1
|
Hedge JM, Hunter DL, Sanders E, Jarema KA, Olin JK, Britton KN, Lowery M, Knapp BR, Padilla S, Hill BN. Influence of Methylene Blue or Dimethyl Sulfoxide on Larval Zebrafish Development and Behavior. Zebrafish 2023; 20:132-145. [PMID: 37406269 PMCID: PMC10627343 DOI: 10.1089/zeb.2023.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
The use of larval zebrafish developmental testing and assessment, specifically larval zebrafish locomotor activity, has been recognized as a higher throughput testing strategy to identify developmentally toxic and neurotoxic chemicals. There are, however, no standardized protocols for this type of assay, which could result in confounding variables being overlooked. Two chemicals commonly employed during early-life stage zebrafish assays, methylene blue (antifungal agent) and dimethyl sulfoxide (DMSO, a commonly used vehicle) have been reported to affect the morphology and behavior of freshwater fish. In this study, we conducted developmental toxicity (morphology) and neurotoxicity (behavior) assessments of commonly employed concentrations for both chemicals (0.6-10.0 μM methylene blue; 0.3%-1.0% v/v DMSO). A light-dark transition behavioral testing paradigm was applied to morphologically normal, 6 days postfertilization (dpf) zebrafish larvae kept at 26°C. Additionally, an acute DMSO challenge was administered based on early-life stage zebrafish assays typically used in this research area. Results from developmental toxicity screens were similar between both chemicals with no morphological abnormalities detected at any of the concentrations tested. However, neurodevelopmental results were mixed between the two chemicals of interest. Methylene blue resulted in no behavioral changes up to the highest concentration tested, 10.0 μM. By contrast, DMSO altered larval behavior following developmental exposure at concentrations as low as 0.5% (v/v) and exhibited differential concentration-response patterns in the light and dark photoperiods. These results indicate that developmental DMSO exposure can affect larval zebrafish locomotor activity at routinely used concentrations in developmental neurotoxicity assessments, whereas methylene blue does not appear to be developmentally or neurodevelopmentally toxic to larval zebrafish at routinely used concentrations. These results also highlight the importance of understanding the influence of experimental conditions on larval zebrafish locomotor activity that may ultimately confound the interpretation of results.
Collapse
Affiliation(s)
- Joan M. Hedge
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Advanced Experimental Toxicology Models Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Deborah L. Hunter
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Erik Sanders
- Aquatics Lab Services LLC 1112 Nashville Street St. Peters, MO 63376, USA
| | - Kimberly A. Jarema
- Office of Research and Development, Center for Public Health and Environmental Assessment, Immediate Office, Program Operations Staff, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Jeanene K. Olin
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Katy N. Britton
- ORAU Research Participation Program hosted by EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Morgan Lowery
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Bridget R. Knapp
- ORISE Research Participation Program hosted by EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Stephanie Padilla
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Bridgett N. Hill
- ORISE Research Participation Program hosted by EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| |
Collapse
|
2
|
Li S, Cui Y, Wen M, Ji G. Toxic Effects of Methylene Blue on the Growth, Reproduction and Physiology of Daphnia magna. TOXICS 2023; 11:594. [PMID: 37505561 PMCID: PMC10384865 DOI: 10.3390/toxics11070594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Methylene blue (MB) is a disinfectant used in aquaculture to prevent and treat fish diseases. However, the release of MB can pose a risk to the receiving water bodies. Zooplankton are the most sensitive organisms among aquatic life. Hence, this study examined the acute and chronic toxic effects of MB on zooplankton using Daphnia magna (D. magna) as a test organism to provide basic data for risk assessment. The results show that 48 h-EC50 and 24 h-LC50 were 61.5 ± 2.3 and 149.0 ± 2.2 μg/L, respectively. Chronic exposure to MB affected the heart rate, beat frequency of the thoracic limbs, and reproductive ability of D. magna at environmental concentrations higher than 4.7 μg/L. The cumulative molts, time to production of the first brood, and total number of living offspring were affected at different MB concentrations, while "abortions" were observed in high-exposure groups. The activity of superoxide dismutase was increased, while glutathione S-transferase activity was stimulated at low concentrations and inhibited at high concentrations. In addition, the malondialdehyde content increased with increasing concentrations of MB. Our findings demonstrate the impact of MB on the reproduction and growth of freshwater species, as well as their physiological responses. These results have implications for establishing guidelines on the use of MB in aquaculture and setting discharge standards.
