1
|
Kim K, Oh E, Park S, Jeong JP, Jeon S, Lee S, Shin Y, Jung S. Enhanced Rheological and Structural Properties of the Exopolysaccharide from Rhizobium leguminosarum VF39 Through NTG Mutagenesis. Polymers (Basel) 2024; 16:3179. [PMID: 39599270 PMCID: PMC11598398 DOI: 10.3390/polym16223179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Microbial exopolysaccharides (EPSs) are biopolymer materials with advantages such as biodegradability, biocompatibility, ease of mass production, and reproducibility. The EPS that was isolated from Rhizobium leguminosarum bv. viciae VF39 is an anionic polysaccharide with a backbone structure consisting of one galactose, five glucose molecules, and two glucuronic acids, along with 3-hydroxybutanoyl, acetyl, and pyruvyl functional groups. Through N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis, we isolated and purified a mutant EPS from VF39, VF39 #54, which demonstrated enhanced physicochemical and rheological properties compared to the wild-type VF39. The EPS structure of the VF39 #54 mutant strain showed a loss of glucuronic acid and 3-hydroxybutanoyl groups compared to the wild-type, as confirmed by FT-IR, NMR analysis, and uronic acid assays. The molecular weight of the VF39 #54 EPS was 250% higher than that of the wild-type. It also exhibited improved viscoelasticity and thermal stability. In the DSC and TGA analyses, VF39 #54 had a higher endothermic peak (172 °C) compared to the wild-type (142 °C), and its thermal decomposition point was 260 °C, surpassing the wild-type's value of 222 °C. Additionally, the VF39 #54 EPS maintained a similar viscosity to the wild-type in various pH, temperature, and metal salt conditions, while also exhibiting a higher overall viscosity. The cytotoxicity test using HEK-293 cells confirmed that the VF39 #54 EPS was non-toxic. Due to its high viscoelastic properties, the VF39 #54 EPS shows potential for use in products such as thickeners, texture enhancers, and stabilizers. Furthermore, its thermal stability and biocompatibility make it a promising candidate for applications in food, pharmaceuticals, and cosmetic formulations. Additionally, its ability to maintain viscosity under varying environmental conditions highlights its suitability for industrial processes that require consistent performance.
Collapse
Affiliation(s)
- Kyungho Kim
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (K.K.); (E.O.); (S.P.); (J.-p.J.); (Y.S.)
| | - Eunkyung Oh
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (K.K.); (E.O.); (S.P.); (J.-p.J.); (Y.S.)
| | - Sohyun Park
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (K.K.); (E.O.); (S.P.); (J.-p.J.); (Y.S.)
| | - Jae-pil Jeong
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (K.K.); (E.O.); (S.P.); (J.-p.J.); (Y.S.)
| | - Sobin Jeon
- Department of System Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.J.); (S.L.)
| | - Sujin Lee
- Department of System Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.J.); (S.L.)
| | - Younghyun Shin
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (K.K.); (E.O.); (S.P.); (J.-p.J.); (Y.S.)
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (K.K.); (E.O.); (S.P.); (J.-p.J.); (Y.S.)
- Department of System Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.J.); (S.L.)
| |
Collapse
|
2
|
Park S, Shin Y, Kim JM, Kim MS, Jung S. Rhizobial oxidized 3-hydroxylbutanoyl glycan-based gelatin hydrogels with enhanced physiochemical properties for pH-responsive drug delivery. Int J Biol Macromol 2024; 264:130538. [PMID: 38432278 DOI: 10.1016/j.ijbiomac.2024.130538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Rhizobial exopolysaccharide (EPS) is an acidic polysaccharide involved in nitrogen fixation-related signal transduction in the rhizosphere, serving as a structural support for biofilms, and protecting against various external environmental stresses. Rhizobial EPS as a hydrogel biomaterial was used for a pH-responsive drug delivery system combing with gelatins. Pure gelatin (GA) hydrogels have limited practical applications due to their poor mechanical strength and poor thermal stability. We developed new GA hydrogels using oxidized 3-hydroxylbutanoyl glycan (OHbG) as a polymer cross-linking agent to overcome these limitations. OHbG was synthesized from sodium periodate oxidation of 3-hydroxylbutanoyl glycan directly isolated from Rhizobium leguminosarum bv. viciae VF39. The newly fabricated OHbG/GA hydrogels exhibited 21-fold higher compressive stress and 4.7-fold higher storage modulus (G') than GA at the same strain. This result suggested that OHbG provided mechanical improvement. In addition, these OHbG/GA hydrogels showed effective pH-controlled drug release for 5-fluorouracil, self-healable, and self-antioxidant capacity by uronic acids of OHbG. Cell viability tests using HEK-293 cells in vitro also showed that the OHbG/GA hydrogels were non-toxic. This suggests that the new OHbG/GA hydrogels can be used as a potentially novel biomaterial for drug delivery based on its self-healing ability, antioxidant capacity, and pH-responsive drug delivery.
