1
|
Du Z, Nakagawa A, Fang J, Ridwan R, Astuti WD, Sarwono KA, Sofyan A, Widyastuti Y, Cai Y. Cleaner anaerobic fermentation and greenhouse gas reduction of crop straw. Microbiol Spectr 2024; 12:e0052024. [PMID: 38832787 PMCID: PMC11218512 DOI: 10.1128/spectrum.00520-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
Rice anaerobic fermentation is a significant source of greenhouse gas (GHG) emissions, and in order to efficiently utilize crop residue resources to reduce GHG emissions, rice straw anaerobic fermentation was regulated using lactic acid bacteria (LAB) inoculants (FG1 and TH14), grass medium (GM) to culture LAB, and Acremonim cellulolyticus (AC). Microbial community, GHG emission, dry matter (DM) loss, and anaerobic fermentation were analyzed using PacBio single-molecule real-time and anaerobic fermentation system. The epiphytic microbial diversity of fresh rice straw was extremely rich and contained certain nutrients and minerals. During ensiling, large amounts of GHG such as carbon dioxide are produced due to plant respiration, enzymatic hydrolysis reactions, and proliferation of aerobic bacteria, resulting in energy and DM loss. Addition of FG1, TH14, and AC alone improved anaerobic fermentation by decreasing pH and ammonia nitrogen content (P < 0.05) and increased lactic acid content (P < 0.05) when compared to the control, and GM showed the same additive effect as LAB inoculants. Microbial additives formed a co-occurrence microbial network system dominated by LAB, enhanced the biosynthesis of secondary metabolites, diversified the microbial metabolic environment and carbohydrate metabolic pathways, weakened the amino acid metabolic pathways, and made the anaerobic fermentation cleaner. This study is of great significance for the effective utilization of crop straw resources, the promotion of sustainable livestock production, and the reduction of GHG emissions.IMPORTANCETo effectively utilize crop by-product resources, we applied microbial additives to silage fermentation of fresh rice straw. Fresh rice straw is extremely rich in microbial diversity, which was significantly reduced after silage fermentation, and its nutrients were well preserved. Silage fermentation was improved by microbial additives, where the combination of cellulase and lactic acid bacteria acted as enzyme-bacteria synergists to promote lactic acid fermentation and inhibit the proliferation of harmful bacteria, such as protein degradation and gas production, thereby reducing GHG emissions and DM losses. The microbial additives accelerated the formation of a symbiotic microbial network system dominated by lactic acid bacteria, which regulated silage fermentation and improved microbial metabolic pathways for carbohydrates and amino acids, as well as biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Zhumei Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Andressa Nakagawa
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Jiachen Fang
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Roni Ridwan
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Wulansih D. Astuti
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Ki A. Sarwono
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Ahmad Sofyan
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Yantyati Widyastuti
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Yimin Cai
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Pu X, Zhang X, Yi S, Wang R, Li Q, Zhang W, Qu J, Huo J, Lin B, Tan B, Tan Z, Wang M. Mixed ensiling plus nitrate destroy fiber structure of rape straw, increase degradation, and reduce methanogenesis through in vitro ruminal fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3428-3436. [PMID: 38109283 DOI: 10.1002/jsfa.13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Better utilization of rape straw can provide alternative strategies for sustainable ruminant and food production. The research reported here investigated changes in the carbohydrate composition of rape straw as a result of mixed ensiling with whole-crop corn or inoculated with nitrate, and the consequent effects on ruminal fermentation through in vitro batch culture. The three treatments included: rape straw and corn silage (RSTC), and ensiling treatment of rape straw with whole-crop corn (RSIC) or with calcium nitrate inoculation (RSICN). RESULTS Ensiling treatment of rape straw and whole-crop corn or plus nitrate enriched lactic acid bacteria and lactate. The treatments broke the fiber surface connections of rape straw, leading to higher neutral detergent soluble (NDS) content and lower fiber content. Ensiling treatments led to greater (P < 0.05) dry matter degradation (DMD), molar proportions of propionate and butyrate, relative abundance of the phylum Bacteroidetes and genus Prevotella, and lower (P < 0.05) methane production in terms of g kg-1 DMD, molar proportions of acetate, and lower acetate to propionate ratio than the RSTC treatment. The RSICN treatment led to the lowest (P < 0.05) hydrogen concentration and methane production among the three treatments. CONCLUSION Ensiling treatments of rape straw and whole-crop corn destroy the micro-structure of rape straw, promote substrate degradation by enriching the phylum Bacteroidetes and the genus Prevotella, and decrease methane production by favoring propionate and butyrate production. Nitrate inoculation in the ensiling treatment of rape straw and whole-crop corn further decreases methane production without influencing substrate degradation by providing an additional hydrogen sink. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuanxuan Pu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- Department of Animal Science and Technology, University of Hunan Agricultural University, Changsha, China
| | - Xiumin Zhang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Siyu Yi
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Rong Wang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Qiushuang Li
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Wanqian Zhang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Jiajing Qu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Jiabin Huo
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Bo Lin
- Department of Animal Science and Technology, University of Guangxi, Nanning, China
| | - Bie Tan
- Department of Animal Science and Technology, University of Hunan Agricultural University, Changsha, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Min Wang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
3
|
Du Z, Yamasaki S, Oya T, Nguluve D, Euridse D, Tinga B, Macome F, Cai Y. Microbial network and fermentation modulation of Napier grass and sugarcane top silage in southern Africa. Microbiol Spectr 2024; 12:e0303223. [PMID: 38084975 PMCID: PMC10783067 DOI: 10.1128/spectrum.03032-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/05/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Feed shortage in the tropics is a major constraint to the production of livestock products such as milk and meat. In order to effectively utilize of local feed resources, the selected lactic acid bacteria (LAB) strain was used to prepare Napier grass and sugarcane top silage. The results showed that the two silages inoculated with LAB formed a co-occurrence microbial network dominated by Lactiplantibacillus during the fermentation process, regulated the microbial community structure and metabolic pathways, and improved the silage fermentation quality. This is of great significance for alleviating feed shortage and promoting sustainable production of livestock.
