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 11/30/2022] Open
Abstract
Cell-to-cell and cell-to-environment interactions of microorganisms are of substantial relevance for their biotechnological use. In the yeast Saccharomyces cerevisiae, flocculation can be an advantage to clarify final liquid products after fermentation, and biofilm formation may be relevant for the encapsulation of strains of interest. The adhesion properties of wine yeast strains can be modified by the genetic manipulation of transcriptional regulatory proteins, such as histone deacetylases, and acetylases. Sirtuin SIR2 is essential for the formation of mat structures, a kind of biofilm that requires the expression of cell-wall protein FLO11 as its deletion reduces FLO11 expression, and adhesion of cells to themselves and to agar in a commercial wine strain. Deletion of acetyltransferase GCN5 leads to a similar phenotype. A naturally flocculant wine yeast strain called P2 was characterized. Its flocculation happens only during grape juice fermentation and is due to the presence of a highly transcribed version of flocculin FLO5, linked to the presence of a δ sequence in the promoter. Deletion of acetyltransferase SAS2 enhances this phenotype and maltose fermentation even more. Therefore, the manipulation of acetylation/deacetylation machinery members is a valid way to alter the interaction of industrial yeast to their environment.
Collapse
Affiliation(s)
- María E Rodriguez
- Laboratorio de MicrobiologÍa Enológica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | | | | | | | | |
Collapse
|
19
|
Molecular and Technological Characterization of Saccharomyces cerevisiae Strains Isolated from Natural Fermentation of Susumaniello Grape Must in Apulia, Southern Italy. Int J Microbiol 2014; 2014:897428. [PMID: 24672552 PMCID: PMC3942102 DOI: 10.1155/2014/897428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/16/2013] [Indexed: 11/17/2022] Open
Abstract
The characterization of autochthonous Saccharomyces cerevisiae strains is an important step towards the conservation and employment of microbial biodiversity. The utilization of selected autochthonous yeast strains would be a powerful tool to enhance the organoleptic and sensory properties of typical regional wines. In fact, indigenous yeasts are better tailored to a particular must and because of this they are able to praise the peculiarities of the derived wine. The present study described the biodiversity of indigenous S. cerevisiae strains isolated from natural must fermentations of an ancient and recently rediscovered Apulian grape cultivar, denoted as "Susumaniello." The yeast strains denoted by the best oenological and technological features were identified and their fermentative performances were tested by either laboratory assay. Five yeast strains showed that they could be excellent candidates for the production of industrial starter cultures, since they dominated the fermentation process and produced wines characterized by peculiar oenological and organoleptic features.
Collapse
|
20
|
Sun Y, Guo J, Liu F, Liu Y. Identification of indigenous yeast flora isolated from the five winegrape varieties harvested in Xiangning, China. Antonie van Leeuwenhoek 2014; 105:533-40. [PMID: 24395034 DOI: 10.1007/s10482-013-0105-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
Inoculated fermentation by selected indigenous yeast strains from a specific location could provide the wine with unique regional sensory characteristics. The identification and differentiation of local yeasts are the first step to understand the function of yeasts and develop a better strain-selection program for winemaking. The indigenous yeasts in five grape varieties, Chardonnay, Cabernet Franc, Cabernet Sauvignon, Marselan, and Merlot cultivated in Xiangning, Shanxi, China were investigated. Eight species of seven genera including Aureobasidium pullulans, Candida zemplinina, Hanseniaspora uvarum, Hanseniaspora occidentalis, Issatchenkia terricola, Metschnikowia pulcherrima, Pichia kluyveri, and Saccharomyces cerevisiae were identified using Wallerstein Laboratory Nutrient medium with sequencing of the 26S rDNA D1/D2 domain. H. uvarum and S. cerevisiae were the predominant species, while most non-Saccharomyces species were present in the whole fermentation process at different levels among the grape varieties. The genotypes of S. cerevisiae from each microvinification were determined by using interdelta sequence analysis. The 102 isolates showed eight different genotypes, and genotype III was the predominant genotype found. The distribution of S. cerevisiae strains during the fermentation of Marselan was also studied. Six genotypes were observed among the 92 strains with different genotypes of competitiveness at different sampling stages. Genotype V demonstrated the potential for organizing starter strains and avoiding inefficient fermentation. In general, this study explored the yeast species in the grapes grown in Xiangning County and provided important information of relationship of local yeast diversity and its regional wine sensory characteristics.