Collapse
Affiliation(s)
- Sohyun Park
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Younghyun Shin
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Jin-Mo Kim
- Convergence Technology Laboratory, Kolmar Korea, 61, Heolleung-ro-8-gil, Seocho-gu, Seoul 06792, South Korea
| | - Moo Sung Kim
- Macrocare, 32 Gangni 1-gil, Cheongju 28126, South Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea; Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
3
|
Park S, Shin Y, Jung S. Structural, rheological properties and antioxidant activities analysis of the exopolysaccharide produced by Rhizobium leguminosarum bv. viciae VF39. Int J Biol Macromol 2024; 257:128811. [PMID: 38101683 DOI: 10.1016/j.ijbiomac.2023.128811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Microbial exopolysaccharide is an eco-friendly and non-toxic biopolymeric materials widely used in various industrial fields such as pharmaceutical, food and cosmetics based on its structural, rheological and physiochemical properties. A microbial exopolysaccharide (VF39-EPS) was directly isolated from Rhizobium leguminosarum bv. viciae VF39. Structural analysis using FTIR and 2D NMR spectroscopy confirmed the complete chemical structures of VF39-EPS as 3-hydroxybutanoylglycan with octasaccharide repeating units containing two pyruvyl, two acetyl, and one 3-hydroxybutanoyl group. VF39-EPS exhibited thermal stability up to 275 °C and showed characteristic rheological behaviors of structural fluid with weak gel-like properties above 4 % the aqueous solution, suggesting VF39-EPS as a potential effective thickener or hydrogel scaffolder. Flow behavior tests validated broad stability at a wide range of both pHs from 2 to 12 and temperatures from 25 to 75 °C, and even in the presence of various salts. Furthermore, VF39-EPS showed excellent antioxidant effects of 78.5 and 62.4 % (n = 3, p < 0.001) in DPPH scavenging activity and hydroxyl radical scavenging activity, respectively. Therefore, those structural, rheological and antioxidant properties suggest that VF39-EPS could be one of the excellent biomaterial candidates for cosmetic, food and pharmaceutical industries based on its characteristic rheological behaviors in various condition and excellent antioxidant activity.
Collapse
Affiliation(s)
- Sohyun Park
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Younghyun Shin
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea; Department of System Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
4
|
Identification of a Novel Pyruvyltransferase Using 13C Solid-State Nuclear Magnetic Resonance To Analyze Rhizobial Exopolysaccharides. J Bacteriol 2021; 203:e0040321. [PMID: 34606371 DOI: 10.1128/jb.00403-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alphaproteobacterium Sinorhizobium meliloti secretes two acidic exopolysaccharides (EPSs), succinoglycan (EPSI) and galactoglucan (EPSII), which differentially enable it to adapt to a changing environment. Succinoglycan is essential for invasion of plant hosts and, thus, for the formation of nitrogen-fixing root nodules. Galactoglucan is critical for population-based behaviors such as swarming and biofilm formation and can facilitate invasion in the absence of succinoglycan on some host plants. The biosynthesis of galactoglucan is not as completely understood as that of succinoglycan. We devised a pipeline to identify putative pyruvyltransferase and acetyltransferase genes, construct genomic deletions in strains engineered to produce either succinoglycan or galactoglucan, and analyze EPS from mutant bacterial strains. EPS samples were examined by 13C cross-polarization magic-angle spinning (CPMAS) solid-state nuclear magnetic resonance (NMR). CPMAS NMR is uniquely suited to defining chemical composition in complex samples and enables the detection and quantification of distinct EPS functional groups. Galactoglucan was isolated from mutant strains with deletions in five candidate acyl/acetyltransferase genes (exoZ, exoH, SMb20810, SMb21188, and SMa1016) and a putative pyruvyltransferase (wgaE or SMb21322). Most samples were similar in composition to wild-type EPSII by CPMAS NMR analysis. However, galactoglucan produced from a strain lacking wgaE exhibited a significant reduction in pyruvylation. Pyruvylation was restored through the ectopic expression of plasmid-borne wgaE. Our work has thus identified WgaE as a galactoglucan pyruvyltransferase. This exemplifies how the systematic combination of genetic analyses and solid-state NMR detection is a rapid means to identify genes responsible for modification of rhizobial exopolysaccharides. IMPORTANCE Nitrogen-fixing bacteria are crucial for geochemical cycles and global nitrogen nutrition. Symbioses between legumes and rhizobial bacteria establish root nodules, where bacteria convert dinitrogen to ammonia for plant utilization. Secreted exopolysaccharides (EPSs) produced by Sinorhizobium meliloti (succinoglycan and galactoglucan) play important roles in soil and plant environments. The biosynthesis of galactoglucan is not as well characterized as that of succinoglycan. We employed solid-state nuclear magnetic resonance (NMR) to examine intact EPS from wild-type and mutant S. meliloti strains. NMR analysis of EPS isolated from a wgaE gene mutant revealed a novel pyruvyltransferase that modifies galactoglucan. Few EPS pyruvyltransferases have been characterized. Our work provides insight into the biosynthesis of an important S. meliloti EPS and expands the knowledge of enzymes that modify polysaccharides.