Collapse
Affiliation(s)
- Zhumei Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Seishi Yamasaki
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Tetsuji Oya
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Damiao Nguluve
- Agricultural Research Institute of Mozambique, Matola, Mozambique
| | - Denise Euridse
- Agricultural Research Institute of Mozambique, Matola, Mozambique
| | - Benedito Tinga
- Agricultural Research Institute of Mozambique, Matola, Mozambique
| | | | - Yimin Cai
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Wahlen BD, Wendt LM, St Germain CC, Traynor SM, Barboza C, Dempster T, Gerken H, McGowen J, You Y. Effect of nitrogen management in cultivation on the stability and microbial community of post-harvest Monoraphidium sp. algae biomass. J Ind Microbiol Biotechnol 2023; 50:kuad004. [PMID: 36928716 PMCID: PMC10548854 DOI: 10.1093/jimb/kuad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Long-term storage is necessary to mitigate for seasonal variation in algae productivity, to preserve biomass quality and to guarantee a constant biomass supply to a conversion facility. While ensiling has shown promise as a solution, biomass attributes for successful storage are poorly understood. Storage studies of Monoraphidium sp. biomass indicate a strong correlation between nitrogen management in algae cultivation and stability of post-harvest algae biomass. Algae cultivated with periodic nitrogen addition were stored poorly (>20% loss, dry basis) compared to biomass from nitrogen depleted cultivation (8% loss, dry basis). A follow-up study compared the post-harvest stability of Monoraphidium biomass cultivated in nitrogen-deplete or nitrogen-replete conditions. Replete biomass experienced the largest degradation (24%, dry basis), while deplete biomass experienced the least (10%, dry basis). Dry matter loss experienced among blends of each correlated positively with nitrogen-replete biomass content. The composition of the post-storage algae microbial community was also affected by cultivation conditions, with Clostridia species being more prevalent in stored biomass obtained from nitrogen-replete cultivations. Nitrogen management has long been known to influence algae biomass productivity and biochemical composition; here, we demonstrate that it also strongly influences the stability of post-harvest algae biomass in anaerobic storage.
Collapse
Affiliation(s)
- Bradley D Wahlen
- Biological Processing, Idaho National Laboratory, Idaho Falls 83415, USA
| | - Lynn M Wendt
- Biological Processing, Idaho National Laboratory, Idaho Falls 83415, USA
| | | | - Sarah M Traynor
- Biological Processing, Idaho National Laboratory, Idaho Falls 83415, USA
| | - Caitlin Barboza
- Biological Processing, Idaho National Laboratory, Idaho Falls 83415, USA
| | - Thomas Dempster
- Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa 85212, USA
| | - Henri Gerken
- Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa 85212, USA
| | - John McGowen
- Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa 85212, USA
| | - Yaqi You
- SUNY College of Environmental Science and Forestry, State University of New York, Syracuse 13210, USA
| |
Collapse
|
5
|
Lai X, Wang H, Yan J, Zhang Y, Yan L. Exploring the differences between sole silages of gramineous forages and mixed silages with forage legumes using 16S/ITS full-length sequencing. Front Microbiol 2023; 14:1120027. [PMID: 36937291 PMCID: PMC10017965 DOI: 10.3389/fmicb.2023.1120027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background/Objective Silage characteristics of grass materials directly affect their silage qualities. To expand the source of silage raw materials and develop mixed silages underlined by exploring the positive interactions between forage grasses and legumes, three gramineous grasses, Napier grass (Pennisetum purpureum), king grass (Pennisetum sinese), and forage maize (Zea mays) were separately mixed ensiled with a combination of four forage legumes including Medicago sativa, Vicia villosa, Vicia sativa, and Trifolium repens. Methods The chemical composition and fermentation quality of the mixed silages were analyzed and compared with those of the sole silages of these three grasses, as well as the diversity of microbial communities, through the 16S/ITS full-length sequencing. Results The results showed that the inclusion of forage legumes could somewhat improve the fermentation quality, as indicated by significantly (p < 0.05) higher crude protein and lactic acid contents while lower neutral detergent fiber, acid detergent fiber contents and pH values, compared with the sole silages. Among the three types of mixed silages, the mixed king grass had the highest dry matter and crude protein content as well as lowest neutral detergent fiber and acid detergent fiber content. Meanwhile, the bacterial and fungal communities in the mixed silages were influenced by increased the relative abundance of lactic acid bacteria, which inhibited the proliferation of undesirable bacteria, such as Hafnia alvei, Enterobacter cloacae, and Serratia proteamaculanss. Co-occurrence networks identified 32 nodes with 164 positive and 18 negative correlations in bacteria and 80 nodes with two negative and 76 positive correlations in fungi during fermentation. Conclusion Inclusion of forage legume to grasses can improve the fermentation quality and optimize the structure of microbial community, which appears to be a feasible strategy to enhance the forage resource utilization.