Collapse
Affiliation(s)
- Yue Sun
- College of Enology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | | | | | | |
Collapse
|
21
|
Úbeda J, Barrajón N, Briones A. Optimizing Small-Scale Production of Fresh Wine Yeast Biomass. J FOOD PROCESS ENG 2013. [DOI: 10.1111/jfpe.12032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Juan Úbeda
- Tecnología de Alimentos; IRICA Universidad de Castilla La Mancha; Avda. Camilo J. Cela 10 13071 Ciudad Real Spain
| | - Nuria Barrajón
- Tecnología de Alimentos; IRICA Universidad de Castilla La Mancha; Avda. Camilo J. Cela 10 13071 Ciudad Real Spain
| | - Ana Briones
- Tecnología de Alimentos; IRICA Universidad de Castilla La Mancha; Avda. Camilo J. Cela 10 13071 Ciudad Real Spain
| |
Collapse
|
22
|
Selection of an autochthonous Saccharomyces strain starter for alcoholic fermentation of Sherry base wines. ACTA ACUST UNITED AC 2013; 40:613-23. [DOI: 10.1007/s10295-013-1251-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
Abstract
Abstract
Several indigenous Saccharomyces strains from musts were isolated in the Jerez de la Frontera region, at the end of spontaneous fermentation, in order to select the most suitable autochthonous yeast starter, during the 2007 vintage. Five strains were chosen for their oenological abilities and fermentative kinetics to elaborate a Sherry base wine. The selected autochthonous strains were characterized by molecular methods: electrophoretic karyotype and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and by physiological parameters: fermentative power, ethanol production, sugar consumption, acidity and volatile compound production, sensory quality, killer phenotype, desiccation, and sulphur dioxide tolerance. Laboratory- and pilot-scale fermentations were conducted with those autochthonous strains. One of them, named J4, was finally selected over all others for industrial fermentations. The J4 strain, which possesses exceptional fermentative properties and oenological qualities, prevails in industrial fermentations, and becomes the principal biological agent responsible for winemaking. Sherry base wine, industrially manufactured by means of the J4 strain, was analyzed, yielding, together with its sensory qualities, final average values of 0.9 g/l sugar content, 13.4 % (v/v) ethanol content and 0.26 g/l volatile acidity content; apart from a high acetaldehyde production, responsible for the distinctive aroma of “Fino”. This base wine was selected for “Fino” Sherry elaboration and so it was fortified; it is at present being subjected to biological aging by the so-called “flor” yeasts. The “flor” velum formed so far is very high quality. To the best of our knowledge, this is the first study covering from laboratory to industrial scale of characterization and selection of autochthonous starter intended for alcoholic fermentation in Sherry base wines. Since the 2010 vintage, the indigenous J4 strain is employed to industrially manufacture a homogeneous, exceptional Sherry base wine for “Fino” Sherry production.
Collapse
|
23
|
Molecular analysis of red wine yeast diversity in the Ribera del Duero D.O. (Spain) area. Arch Microbiol 2013; 195:297-302. [PMID: 23397445 DOI: 10.1007/s00203-013-0872-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/13/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Molecular characterization of wine yeast population during spontaneous fermentation in biodynamic wines from Ribera del Duero D.O. located at northern plateau of Spain has been carried out during two consecutive years. A total of 829 yeast strains were isolated from the samples and characterized by electrophoretic karyotype. The results show the presence of three population of yeast differentiated by their electrophoretic karyotypes, (1) non-Saccharomyces yeast dominant in the initial phase of the fermentations (NS); (2) Saccharomyces bayanus var uvarum detected mainly mid-way through the fermentation process at 20-25 °C; and (3) Saccharomyces cerevisiae which remained dominant until the end of the fermentation. This is the first study showing the population dynamic of S. bayanus var. uvarum in red wines produced in Ribera del Duero that could represent an important source of autochthonous wine yeasts with novel oenological properties.
Collapse
|
24
|
Capece A, Romaniello R, Siesto G, Romano P. Diversity of Saccharomyces cerevisiae yeasts associated to spontaneously fermenting grapes from an Italian “heroic vine-growing area”. Food Microbiol 2012; 31:159-66. [DOI: 10.1016/j.fm.2012.03.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/02/2012] [Accepted: 03/19/2012] [Indexed: 11/30/2022]
|
25
|
Study of yeast populations and their enological properties in Guijoso Appellation of Origin (Spain). ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0484-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Tristezza M, Vetrano C, Bleve G, Grieco F, Tufariello M, Quarta A, Mita G, Spano G, Grieco F. Autochthonous fermentation starters for the industrial production of Negroamaro wines. J Ind Microbiol Biotechnol 2011; 39:81-92. [PMID: 21691795 DOI: 10.1007/s10295-011-1002-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/07/2011] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to establish a new procedure for the oenological selection of Saccharomyces cerevisiae strains isolated from natural must fermentations of an important Italian grape cultivar, denoted as "Negroamaro". For this purpose, 108 S. cerevisiae strains were selected as they did not produce H(2)S and then assayed by microfermentation tests. The adopted procedure made it possible to identify 10 strains that were low producers of acetic acid and hydrogen sulphide and showed that they completed sugar consumption during fermentation. These strains were characterized for their specific oenological and technological properties and, two of them, strains 6993 and 6920, are good candidates as industrial starter cultures. A novel protocol was set up for their biomass production and they were employed for industrial-scale fermentation in two industrial cellars. The two strains successfully dominated the fermentation process and contributed to increasing the wines' organoleptic quality. The proposed procedure could be very effective for selecting "company-specific" yeast strains, ideal for the production of typical regional wines. "Winery" starter cultures could be produced on request in a small plant just before or during the vintage season and distributed as a fresh liquid concentrate culture.
Collapse
Affiliation(s)
- Mariana Tristezza
- C.N.R. Institute of Sciences of Food Production (ISPA), Operative Unit of Lecce, via Provinciale Lecce-Monteroni, 73100, Lecce, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Exploitation of autochthonous micro-organism potential to enhance the quality of Apulian wines. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0091-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|