Collapse
|
5
|
Akum FN, Kumar R, Lai G, Williams CH, Doan HK, Leveau JH. Identification of Collimonas gene loci involved in the biosynthesis of a diffusible secondary metabolite with broad-spectrum antifungal activity and plant-protective properties. Microb Biotechnol 2021; 14:1367-1384. [PMID: 33347710 PMCID: PMC8313283 DOI: 10.1111/1751-7915.13716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
In greenhouse and field trials, a bacterial mixture of Collimonas arenae Cal35 and Bacillus velezensis FZB42, but not Cal35 alone or FZB42 alone, was able to protect tomato plants from challenge with the soilborne fungal pathogen Fusarium oxysporum f.sp. lycopersici (Fol). To identify genes and mechanisms underlying this property in Cal35, we screened a random transposon insertion library for loss of function and identified two mutants that were impaired completely or partially in their ability to halt the growth of a wide range of fungal species. In mutant 46A06, the transposon insertion was located in a biosynthetic gene cluster that was predicted to code for a hybrid polyketide synthase-non-ribosomal peptide synthetase, while mutant 60C09 was impacted in a gene cluster for the synthesis and secretion of sugar repeat units. Our data are consistent with a model in which both gene clusters are necessary for the production of an antifungal compound we refer to as carenaemins. We also show that the ability to produce carenaemin contributed significantly to the observed synergy between Cal35 and FZB42 in protecting tomato plants from Fol. We discuss the potential for supplementing Bacillus-based biocontrol products with Collimonas bacteria to boost efficacy of such products.
Collapse
Affiliation(s)
- Fidele N. Akum
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| | | | - Gary Lai
- Novozymes Inc1445 Drew AvenueDavisCAUSA
| | | | - Hung K. Doan
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| | - Johan H.J. Leveau
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| |
Collapse
|
6
|
Acosta-Jurado S, Fuentes-Romero F, Ruiz-Sainz JE, Janczarek M, Vinardell JM. Rhizobial Exopolysaccharides: Genetic Regulation of Their Synthesis and Relevance in Symbiosis with Legumes. Int J Mol Sci 2021; 22:6233. [PMID: 34207734 PMCID: PMC8227245 DOI: 10.3390/ijms22126233] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/11/2022] Open
Abstract
Rhizobia are soil proteobacteria able to engage in a nitrogen-fixing symbiotic interaction with legumes that involves the rhizobial infection of roots and the bacterial invasion of new organs formed by the plant in response to the presence of appropriate bacterial partners. This interaction relies on a complex molecular dialogue between both symbionts. Bacterial N-acetyl-glucosamine oligomers called Nod factors are indispensable in most cases for early steps of the symbiotic interaction. In addition, different rhizobial surface polysaccharides, such as exopolysaccharides (EPS), may also be symbiotically relevant. EPS are acidic polysaccharides located out of the cell with little or no cell association that carry out important roles both in free-life and in symbiosis. EPS production is very complexly modulated and, frequently, co-regulated with Nod factors, but the type of co-regulation varies depending on the rhizobial strain. Many studies point out a signalling role for EPS-derived oligosaccharides in root infection and nodule invasion but, in certain symbiotic couples, EPS can be dispensable for a successful interaction. In summary, the complex regulation of the production of rhizobial EPS varies in different rhizobia, and the relevance of this polysaccharide in symbiosis with legumes depends on the specific interacting couple.
Collapse
Affiliation(s)
- Sebastián Acosta-Jurado
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| | - Francisco Fuentes-Romero
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| | - Jose-Enrique Ruiz-Sainz
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| | - Monika Janczarek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - José-María Vinardell
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| |
Collapse
|
7
|
Marczak M, Wójcik M, Żebracki K, Turska-Szewczuk A, Talarek K, Nowak D, Wawiórka L, Sieńczyk M, Łupicka-Słowik A, Bobrek K, Romańczuk M, Koper P, Mazur A. PssJ Is a Terminal Galactosyltransferase Involved in the Assembly of the Exopolysaccharide Subunit in Rhizobium Leguminosarum bv. Trifolii. Int J Mol Sci 2020; 21:ijms21207764. [PMID: 33092221 PMCID: PMC7589315 DOI: 10.3390/ijms21207764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022] Open
Abstract
Rhizobium leguminosarum bv. trifolii produces exopolysaccharide (EPS) composed of glucose, glucuronic acid, and galactose residues at a molar ratio 5:2:1. A majority of genes involved in the synthesis, modification, and export of exopolysaccharide are located in the chromosomal Pss-I region. In the present study, a ΔpssJ deletion mutant was constructed and shown to produce EPS lacking terminal galactose in the side chain of the octasaccharide subunit. The lack of galactose did not block EPS subunit translocation and polymerization. The in trans delivery of the pssJ gene restored the production of galactose-containing exopolysaccharide. The mutant was compromised in several physiological traits, e.g., motility and biofilm production. An impact of the pssJ mutation and changed EPS structure on the symbiotic performance was observed as improper signaling at the stage of molecular recognition, leading to formation of a significant number of non-infected empty nodules. Terminal galactosyltransferase PssJ was shown to display a structure typical for the GT-A class of glycosyltransferases and interact with other GTs and Wzx/Wzy system proteins. The latter, together with PssJ presence in soluble and membrane protein fractions indicated that the protein plays its role at the inner membrane interface and as a component of a larger complex.