Collapse
Affiliation(s)
- Xianjun Lai
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agriculture Science, Xichang University, Liangshan, China
| | - Haiyan Wang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Junfeng Yan
- Chengdu Ke’an Technology Co., Ltd., Chengdu, China
| | - Yizheng Zhang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lang Yan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agriculture Science, Xichang University, Liangshan, China
- Mianyang Youxian Innovation Technology and Industrial Technology Research Institute, Mianyang, China
- *Correspondence: Lang Yan,
| |
Collapse
|
6
|
Du Z, Sun L, Lin Y, Yang F, Cai Y. Using PacBio SMRT Sequencing Technology and Metabolomics to Explore the Microbiota-Metabolome Interaction Related to Silage Fermentation of Woody Plant. Front Microbiol 2022; 13:857431. [PMID: 35794909 PMCID: PMC9251423 DOI: 10.3389/fmicb.2022.857431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/26/2022] [Indexed: 01/23/2023] Open
Abstract
Silage fermentation is a dynamic process involving the succession of microbial communities and changes in metabolites. Fresh branched and leaves of paper mulberry were used to prepared silage. Crop by-products including corn bran, rice bran, and wheat bran were used as exogenous additives. Pacific Biosciences single-molecule real-time (SMRT) sequencing technology and metabolomics are used to explore the interaction mechanism of microbial structure and metabolites during woody silage fermentation and to verify the principle that exogenous additives can modulate silage fermentation. Under the dual stress of anaerobic and acidic environment of silage fermentation, the microbial community changed from Gram-negative to Gram-positive bacteria, and a large amount of lactic acid and volatile fatty acid were produced, which lowered the pH value and caused the rapid death of aerobic bacteria with thin cell walls. The exogenous additives of corn bran and wheat bran accelerated the dynamic succession of lactic acid bacteria as the dominant microbial community in silage fermentation, increased the metabolic pathways of lactic acid, unsaturated fatty acids, citric acid, L-malic acid and other flavoring agents, and inhibited the growth of Clostridium and Enterobacter, thereby improving the flavor and quality of the silage. However, because rice bran contained butyric acid spore bacteria, it can multiply in an anaerobic environment, led to butyric acid fermentation, and promoted protein degradation and ammonia nitrogen production, thereby reduced the fermentation quality of woody silage. The results showed that during the silage fermentation process, the microbial community and the metabolome can interact, and exogenous additives can affect the fermentation quality of silage. SMRT sequencing technology and untargeted metabolomics revealed the microbiota-metabolome interaction during silage fermentation. Changes in the structure of the microbial community can affect the metabolic pathways, and the final metabolites can inhibit the growth of microorganisms that are not conducive to silage fermentation. Exogenous carbohydrate additives can change the fermentation substrate and affect microbial community structure, thus modulate the silage fermentation.
Collapse
Affiliation(s)
- Zhumei Du
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Lin Sun
- Inner Mongolia Academy of Agricultural Sciences and Animal Husbandry, Hohhot, China
| | - Yanli Lin
- Beijing Sure Academy of Biosciences, Beijing, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Fuyu Yang,
| | - Yimin Cai
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
- Yimin Cai,
| |
Collapse
|
7
|
Hisham MB, Hashim AM, Mohd Hanafi N, Abdul Rahman N, Abdul Mutalib NE, Tan CK, Nazli MH, Mohd Yusoff NF. Bacterial communities associated with silage of different forage crops in Malaysian climate analysed using 16S amplicon metagenomics. Sci Rep 2022; 12:7107. [PMID: 35501317 PMCID: PMC9061801 DOI: 10.1038/s41598-022-08819-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 01/21/2023] Open
Abstract
Silage produced in tropical countries is prone to spoilage because of high humidity and temperature. Therefore, determining indigenous bacteria as potential inoculants is important to improve silage quality. This study aimed to determine bacterial community and functional changes associated with ensiling using amplicon metagenomics and to predict potential bacterial additives associated with silage quality in the Malaysian climate. Silages of two forage crops (sweet corn and Napier) were prepared, and their fermentation properties and functional bacterial communities were analysed. After ensiling, both silages were predominated by lactic acid bacteria (LAB), and they exhibited good silage quality with significant increment in lactic acid, reductions in pH and water-soluble carbohydrates, low level of acetic acid and the absence of propionic and butyric acid. LAB consortia consisting of homolactic and heterolactic species were proposed to be the potential bacterial additives for sweet corn and Napier silage fermentation. Tax4fun functional prediction revealed metabolic pathways related to fermentation activities (bacterial division, carbohydrate transport and catabolism, and secondary metabolite production) were enriched in ensiled crops (p < 0.05). These results might suggest active transport and metabolism of plant carbohydrates into a usable form to sustain bacterial reproduction during silage fermentation, yielding metabolic products such as lactic acid. This research has provided a comprehensive understanding of bacterial communities before and after ensiling, which can be useful for desirable silage fermentation in Malaysia.
Collapse
Affiliation(s)
- Minhalina Badrul Hisham
- Agro-Biotechnology Malaysia Institutes (ABI), National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation (MOSTI), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Nursyuhaida Mohd Hanafi
- Agro-Biotechnology Malaysia Institutes (ABI), National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation (MOSTI), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia.
| | - Norafizah Abdul Rahman
- Agro-Biotechnology Malaysia Institutes (ABI), National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation (MOSTI), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Nur Elina Abdul Mutalib
- Institutes for Health Systems Research, National Institutes of Health Malaysia (NIH), 40170, Shah Alam, Selangor, Malaysia
| | - Chun Keat Tan
- Agro-Biotechnology Malaysia Institutes (ABI), National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation (MOSTI), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Muhamad Hazim Nazli
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Fatihah Mohd Yusoff
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Du Z, Yamasaki S, Oya T, Nguluve D, Euridse D, Tinga B, Macome F, Cai Y. Microbial Co-occurrence Network and Fermentation Information of Natural Woody-Plant Silage Prepared With Grass and Crop By-Product in Southern Africa. Front Microbiol 2022; 13:756209. [PMID: 35369476 PMCID: PMC8964296 DOI: 10.3389/fmicb.2022.756209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
To facilitate the use of woody plant (WP) as a natural biomass resource to address the shortage of feed for ruminants in the tropics, we use PacBio SMRT sequencing to explore the microbial co-occurrence network and silage fermentation of gliricidia and leucaena prepared with Napier grass (NG) and corn stover (CS) in Southern Africa. Based on dry matter, the crude protein contents of WP are as high as 25%. Compared with NG, the addition of CS speed up the dynamic succession of microorganisms in the silage fermentation process from Gram-negative bacteria to Gram-positive bacteria, and promoted Lactiplantibacillus plantarum to become the dominant community and enhanced the metabolic pathways of lactic acid and citric acid, thus improved the fermentation flavour and quality of WP silage. WP can be mixed with CS to make high-quality silage, which can alleviate the shortage of feed and promote local animal production.