Collapse
Affiliation(s)
- Małgorzata Marczak
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
- Correspondence:
| | - Magdalena Wójcik
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Kamil Żebracki
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Kamila Talarek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Dominika Nowak
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Leszek Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland;
| | - Marcin Sieńczyk
- Department of Organic and Medical Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Norwida 4/6 St., 50-373 Wrocław, Poland; (M.S.).; (A.Ł.-S.)
| | - Agnieszka Łupicka-Słowik
- Department of Organic and Medical Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Norwida 4/6 St., 50-373 Wrocław, Poland; (M.S.).; (A.Ł.-S.)
| | - Kamila Bobrek
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31 St., 50-375 Wrocław, Poland;
| | - Marceli Romańczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Piotr Koper
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| |
Collapse
|
8
|
Kanapina AS, Marchenkov VV, Surin AK, Ivashina TV. Mass Spectrometric Analysis of Acidic Exo-Oligosaccharides of Root Nodule Bacterium Rhizobium leguminosarum bv. viciae VF39. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720050112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Hager FF, Sützl L, Stefanović C, Blaukopf M, Schäffer C. Pyruvate Substitutions on Glycoconjugates. Int J Mol Sci 2019; 20:E4929. [PMID: 31590345 PMCID: PMC6801904 DOI: 10.3390/ijms20194929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Glycoconjugates are the most diverse biomolecules of life. Mostly located at the cell surface, they translate into cell-specific "barcodes" and offer a vast repertoire of functions, including support of cellular physiology, lifestyle, and pathogenicity. Functions can be fine-tuned by non-carbohydrate modifications on the constituting monosaccharides. Among these modifications is pyruvylation, which is present either in enol or ketal form. The most commonly best-understood example of pyruvylation is enol-pyruvylation of N-acetylglucosamine, which occurs at an early stage in the biosynthesis of the bacterial cell wall component peptidoglycan. Ketal-pyruvylation, in contrast, is present in diverse classes of glycoconjugates, from bacteria to algae to yeast-but not in humans. Mild purification strategies preventing the loss of the acid-labile ketal-pyruvyl group have led to a collection of elucidated pyruvylated glycan structures. However, knowledge of involved pyruvyltransferases creating a ring structure on various monosaccharides is scarce, mainly due to the lack of knowledge of fingerprint motifs of these enzymes and the unavailability of genome sequences of the organisms undergoing pyruvylation. This review compiles the current information on the widespread but under-investigated ketal-pyruvylation of monosaccharides, starting with different classes of pyruvylated glycoconjugates and associated functions, leading to pyruvyltransferases, their specificity and sequence space, and insight into pyruvate analytics.
Collapse
Affiliation(s)
- Fiona F Hager
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Leander Sützl
- Department of Food Science and Technology, Food Biotechnology Laboratory, Muthgasse 11, Universität für Bodenkultur Wien, A-1190 Vienna, Austria.
| | - Cordula Stefanović
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Markus Blaukopf
- Department of Chemistry, Division of Organic Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria.
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| |
Collapse
|
10
|
Lipa P, Vinardell JM, Janczarek M. Transcriptomic Studies Reveal that the Rhizobium leguminosarum Serine/Threonine Protein Phosphatase PssZ has a Role in the Synthesis of Cell-Surface Components, Nutrient Utilization, and Other Cellular Processes. Int J Mol Sci 2019; 20:ijms20122905. [PMID: 31197117 PMCID: PMC6628131 DOI: 10.3390/ijms20122905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing symbiotic associations with clover plants (Trifolium spp.). Surface polysaccharides, transport systems, and extracellular components synthesized by this bacterium are required for both the adaptation to changing environmental conditions and successful infection of host plant roots. The pssZ gene located in the Pss-I region, which is involved in the synthesis of extracellular polysaccharide, encodes a protein belonging to the group of serine/threonine protein phosphatases. In this study, a comparative transcriptomic analysis of R. leguminosarum bv. trifolii wild-type strain Rt24.2 and its derivative Rt297 carrying a pssZ mutation was performed. RNA-Seq data identified a large number of genes differentially expressed in these two backgrounds. Transcriptome profiling of the pssZ mutant revealed a role of the PssZ protein in several cellular processes, including cell signalling, transcription regulation, synthesis of cell-surface polysaccharides and components, and bacterial metabolism. In addition, we show that inactivation of pssZ affects the rhizobial ability to grow in the presence of different sugars and at various temperatures, as well as the production of different surface polysaccharides. In conclusion, our results identified a set of genes whose expression was affected by PssZ and confirmed the important role of this protein in the rhizobial regulatory network.