Collapse
Affiliation(s)
- Zhumei Du
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan.,College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Seishi Yamasaki
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| | - Tetsuji Oya
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| | - Damiao Nguluve
- Agricultural Research Institute of Mozambique, Matola, Mozambique
| | - Denise Euridse
- Agricultural Research Institute of Mozambique, Matola, Mozambique
| | - Benedito Tinga
- Agricultural Research Institute of Mozambique, Matola, Mozambique
| | | | - Yimin Cai
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| |
Collapse
|
9
|
Du Z, Sun L, Lin Y, Chen C, Yang F, Cai Y. Use of Napier grass and rice straw hay as exogenous additive improves microbial community and fermentation quality of paper mulberry silage. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Huang Y, Liang L, Dai S, Wu C, Chen C, Hao J. Effect of Different Regions and Ensiling Periods on Fermentation Quality and the Bacterial Community of Whole-Plant Maize Silage. Front Microbiol 2021; 12:743695. [PMID: 34858363 PMCID: PMC8631331 DOI: 10.3389/fmicb.2021.743695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to explore the changes in the microbial community on the silage material surface and during the ensiling process of whole-plant maize in different regions. Whole-plant maize silages were sampled in Ziyun, Guanling, and Weinning counties within warm and humid climate areas in southern China. Silages were sampled at 0, 2, 5, 10, 20, and 45 days during ensiling. The nutritional components, fermentation properties, and microbiomes were examined to evaluate the influence of sampling area and fermentation time on the quality of silage. The results showed that the pH values of all silages significantly decreased (<4.2 at ensiling day 2) during fermentation and all silages achieved satisfactory fermentation at 45 days. Butyric acid was not detected during ensiling, and the contents of acetic acid and ammonia nitrogen in the final silages were below 6 g/kg DM and 50 g/kg total nitrogen, respectively. Weissella was the dominant epiphytic bacteria of raw material in Ziyun and Weinning, while Lactobacillus was prevalent in Guanling. Lactobacillus dominated the ensiling process, and its abundance significantly increased with increasing fermentation time in the three groups. Lactobacillus was negatively correlated with pH of all silages (p < 0.05) and positively correlated with lactic acid, propionic acid and acetic acid (p < 0.05). Furthermore, the bacterial community was significantly correlated with environmental factors. Altitude had a highly positive correlation with the abundance of Stenotrophomonas, Chryseobacterium, and Massilia (p < 0.01), while precipitation was negatively correlated with these bacteria. The humidity and average temperature significantly influenced the Lactobacillus and Weissella abundances of fresh whole-plant maize. During the ensiling process, the silages from three regions had similar bacterial dynamic changes, and the Lactobacillus formed and maintained good fermentation characteristics in whole-plant maize silage.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| | - Longfei Liang
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| | - Sheng Dai
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| | - Changrong Wu
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| | - Chao Chen
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| | - Jun Hao
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Nazar M, Wang S, Zhao J, Dong Z, Li J, Kaka NA, Shao T. Abundance and diversity of epiphytic microbiota on forage crops and their fermentation characteristic during the ensiling of sterile sudan grass. World J Microbiol Biotechnol 2021; 37:27. [PMID: 33433734 DOI: 10.1007/s11274-020-02991-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/25/2020] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the effects of exogenous epiphytic microbiota inoculation on the fermentation quality and microbial community of sudan grass silage. Gamma irradiated sudan grass was ensiled with distilled water (STR), epiphytic microbiota of sudan grass (SUDm), forage sorghum (FSm), napier grass (NAPm) and whole crop corn (WCCm). The FSm inoculated silage have significantly lower lactic acid (LA) concentration and higher pH during early ensiling, while LA concentration gradually and significantly increased with the progression of ensiling and have lower pH in relation to other treatments for terminal silage. Inoculation of NAPm resulted in lower LA and higher acetic acid (AA) concentrations, higher pH, ammonia-N and dry matter losses for terminal silage, followed by SUDm silage. Inoculations of WCCm significantly increased LA production and pH decline during early ensiling and have higher LA and pH then NAPm and SUDm silages during final ensiling. The early fermentation of SUDm silage was dominated by genus of Pediococcus. The genera of Lactobacillus were predominant in WCCm and NAPm silages during 3 days of ensiling, while Weissella dominated initial microbial community of FS silage. The terminal silage of NAPm was dominated by Enterobacter and Rosenbergiella, while Enterobacter and Lactobacillus dominated terminal SUDm silage. The final silage of FSm was dominated by Lactobacillus, Weissella and Pediococcus, while Lactobacillus and Acetobacter dominated terminal WCCm silages. The results demonstrated that among the four forages the epiphytic microbiota from forage sorghum positively influenced the microbial community and fermentability of sudan grass silage.
Collapse
Affiliation(s)
- Mudasir Nazar
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Siran Wang
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jie Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Zhihao Dong
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Niaz Ali Kaka
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
12
|
Ramírez-Vega H, Arteaga-Garibay RI, Maya-Lucas O, Gómez-Rodríguez VM, Chávez-Díaz IF, Ruvalcaba-Gómez JM, Heredia-Nava D, Loperena-Martínez R, Zelaya-Molina LX. The Bacterial Community Associated with the Amarillo Zamorano Maize ( Zea mays) Landrace Silage Process. Microorganisms 2020; 8:microorganisms8101503. [PMID: 33003516 PMCID: PMC7601214 DOI: 10.3390/microorganisms8101503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Maize silage is used in the diet of dairy cows, with suitable results in milk yield. In this study, the composition and diversity of the bacterial communities of the silage process of Amarillo Zamorano (AZ) Mexican maize landrace with relation to the Antilope (A) commercial hybrid are described. From both types of maize, seeds were sown in experimental plots, plants harvested at the reproductive stage, chopped, and packed in laboratory micro-silos. Physicochemical parameters were evaluated, and DNA was extracted from the juice in the micro-silos. The bacterial communities were analyzed by next-generation sequencing (NGS) of seven hypervariable regions of the 16S rRNA gene. The composition of both bacterial communities was dominated by Lactobacillales and Enterobacteriales, Lactobacillales mainly in A silage and Enterobacteriales in AZ silage; as well, the core bacterial community of both silages comprises 212 operational taxonomic units (OTUs). Sugar concentration showed the highest number of significant associations with OTUs of different phyla. The structure of the bacterial communities was different in both silage fermentation processes, showing that AZ silage has a shorter fermentation process than A silage. In addition, NGS demonstrated the effect of the type of maize and local conditions on silage fermentation and contributed to potential strategies to improve the quality of AZ silage.