Collapse
Affiliation(s)
- Paulina Lipa
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
11
|
Identification and characterization of a novel β-D-galactosidase that releases pyruvylated galactose. Sci Rep 2018; 8:12013. [PMID: 30104607 PMCID: PMC6090015 DOI: 10.1038/s41598-018-30508-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/30/2018] [Indexed: 11/09/2022] Open
Abstract
Pyruvyl modification of oligosaccharides is widely seen in both prokaryotes and eukaryotes. Although the biosynthetic mechanisms of pyruvylation have been investigated, enzymes that metabolize and degrade pyruvylated oligosaccharides are not well known. Here, we searched for a pyruvylated galactose (PvGal)-releasing enzyme by screening soil samples. We identified a Bacillus strain, as confirmed by the 16S ribosomal RNA gene analysis, that exhibited PvGal-ase activity toward p-nitrophenyl-β-D-pyruvylated galactopyranose (pNP-β-D-PvGal). Draft genome sequencing of this strain, named HMA207, identified three candidate genes encoding potential PvGal-ases, among which only the recombinant protein encoded by ORF1119 exhibited PvGal-ase activity. Although ORF1119 protein displayed broad substrate specificity for pNP sugars, pNP-β-D-PvGal was the most favorable substrate. The optimum pH for the ORF1119 PvGal-ase was determined as 7.5. A BLAST search suggested that ORF1119 homologs exist widely in bacteria. Among two homologs tested, BglC from Clostridium but not BglH from Bacillus showed PvGal-ase activity. Crystal structural analysis together with point mutation analysis revealed crucial amino acids for PvGal-ase activity. Moreover, ORF1119 protein catalyzed the hydrolysis of PvGal from galactomannan of Schizosaccharomyces pombe, suggesting that natural polysaccharides might be substrates of the PvGal-ase. This novel PvGal-catalyzing enzyme might be useful for glycoengineering projects to produce new oligosaccharide structures.
Collapse
|
12
|
Mutation in the pssZ Gene Negatively Impacts Exopolysaccharide Synthesis, Surface Properties, and Symbiosis of Rhizobium leguminosarum bv. trifolii with Clover. Genes (Basel) 2018; 9:genes9070369. [PMID: 30041474 PMCID: PMC6071215 DOI: 10.3390/genes9070369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/05/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing a nitrogen-fixing symbiosis with clover plants (Trifolium spp.). This bacterium secretes large amounts of acidic exopolysaccharide (EPS), which plays an essential role in the symbiotic interaction with the host plant. This polymer is biosynthesized by a multi-enzymatic complex located in the bacterial inner membrane, whose components are encoded by a large chromosomal gene cluster, called Pss-I. In this study, we characterize R. leguminosarum bv. trifolii strain Rt297 that harbors a Tn5 transposon insertion located in the pssZ gene from the Pss-I region. This gene codes for a protein that shares high identity with bacterial serine/threonine protein phosphatases. We demonstrated that the pssZ mutation causes pleiotropic effects in rhizobial cells. Strain Rt297 exhibited several physiological and symbiotic defects, such as lack of EPS production, reduced growth kinetics and motility, altered cell-surface properties, and failure to infect the host plant. These data indicate that the protein encoded by the pssZ gene is indispensable for EPS synthesis, but also required for proper functioning of R. leguminosarum bv. trifolii cells.
Collapse
|
13
|
Capela D, Marchetti M, Clérissi C, Perrier A, Guetta D, Gris C, Valls M, Jauneau A, Cruveiller S, Rocha EPC, Masson-Boivin C. Recruitment of a Lineage-Specific Virulence Regulatory Pathway Promotes Intracellular Infection by a Plant Pathogen Experimentally Evolved into a Legume Symbiont. Mol Biol Evol 2017; 34:2503-2521. [PMID: 28535261 DOI: 10.1093/molbev/msx165] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ecological transitions between different lifestyles, such as pathogenicity, mutualism and saprophytism, have been very frequent in the course of microbial evolution, and often driven by horizontal gene transfer. Yet, how genomes achieve the ecological transition initiated by the transfer of complex biological traits remains poorly known. Here, we used experimental evolution, genomics, transcriptomics and high-resolution phenotyping to analyze the evolution of the plant pathogen Ralstonia solanacearum into legume symbionts, following the transfer of a natural plasmid encoding the essential mutualistic genes. We show that a regulatory pathway of the recipient R. solanacearum genome involved in extracellular infection of natural hosts was reused to improve intracellular symbiosis with the Mimosa pudica legume. Optimization of intracellular infection capacity was gained through mutations affecting two components of a new regulatory pathway, the transcriptional regulator efpR and a region upstream from the RSc0965-0967 genes of unknown functions. Adaptive mutations caused the downregulation of efpR and the over-expression of a downstream regulatory module, the three unknown genes RSc3146-3148, two of which encoding proteins likely associated to the membrane. This over-expression led to important metabolic and transcriptomic changes and a drastic qualitative and quantitative improvement of nodule intracellular infection. In addition, these adaptive mutations decreased the virulence of the original pathogen. The complete efpR/RSc3146-3148 pathway could only be identified in the genomes of the pathogenic R. solanacearum species complex. Our findings illustrate how the rewiring of a genetic network regulating virulence allows a radically different type of symbiotic interaction and contributes to ecological transitions and trade-offs.
Collapse
Affiliation(s)
- Delphine Capela
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Marta Marchetti
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Camille Clérissi
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.,Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | - Anthony Perrier
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Dorian Guetta
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Carine Gris
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Marc Valls
- Department of Genetics, University of Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, Spain
| | - Alain Jauneau
- Fédération de Recherches Agrobiosciences, Interactions, Biodiversity, Plateforme d'Imagerie TRI, CNRS, UPS, Castanet-Tolosan, France
| | - Stéphane Cruveiller
- CNRS-UMR8030 and Commissariat à l'Energie Atomique et aux Energies Alternatives CEA/DRF/IG/GEN LABGeM, Evry, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,CNRS, UMR3525, Paris, France
| | | |
Collapse
|
14
|
Sharma S, Erickson KM, Troutman JM. Complete Tetrasaccharide Repeat Unit Biosynthesis of the Immunomodulatory Bacteroides fragilis Capsular Polysaccharide A. ACS Chem Biol 2017; 12:92-101. [PMID: 28103676 DOI: 10.1021/acschembio.6b00931] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Capsular polysaccharide A (CPSA) is a four-sugar repeating unit polymer found on the surface of the gut symbiont Bacteroides fragilis that has therapeutic potential in animal models of autoimmune disorders. This therapeutic potential has been credited to its zwitterionic character derived from a positively charged N-acetyl-4-aminogalactosamine (AADGal) and a negatively charged 4,6-O-pyruvylated galactose (PyrGal). In this report, using a fluorescent polyisoprenoid chemical probe, the complete enzymatic assembly of the CPSA tetrasaccharide repeat unit is achieved. The proposed pyruvyltransferase, WcfO; galactopyranose mutase, WcfM; and glycosyltransferases, WcfP and WcfN, encoded by the CPSA biosynthesis gene cluster were heterologously expressed and functionally characterized. Pyruvate modification, catalyzed by WcfO, was found to occur on galactose of the polyisoprenoid-linked disaccharide (AADGal-Gal), and did not occur on galactose linked to uridine diphosphate (UDP) or a set of nitrophenyl-galactose analogues. This pyruvate modification was also found to be required for the incorporation of the next sugar in the pathway N-acetylgalactosamine (GalNAc) by the glycosyltransferase WcfP. The pyruvate acetal modification of a galactose has not been previously explored in the context of a polysaccharide biosynthesis pathway, and this work demonstrates the importance of this modification to repeat unit assembly. Upon production of the polyisoprenoid-linked AADGal-PyrGal-GalNAc, the proteins WcfM and WcfN were found to work in concert to form the final tetrasaccharide, where WcfM formed UDP-galactofuranose (Galf) and WcfN transfers Galf to the AADGal-PyrGal-GalNAc. This work demonstrates the first enzymatic assembly of the tetrasaccharide repeat unit of CPSA in a sequential single pot reaction.
Collapse
Affiliation(s)
- Sunita Sharma
- Department
of Chemistry, ‡The Center for Biomedical Engineering and Science, §Department of Biological Sciences, ∥Nanoscale Science
Program, University of North Carolina at Charlotte, 9201 University
City Blvd., Charlotte, North
Carolina 28223, United States
| | - Katelyn M. Erickson
- Department
of Chemistry, ‡The Center for Biomedical Engineering and Science, §Department of Biological Sciences, ∥Nanoscale Science
Program, University of North Carolina at Charlotte, 9201 University
City Blvd., Charlotte, North
Carolina 28223, United States
| | - Jerry M. Troutman
- Department
of Chemistry, ‡The Center for Biomedical Engineering and Science, §Department of Biological Sciences, ∥Nanoscale Science
Program, University of North Carolina at Charlotte, 9201 University
City Blvd., Charlotte, North
Carolina 28223, United States
| |
Collapse
|
15
|
Xu L, Cheng R, Li J, Wang Y, Zhu B, Ma S, Zhang W, Dong W, Wang S, Zhang J. Identification of substituent groups and related genes involved in salecan biosynthesis in Agrobacterium sp. ZX09. Appl Microbiol Biotechnol 2016; 101:585-598. [DOI: 10.1007/s00253-016-7814-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 08/07/2016] [Accepted: 08/15/2016] [Indexed: 01/02/2023]
|
16
|
Higuchi Y, Yoshinaga S, Yoritsune KI, Tateno H, Hirabayashi J, Nakakita SI, Kanekiyo M, Kakuta Y, Takegawa K. A rationally engineered yeast pyruvyltransferase Pvg1p introduces sialylation-like properties in neo-human-type complex oligosaccharide. Sci Rep 2016; 6:26349. [PMID: 27194449 PMCID: PMC4872226 DOI: 10.1038/srep26349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/29/2016] [Indexed: 11/09/2022] Open
Abstract
Pyruvylation onto the terminus of oligosaccharide, widely seen from prokaryote to eukaryote, confers negative charges on the cell surface and seems to be functionally similar to sialylation, which is found at the end of human-type complex oligosaccharide. However, detailed molecular mechanisms underlying pyruvylation have not been clarified well. Here, we first determined the crystal structure of fission yeast pyruvyltransferase Pvg1p at a resolution of 2.46 Å. Subsequently, by combining molecular modeling with mutational analysis of active site residues, we obtained a Pvg1p mutant (Pvg1p(H168C)) that efficiently transferred pyruvyl moiety onto a human-type complex glycopeptide. The resultant pyruvylated human-type complex glycopeptide recognized similar lectins on lectin arrays as the α2,6-sialyl glycopeptides. This newly-generated pyruvylation of human-type complex oligosaccharides would provide a novel method for glyco-bioengineering.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Sho Yoshinaga
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Ken-Ichi Yoritsune
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Hiroaki Tateno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Jun Hirabayashi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Shin-Ichi Nakakita