Collapse
Affiliation(s)
- Humberto Ramírez-Vega
- Departamento de Ciencias Pecuarias y Agrícolas, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco 47600, Mexico; (H.R.-V.); (V.M.G.-R.); (D.H.-N.); (R.L.-M.)
| | - Ramón I. Arteaga-Garibay
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigación Forestales, Agrícolas y Pecuarios, Tepatitlán de Morelos, Jalisco 47600, Mexico; (R.I.A.-G.); (I.F.C.-D.)
| | - Otoniel Maya-Lucas
- Departamento de Genética y Biología Molecular, CINVESTAV-Unidad Zacatenco, Ciudad de México 07360, Mexico;
| | - Victor M. Gómez-Rodríguez
- Departamento de Ciencias Pecuarias y Agrícolas, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco 47600, Mexico; (H.R.-V.); (V.M.G.-R.); (D.H.-N.); (R.L.-M.)
| | - Ismael F. Chávez-Díaz
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigación Forestales, Agrícolas y Pecuarios, Tepatitlán de Morelos, Jalisco 47600, Mexico; (R.I.A.-G.); (I.F.C.-D.)
| | - José M. Ruvalcaba-Gómez
- Campo Experimental Altos de Jalisco, Instituto Nacional de Investigación Forestales, Agrícolas y Pecuarios, Tepatitlán de Morelos, Jalisco 47600, Mexico;
| | - Darwin Heredia-Nava
- Departamento de Ciencias Pecuarias y Agrícolas, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco 47600, Mexico; (H.R.-V.); (V.M.G.-R.); (D.H.-N.); (R.L.-M.)
| | - Raquel Loperena-Martínez
- Departamento de Ciencias Pecuarias y Agrícolas, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco 47600, Mexico; (H.R.-V.); (V.M.G.-R.); (D.H.-N.); (R.L.-M.)
| | - L. X. Zelaya-Molina
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigación Forestales, Agrícolas y Pecuarios, Tepatitlán de Morelos, Jalisco 47600, Mexico; (R.I.A.-G.); (I.F.C.-D.)
- Correspondence:
| |
Collapse
|
13
|
Optimization of Preservation Methods Allows Deeper Insights into Changes of Raw Milk Microbiota. Microorganisms 2020; 8:microorganisms8030368. [PMID: 32151050 PMCID: PMC7142718 DOI: 10.3390/microorganisms8030368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
The temporal instability of raw milk microbiota drastically affects the reliability of microbiome studies. However, little is known about the microbial integrity in preserved samples. Raw cow milk samples were preserved with azidiol or bronopol and stored at 4 °C, or with dimethyl sulfoxide (DMSO) or a mixture of azidiol and DMSO and stored at −20 °C for up to 30 days. Aliquots of 5-, 10-, and 30-day post-storage were treated with propidium monoazide (PMA), then analyzed by sequencing the 16S rRNA gene V3-V4 and V6-V8 regions. The V6-V8 gave a higher richness and lower diversity than the V3-V4 region. After 5-day storage at 4 °C, the microbiota of unpreserved samples was characterized by a drastic decrease in diversity, and a significant shift in community structure. The treatment with azidiol and DMSO conferred the best community stabilization in preserved raw milk. Interestingly, the azidiol treatment performed as well for up to 10 days, thus appearing as a suitable alternative. However, neither azidiol nor bronopol could minimize fungal proliferation as revealed by PMA-qPCR assays. This study demonstrates the preservative ability of a mixture of azidiol and DMSO and provides deeper insights into the microbial changes occurring during the cold storage of preserved raw milk.
Collapse
|
14
|
Yu J, Hou Q, Li W, Huang W, Mo L, Yao C, An X, Sun Z, Wei H. Profiling of the viable bacterial and fungal microbiota in fermented feeds using single-molecule real-time sequencing. J Anim Sci 2020; 98:skaa029. [PMID: 32017844 PMCID: PMC7036599 DOI: 10.1093/jas/skaa029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/03/2020] [Indexed: 11/14/2022] Open
Abstract
Fermented concentrated feed has been widely recognized as an ideal feed in the animal industry. In this study, we used a powerful method, coupling propidium monoazide (PMA) pretreatment with single-molecule real-time (SMRT) sequencing technology to compare the bacterial and fungal composition of feeds before and after fermentation with four added lactic acid bacteria (LAB) inoculants (one Lactobacillus casei strain and three L. plantarum strains). Five feed samples consisting of corn, soybean meal, and wheat bran were fermented with LAB additives for 3 d. Following anaerobic fermentation, the pH rapidly decreased, and the mean numbers of LAB increased from 106 to 109 colony-forming units (cfu)/g fresh matter. SMRT sequencing results showed that the abundance and diversity of bacteria and fungi in the feed were significantly higher before fermentation than after fermentation. Fifteen bacterial species and eight fungal genera were significantly altered following fermentation, and L. plantarum was the dominant species (relative abundance 88.94%) in the post-fermentation group. PMA treatment revealed that the bacteria Bacillus cereus, B. circulans, Alkaliphilus oremlandii, Cronobacter sakazakii, Paenibacillus barcinonensis, and P. amylolyticus (relative abundance >1%) were viable in the raw feed. After fermentation, their relative abundances decreased sharply to <0.2%; however, viable L. plantarum was still the dominant species post fermentation. We inferred that our LAB additives grew rapidly and inhibited harmful microorganisms and further improved feed quality. In addition, coupling PMA treatment with the Pacific Biosciences SMRT sequencing technology was a powerful tool for providing accurate live microbiota profiling data in this study.
Collapse
Affiliation(s)
- Jie Yu
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Qiangchuan Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Weiqiang Huang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Lanxin Mo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Caiqing Yao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Xiaona An
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| |
Collapse
|
15
|
Yan Y, Li X, Guan H, Huang L, Ma X, Peng Y, Li Z, Nie G, Zhou J, Yang W, Cai Y, Zhang X. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria. BIORESOURCE TECHNOLOGY 2019; 279:166-173. [PMID: 30721817 DOI: 10.1016/j.biortech.2019.01.107] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
The bacterial community determined via PacBio single molecule, real-time sequencing technology (SMRT) and the fermentation characteristics of Italian ryegrass (IR, 82% moisture) silage prepared with corn stover (CS) were investigated. A selected strain of Lactobacillus plantarum (L694) and a commercial inoculant stain of Lactobacillus plantarum (LP) were used as additives. Lactic acid bacteria (LAB) effectively improved silage quality. After fermentation, Lactobacillus plantarum was the dominant species in IR + LP and IR + L694 treatments, which led to higher (P < 0.05) lactic acid and lower (P < 0.05) butyric acid production. Lactobacillus plantarum, Lactobacillus hammesii, Lactobacillus brevis, and Lactobacillus coryniformis were abundantly present in IR + CS + LP and IR + CS + L694 treatments, and acetic acid contents of these were higher (P < 0.05) than those of other silages. This study demonstrated that addition of CS and LAB can change the microbial community and influence the silage fermentation of IR, and PacBio SMRT reveals more specific microbial information.
Collapse
Affiliation(s)
- Yanhong Yan
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu 610000, China
| | - Xiaomei Li
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu 610000, China
| | - Hao Guan
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu 610000, China
| | - Linkai Huang
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu 610000, China
| | - Xiao Ma
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu 610000, China
| | - Yan Peng
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu 610000, China
| | - Zhou Li
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu 610000, China
| | - Gang Nie
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu 610000, China
| | - Jiqiong Zhou
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu 610000, China
| | - Wenyu Yang
- College of Agronmy, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Yimin Cai
- Japan International Research Center for Agricultural Science (JIRCAS), Tsukuba, Ibaraki 305-8686, Japan.
| | - Xinquan Zhang
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu 610000, China.
| |
Collapse
|
16
|
Si H, Liu H, Li Z, Nan W, Jin C, Sui Y, Li G. Effect of Lactobacillus plantarum and Lactobacillus buchneri addition on fermentation, bacterial community and aerobic stability in lucerne silage. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an16008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Changes in the microbial community are closely related to the fermentation of silage. However, how host genetic variation shapes the community structure of the silage microbiota and its metabolic phenotype is poorly understood. The objective of present study was to evaluate the effects of the application of the homo-fermentative Lactobacillus plantarum and hetero-fermentative Lactobacillus buchneri strains to lucerne silage on the fermentation characteristics, aerobic stability, and microbial community and their correlations. The three silages treated with L. plantarum or L. buchneri were well preserved and had significantly lower pH values, butyric acid, propionic acid, and ammonia-N concentrations, and significantly higher residual water-soluble carbohydrate, dry matter and lactic acid contents than the controls. The treated groups had more lactic acid bacteria and lower quantities of other bacteria in their microbial communities. Inoculation of lactic acid bacteria influenced the abundances of other bacteria and controlled the silage fermentation characteristics. L. buchneri inhibited the abundance of Enterobacter_ludwigii to increase the crude protein content, L. plantarum improve the neutral detergent fibre content by affecting the abundance of Arthrobacter_sp._Ens13. In conclusion, the application of L. plantarum and L. buchneri improved the quality of lucerne silage fermentation, and L. buchneri resulted in greater improvements after aerobic exposure.
Collapse
|
17
|
Guan H, Yan Y, Li X, Li X, Shuai Y, Feng G, Ran Q, Cai Y, Li Y, Zhang X. Microbial communities and natural fermentation of corn silages prepared with farm bunker-silo in Southwest China. BIORESOURCE TECHNOLOGY 2018; 265:282-290. [PMID: 29908496 DOI: 10.1016/j.biortech.2018.06.018] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
This study analyzed the variation of microbial communities, their achieved fermentation quality, and the association between microbial diversity and environmental factors after ensiling of 96 samples prepared with bunker-silo in Southwest China. Most of natural corn silages achieved good fermentation, e.g., low pH value (<4.2) and high levels of lactic acid (36.26-79.83 mg/g DM). Weissella species were the dominant epiphytic bacteria in raw material, while Lactobacillus and Acetobacter species were prevalent in silages. Natural Lactobacillus and Pediococcus species produced more lactic acid during ensiling, while the production of acetic acid was highly positively correlated with both Acetobacter and Bradyrhizobium species. Rainfall and humidity affected community of epiphytic bacteria on the corn material, and the temperature affected richness of bacterial species during ensiling. The results confirmed that microbial community of silages in hot and humid area is unique and climatic factors ultimately affect the fermentation quality through influencing microbial community.