- Department of Functional Glycomics, Life Science Research Center, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Miho Kanekiyo
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| |
Collapse
|
17
|
Baboshin M, Ivashina T, Chernykh A, Golovleva L. Comparison of the substrate specificity of two ring-hydroxylating dioxygenases from Sphingomonas sp. VKM B-2434 to polycyclic aromatic hydrocarbons. Biodegradation 2014; 25:693-703. [PMID: 24874927 DOI: 10.1007/s10532-014-9692-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/09/2014] [Indexed: 11/25/2022]
Abstract
The genes of two ring-hydroxylating dioxygenases (RHDs) of Sphingomonas sp. VKM B-2434 were cloned and expressed in Escherichia coli. The relative values of the RHD specificity constants were estimated for six polycyclic aromatic hydrocarbons (PAHs) based on the kinetics of PAH mixture conversion by the recombinant strains. The substrate specificity profiles of the enzymes were found to be very different. Dioxygenase ArhA was the most specific to acenaphthylene and showed a low specificity to fluoranthene. Dioxygenase PhnA was the most specific to anthracene and phenanthrene and showed a considerable specificity to fluoranthene. Knockout derivatives of Sphingomonas sp. VKM B-2434 lacking ArhA, PhnA, and both dioxygenases were constructed. PAH degradation by the single-knockout mutants was in agreement with the substrate specificity of the RHD remaining intact. Double-knockout mutant lacking both enzymes was unable to oxidize PAHs. A mutant form of dioxygenase ArhA with altered substrate specificity was described.
Collapse
Affiliation(s)
- Mikhail Baboshin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Prospekt Nauki 5, Pushchino, Moscow Region, Russia
| | | | | | | |
Collapse
|
18
|
Janczarek M, Rachwał K. Mutation in the pssA gene involved in exopolysaccharide synthesis leads to several physiological and symbiotic defects in Rhizobium leguminosarum bv. trifolii. Int J Mol Sci 2013; 14:23711-35. [PMID: 24317432 PMCID: PMC3876073 DOI: 10.3390/ijms141223711] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/14/2013] [Accepted: 11/14/2013] [Indexed: 11/17/2022] Open
Abstract
The symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum bv. trifolii 24.2 secretes large amounts of acidic exopolysaccharide (EPS), which plays a crucial role in establishment of effective symbiosis with clover. The biosynthesis of this heteropolymer is conducted by a multi-enzymatic complex located in the bacterial inner membrane. PssA protein, responsible for the addition of glucose-1-phosphate to a polyprenyl phosphate carrier, is involved in the first step of EPS synthesis. In this work, we characterize R. leguminosarum bv. trifolii strain Rt270 containing a mini-Tn5 transposon insertion located in the 3'-end of the pssA gene. It has been established that a mutation in this gene causes a pleiotropic effect in rhizobial cells. This is confirmed by the phenotype of the mutant strain Rt270, which exhibits several physiological and symbiotic defects such as a deficiency in EPS synthesis, decreased motility and utilization of some nutrients, decreased sensitivity to several antibiotics, an altered extracellular protein profile, and failed host plant infection. The data of this study indicate that the protein product of the pssA gene is not only involved in EPS synthesis, but also required for proper functioning of Rhizobium leguminosarum bv. trifolii cells.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19 st., Lublin 20-033, Poland; E-Mail:
| | - Kamila Rachwał
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19 st., Lublin 20-033, Poland; E-Mail:
| |
Collapse
|
19
|
Expression of the Rhizobium leguminosarum bv. trifolii pssA gene, involved in exopolysaccharide synthesis, is regulated by RosR, phosphate, and the carbon source. J Bacteriol 2013; 195:3412-23. [PMID: 23708137 DOI: 10.1128/jb.02213-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium leguminosarum bv. trifolii pssA encodes a glucosyl-isoprenylphosphate (IP)-transferase involved in the first step of exopolysaccharide (EPS) synthesis. It was found that the pssA gene is an important target for regulation of this biosynthetic pathway. The data of this study indicate that pssA transcription is a very complex and mainly positively regulated process. A detailed analysis of a 767-bp-long pssA upstream region revealed the presence of several sequence motifs recognized by regulatory proteins that are associated with phosphate-, carbon-, and iron-dependent regulation. In addition, numerous inverted repeats of different lengths have been identified in this region. pssA transcription is directed from two distal P1 and proximal P3 promoters whose sequences demonstrate a significant identity to promoters recognized by RNA polymerase sigma factor σ(70). Among rhizobial proteins, RosR seems to be a primary regulator that positively affects pssA expression. This protein binds to RosR box 1 located downstream of the P1 promoter. In addition, phosphate and the carbon source strongly affect pssA transcription. A significantly lower level of pssA expression was observed in both the wild-type strain growing under phosphate-rich conditions and the phoB mutant. In this regulation, the PhoB protein and Pho box 2 located upstream of the P3 promoter were engaged. pssA transcription is also significantly affected by glucose. Transcriptional analysis of a set of pssA-lacZ fusions expressed in Escherichia coli wild-type and cyaA and crp mutants confirmed that cyclic AMP (cAMP) receptor protein (CRP) and two cAMP-CRP boxes located upstream of the P1 are required for this upregulation. Moreover, the production of EPS was totally abolished in R. leguminosarum bv. trifolii mutant strains 4440 and 1012 containing a Tn5 insertion downstream of the P3 promoter and downstream of the P3 -35 hexamer, respectively.
Collapse
|
20
|
Yoritsune KI, Matsuzawa T, Ohashi T, Takegawa K. The fission yeast Pvg1p has galactose-specific pyruvyltransferase activity. FEBS Lett 2013; 587:917-21. [PMID: 23422075 DOI: 10.1016/j.febslet.2013.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/06/2013] [Accepted: 02/06/2013] [Indexed: 11/25/2022]
Abstract
N-Glycan from the fission yeast Schizosaccharomyces pombe contains outer-chain pyruvic acid 4,6-ketal-linked galactose (PvGal). Here, we characterized a putative S. pombe pyruvyltransferase, Pvg1p, reported to be essential for biosynthesis of PvGal. When p-nitrophenyl-β-Gal (pNP-β-Gal) was used as a substrate, the structure of the recombinant Pvg1p product was determined to be pNP-PvGal by one- and two-dimensional NMR spectroscopy. The recombinant Pvg1p transferred pyruvyl residues from phosphoenolpyruvate specifically to β-linked galactose.
Collapse
Affiliation(s)
- Ken-ichi Yoritsune
- Department of Bioscience & Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | | | | | | |
Collapse
|
21
|
Piacente F, Marin M, Molinaro A, De Castro C, Seltzer V, Salis A, Damonte G, Bernardi C, Claverie JM, Abergel C, Tonetti M. Giant DNA virus mimivirus encodes pathway for biosynthesis of unusual sugar 4-amino-4,6-dideoxy-D-glucose (Viosamine). J Biol Chem 2012; 287:3009-18. [PMID: 22157758 PMCID: PMC3270958 DOI: 10.1074/jbc.m111.314559] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mimivirus is one the largest DNA virus identified so far, infecting several Acanthamoeba species. Analysis of its genome revealed the presence of a nine-gene cluster containing genes potentially involved in glycan formation. All of these genes are co-expressed at late stages of infection, suggesting their role in the formation of the long fibers covering the viral surface. Among them, we identified the L136 gene as a pyridoxal phosphate-dependent sugar aminotransferase. This enzyme was shown to catalyze the formation of UDP-4-amino-4,6-dideoxy-D-glucose (UDP-viosamine) from UDP-4-keto-6-deoxy-D-glucose, a key compound involved also in the biosynthesis of L-rhamnose. This finding further supports the hypothesis that Mimivirus encodes a glycosylation system that is completely independent of the amoebal host. Viosamine, together with rhamnose, (N-acetyl)glucosamine, and glucose, was found as a major component of the viral glycans. Most of the sugars were associated with the fibers, confirming a capsular-like nature of the viral surface. Phylogenetic analysis clearly indicated that L136 was not a recent acquisition from bacteria through horizontal gene transfer, but it was acquired very early during evolution. Implications for the origin of the glycosylation machinery in giant DNA virus are also discussed.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV/1, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Janczarek M. Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Int J Mol Sci 2011; 12:7898-933. [PMID: 22174640 PMCID: PMC3233446 DOI: 10.3390/ijms12117898] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 11/16/2022] Open
Abstract
Rhizobia are Gram-negative bacteria that can exist either as free-living bacteria or as nitrogen-fixing symbionts inside root nodules of leguminous plants. The composition of the rhizobial outer surface, containing a variety of polysaccharides, plays a significant role in the adaptation of these bacteria in both habitats. Among rhizobial polymers, exopolysaccharide (EPS) is indispensable for the invasion of a great majority of host plants which form indeterminate-type nodules. Various functions are ascribed to this heteropolymer, including protection against environmental stress and host defense, attachment to abiotic and biotic surfaces, and in signaling. The synthesis of EPS in rhizobia is a multi-step process regulated by several proteins at both transcriptional and post-transcriptional levels. Also, some environmental factors (carbon source, nitrogen and phosphate starvation, flavonoids) and stress conditions (osmolarity, ionic strength) affect EPS production. This paper discusses the recent data concerning the function of the genes required for EPS synthesis and the regulation of this process by several environmental signals. Up till now, the synthesis of rhizobial EPS has been best studied in two species, Sinorhizobium meliloti and Rhizobium leguminosarum. The latest data indicate that EPS synthesis in rhizobia undergoes very complex hierarchical regulation, in which proteins engaged in quorum sensing and the regulation of motility genes also participate. This finding enables a better understanding of the complex processes occurring in the rhizosphere which are crucial for successful colonization and infection of host plant roots.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., Lublin 20-033, Poland; E-Mail: ; Tel.: +48-81-537-5974
| |
Collapse
|