Collapse
Affiliation(s)
- Hao Guan
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Yanhong Yan
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Li
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Xiaomei Li
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Yang Shuai
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Guangyan Feng
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China
| | - Qifan Ran
- Institute of Grass Science, ChongQing Academy of Animal Husbandry, ChongQing, China
| | - Yimin Cai
- Japan International Research Center for Agricultural Science (JIRCAS), Tsukuba, Ibaraki 305-8686, Japan
| | - Ying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
| | - Xinquan Zhang
- Animal Science and Technology College, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
18
|
Zhang Q, Yu Z, Wang X, Tian J. Effects of inoculants and environmental temperature on fermentation quality and bacterial diversity of alfalfa silage. Anim Sci J 2018; 89:1085-1092. [DOI: 10.1111/asj.12961] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/11/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Qing Zhang
- College of Forestry and Landscape Architecture; South China Agricultural University; Guangzhou China
- College of Animal Science and Technology; China Agricultural University; Beijing China
| | - Zhu Yu
- College of Animal Science and Technology; China Agricultural University; Beijing China
| | - Xianguo Wang
- College of Animal Science and Technology; China Agricultural University; Beijing China
| | - Jipeng Tian
- College of Animal Science and Technology; China Agricultural University; Beijing China
| |
Collapse
|
19
|
Borreani G, Tabacco E, Schmidt R, Holmes B, Muck R. Silage review: Factors affecting dry matter and quality losses in silages. J Dairy Sci 2018; 101:3952-3979. [DOI: 10.3168/jds.2017-13837] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/21/2017] [Indexed: 11/19/2022]
|
20
|
McAllister T, Dunière L, Drouin P, Xu S, Wang Y, Munns K, Zaheer R. Silage review: Using molecular approaches to define the microbial ecology of silage. J Dairy Sci 2018; 101:4060-4074. [DOI: 10.3168/jds.2017-13704] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/21/2017] [Indexed: 12/11/2022]
|
21
|
Gharechahi J, Kharazian ZA, Sarikhan S, Jouzani GS, Aghdasi M, Hosseini Salekdeh G. The dynamics of the bacterial communities developed in maize silage. Microb Biotechnol 2017; 10:1663-1676. [PMID: 28696065 PMCID: PMC5658587 DOI: 10.1111/1751-7915.12751] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 02/01/2023] Open
Abstract
Ensilage provides an effective means of conserving summer‐grown green forage to supply as winter feed to ruminants. The fermentation process involved in the ensilage process relies on lactic acid bacteria (LAB). Here, 16S ribosomal DNA amplicon pyrosequencing was used to follow the dynamic behaviour of the LAB community during the ensilage of maize biomass, with a view to identify the key species involved in the process. The biomass used for ensilage was a single‐cross maize hybrid, harvested at the milk‐line stage. The crop was grown at three contrasting locations. Aspects of the physico‐chemical composition of the material and the LAB species present were sampled at 0, 3, 6, 14, 21 and 32 days after ensilage was initiated. In all three cases, members of the Leuconostocaceae family dominated the epiphytic bacterial community, notably Leuconostoc and Weissella, but some variation was noted in the abundance of certain Leuconostocaceae and Lactobacillaceae species, as well as that of some Acetobacteraceae, Enterobacteriaceae and Moraxellaceae species. The constellation of the microbiome which developed during the ensilage process differed markedly from that of the epiphytic one, with Lactobacillaceae, particularly Lactobacillus and Pediococcus spp. dominating. The abundance of heterofermentative Leuconostocaceae spp. in the epiphytic community and the extent of the transition from hetero‐ to homo‐fermentation during the initial ensilage period are important factors in determining silage quality.
Collapse
Affiliation(s)
- Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | | | - Sajjad Sarikhan
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Gholamreza Salehi Jouzani
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Mahnaz Aghdasi
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| |
Collapse
|
22
|
Duniere L, Xu S, Long J, Elekwachi C, Wang Y, Turkington K, Forster R, McAllister TA. Bacterial and fungal core microbiomes associated with small grain silages during ensiling and aerobic spoilage. BMC Microbiol 2017; 17:50. [PMID: 28253864 PMCID: PMC5335695 DOI: 10.1186/s12866-017-0947-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/07/2017] [Indexed: 02/01/2023] Open
Abstract
Background Describing the microbial populations present in small grain silage and understanding their changes during ensiling is of interest for improving the nutrient value of these important forage crops. Barley, oat and triticale forages as well as an intercropped mixture of the 3 crops were harvested and ensiled in mini silos for a period of 90 days, followed by 14 days of aerobic exposure. Changes in fermentation characteristics and nutritive value were assessed in terminal silages and bacterial and fungal communities during ensiling and aerobic exposure were described using 16S and 18S rDNA sequencing, respectively. Results All small grain silages exhibited chemical traits that were associated with well ensiled forages, such as low pH value (4.09 ± 0.28) and high levels of lactic acid (59.8 ± 14.59 mg/g DM). The number of microbial core genome operational taxonomic units (OTUs) decreased with time of ensiling. Taxonomic bacterial community profiles were dominated by the Lactobacillales after fermentation, with a notable increase in Bacillales as a result of aerobic exposure. Diversity of the fungal core microbiome was shown to also be reduced during ensiling. Operational taxonomic units assigned to filamentous fungi were found in the core microbiome at ensiling and after aerobic exposure, whereas the Saccharomycetales were the dominate yeast population after 90 days of ensiling and aerobic exposure. Bacterial and fungal orders typically associated with silage spoilage were identified in the core microbiome after aerobic exposure. Conclusion Next Generation Sequencing was successfully used to describe bacterial communities and the first record of fungal communities throughout the process of ensiling and utilization. Adequately describing the microbial ecology of silages could lead to improved ensiling practices and the selection of silage inoculants that act synergistically with the natural forage microbiome. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0947-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lysiane Duniere
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, T1J 4B1, AB, Canada
| | - Shanwei Xu
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, T1J 4B1, AB, Canada
| | - Jin Long
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, T1J 4B1, AB, Canada
| | - Chijioke Elekwachi
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, T1J 4B1, AB, Canada
| | - Yuxi Wang
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, T1J 4B1, AB, Canada
| | - Kelly Turkington
- Agriculture and Agri-Food Canada (AAFC), Lacombe, T4L 1 W1, AB, Canada
| | - Robert Forster
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, T1J 4B1, AB, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, T1J 4B1, AB, Canada.
| |
Collapse
|
23
|
Graf K, Ulrich A, Idler C, Klocke M. Bacterial community dynamics during ensiling of perennial ryegrass at two compaction levels monitored by terminal restriction fragment length polymorphism. J Appl Microbiol 2016; 120:1479-91. [DOI: 10.1111/jam.13114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/20/2016] [Accepted: 02/10/2016] [Indexed: 11/27/2022]
Affiliation(s)
- K. Graf
- Department Bioengineering; Leibniz Institute for Agricultural Engineering Potsdam-Bornim (ATB); Potsdam Germany
| | - A. Ulrich
- Leibniz Centre for Agricultural Landscape Research (ZALF); Institute for Landscape Biogeochemistry; Müncheberg Germany
| | - C. Idler
- Department Bioengineering; Leibniz Institute for Agricultural Engineering Potsdam-Bornim (ATB); Potsdam Germany
| | - M. Klocke
- Department Bioengineering; Leibniz Institute for Agricultural Engineering Potsdam-Bornim (ATB); Potsdam Germany
| |
Collapse
|
24
|
Cerrone F, Davis R, Kenny ST, Woods T, O'Donovan A, Gupta VK, Tuohy M, Babu RP, O'Kiely P, O'Connor K. Use of a mannitol rich ensiled grass press juice (EGPJ) as a sole carbon source for polyhydroxyalkanoates (PHAs) production through high cell density cultivation. BIORESOURCE TECHNOLOGY 2015; 191:45-52. [PMID: 25978856 DOI: 10.1016/j.biortech.2015.04.128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
This study demonstrates the use of a mannitol rich ensiled grass press juice (EGPJ) as a renewable carbon substrate for polyhydroxyalkanoates (PHA) production in shaking flask experiments and fed-batch stirred tank reactor cultivations. Fed-batch cultivations of Burkholderia sacchari IPT101 using EGPJ as sole carbon source produced 44.5 g/L CDW containing 33% polyhydroxybutyrate (PHB) in 36 h, while Pseudomonas chlororaphis IMD555 produced a CDW of 37 g/L containing 10% of medium chain length polyhydroxyalkanoates (mcl-PHA) in 34 h. PHB and mcl-PHA extracted from B. sacchari IPT101 and P. chlororaphis IMD555, grown on EGPJ, had a molecular weight of 548 kg/mol and 115.4 kg/mol, respectively. While mcl-PHA can be produced from EGPJ, PHB production is more interesting as there is a 4-fold higher volumetric productivity compared to mcl-PHA.
Collapse
Affiliation(s)
- Federico Cerrone
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland; Technology Centre for Biorefining and Bioenergy, Orbsen Building, NUIG, Galway, Ireland
| | - Reeta Davis
- Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland; Technology Centre for Biorefining and Bioenergy, Orbsen Building, NUIG, Galway, Ireland; Centre for Research on Adaptive Nanostructure and Nanodevices, Trinity College Dublin, Dublin 2, Ireland
| | - Shane T Kenny
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Trevor Woods
- Centre for Research on Adaptive Nanostructure and Nanodevices, Trinity College Dublin, Dublin 2, Ireland; School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Anthonia O'Donovan
- Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Vijai Kumar Gupta
- Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Maria Tuohy
- Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Ramesh P Babu
- Technology Centre for Biorefining and Bioenergy, Orbsen Building, NUIG, Galway, Ireland; Centre for Research on Adaptive Nanostructure and Nanodevices, Trinity College Dublin, Dublin 2, Ireland; School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Padraig O'Kiely
- Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Kevin O'Connor
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland; Technology Centre for Biorefining and Bioenergy, Orbsen Building, NUIG, Galway, Ireland.
| |
Collapse
|
25
|
Dunière L, Sindou J, Chaucheyras-Durand F, Chevallier I, Thévenot-Sergentet D. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim Feed Sci Technol 2013. [DOI: 10.1016/j.anifeedsci.2013.04.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Cook K, Flis S, Ballard C. Sensitivity of Mycobacterium avium
subsp paratuberculosis
,Escherichia coli
and Salmonella enterica
serotype Typhimurium to low pH, high organic acids and ensiling. J Appl Microbiol 2013; 115:334-45. [DOI: 10.1111/jam.12243] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/10/2013] [Accepted: 05/01/2013] [Indexed: 01/14/2023]
Affiliation(s)
| | - S.A. Flis
- William H. Miner Agricultural Research Institute; Chazy NY USA
| | - C.S. Ballard
- William H. Miner Agricultural Research Institute; Chazy NY USA
| |
Collapse
|
27
|
McGarvey J, Franco R, Palumbo J, Hnasko R, Stanker L, Mitloehner F. Bacterial population dynamics during the ensiling of Medicago sativa
(alfalfa) and subsequent exposure to air. J Appl Microbiol 2013; 114:1661-70. [DOI: 10.1111/jam.12179] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/29/2022]
Affiliation(s)
- J.A. McGarvey
- US Department of Agriculture; Agricultural Research Service; Western Regional Research Center; Albany CA USA
| | - R.B. Franco
- Department of Animal Science; The University of California; Davis CA USA
| | - J.D. Palumbo
- US Department of Agriculture; Agricultural Research Service; Western Regional Research Center; Albany CA USA
| | - R. Hnasko
- US Department of Agriculture; Agricultural Research Service; Western Regional Research Center; Albany CA USA
| | - L. Stanker
- US Department of Agriculture; Agricultural Research Service; Western Regional Research Center; Albany CA USA
| | - F.M. Mitloehner
- Department of Animal Science; The University of California; Davis CA USA
| |
Collapse
|
28
|
Microbial dynamics during aerobic exposure of corn silage stored under oxygen barrier or polyethylene films. Appl Environ Microbiol 2011; 77:7499-507. [PMID: 21821764 DOI: 10.1128/aem.05050-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aims of this study were to compare the effects of sealing forage corn with a new oxygen barrier film with those obtained by using a conventional polyethylene film. This comparison was made during both ensilage and subsequent exposure of silage to air and included chemical, microbiological, and molecular (DNA and RNA) assessments. The forage was inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium and ensiled in polyethylene (PE) and oxygen barrier (OB) plastic bags. The oxygen permeability of the PE and OB films was 1,480 and 70 cm³ m⁻² per 24 h at 23°C, respectively. The silages were sampled after 110 days of ensilage and after 2, 5, 7, 9, and 14 days of air exposure and analyzed for fermentation characteristics, conventional microbial enumeration, and bacterial and fungal community fingerprinting via PCR-denaturing gradient gel electrophoresis (DGGE) and reverse transcription (RT)-PCR-DGGE. The yeast counts in the PE and OB silages were 3.12 and 1.17 log₁₀ CFU g⁻¹, respectively, with corresponding aerobic stabilities of 65 and 152 h. Acetobacter pasteurianus was present at both the DNA and RNA levels in the PE silage samples after 2 days of air exposure, whereas it was found only after 7 days in the OB silages. RT-PCR-DGGE revealed the activity of Aspergillus fumigatus in the PE samples from the day 7 of air exposure, whereas it appeared only after 14 days in the OB silages. It has been shown that the use of an oxygen barrier film can ensure a longer shelf life of silage after aerobic exposure.
Collapse
|