Collapse
Affiliation(s)
- Shuhui Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yixin Cui
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
| | - Min Wen
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
| | - Gaohua Ji
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Shin YJ, Kim B, Kim H, Kim K, Park K, Kim J, Kim HJ, Kim P. 1,2,3-benzotriazole adversely affects early-life stage of Oryzias latipes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152846. [PMID: 34995609 DOI: 10.1016/j.scitotenv.2021.152846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
1,2,3-benzotriazole (BT) is used in large amounts around the world and is one of the substances derived from household chemicals that are of concern for risk when discharged to aquatic environments. Therefore, several studies have been conducted on the aquatic toxicity effects of BT, but the chronic impact assessment studies to evaluate the developmental effects on the early-life stage of fish are insufficient. In this study, the acute toxicity test and subchronic toxicity test (fish, early-life stage toxicity test, ELS test) using embryos of Japanese medaka (Oryzias latipes) were performed to evaluate the acute toxicity, developmental toxicity, growth (indicated by total length and weight at the end of the test), and histopathological effect of BT. In the short-term toxicity test on embryo and sac-fry stage, toxicity value was calculated to be 41 mg/L (NOEC). Based on this value, the exposure concentration of the ELS test was determined as 0.04, 0.4, 4 and 40 mg/L, and total exposure duration was 42 days. At the highest concentration group (40 mg/L), failure of swim bladder inflation and decrease of survival and size (total length and weight) were observed. Moreover, in the histopathological analysis, abnormal findings were detected in swim bladders from the 40 mg/L group such as inflammation and tumor changes. On the other hands, condition index (weight-length relationships, CI) was statistically significantly lower in all exposed groups compared to the control group. NOEC for the survival of BT was calculated to be 4 mg/L. LOEC for CI was 0.04 mg/L, which means BT inhibited weight gain relative to its length on larvae of medaka.
Collapse
Affiliation(s)
- Yu-Jin Shin
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea; Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Bokyung Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Hokyun Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Kyungtae Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Kyunghwa Park
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jieun Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Hee-Jung Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Pilje Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| |
Collapse
|
4
|
Price ER, Mager EM. The effects of exposure to crude oil or PAHs on fish swim bladder development and function. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108853. [PMID: 32777466 DOI: 10.1016/j.cbpc.2020.108853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 11/17/2022]
Abstract
The failure of the swim bladder to inflate during fish development is a common and sensitive response to exposure to petrochemicals. Here, we review potential mechanisms by which petrochemicals or their toxic components (polycyclic aromatic hydrocarbons; PAHs) may affect swim bladder inflation, particularly during early life stages. Surface films formed by oil can cause a physical barrier to primary inflation by air gulping, and are likely important during oil spills. The act of swimming to the surface for primary inflation can be arduous for some species, and may prevent inflation if this behavior is limited by toxic effects on vision or musculature. Some studies have noted altered gene expression in the swim bladder in response to PAHs, and Cytochrome P450 1A (CYP1A) can be induced in swim bladder or rete mirabile tissue, suggesting that PAHs can have direct effects on swim bladder development. Swim bladder inflation failure can also occur secondarily to the failure of other systems; cardiovascular impairment is the best elucidated of these mechanisms, but other mechanisms might include non-inflation as a sequela of disruption to thyroid signaling or cholesterol metabolism. Failed swim bladder inflation has the potential to lead to chronic sublethal effects that are as yet unstudied.
Collapse
Affiliation(s)
- Edwin R Price
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, TX 76203, United States of America.
| | - Edward M Mager
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, TX 76203, United States of America
| |
Collapse
|
5
|
Peneyra SM, Lerpiriyapong K, Riedel ER, Lipman NS, Lieggi C. Impact of Pronase, Sodium Thiosulfate, and Methylene Blue Combinations on Development and Survival of Sodium Hypochlorite Surface-Disinfected Zebrafish ( Danio rerio) Embryos. Zebrafish 2020; 17:342-353. [PMID: 33048660 PMCID: PMC7578187 DOI: 10.1089/zeb.2020.1917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Embryo surface disinfection is utilized in aquaculture to decrease the risk of pathogen introduction into established colonies. Zebrafish embryos are commonly disinfected with unbuffered sodium hypochlorite at 25-50 ppm for 10 min with or without concurrent treatment with chemicals, including pronase (Pron), sodium thiosulfate, and/or methylene blue; however, the impact of these chemicals on embryo survival and development has not been evaluated. In this study, AB and casper embryos were exposed to disinfection protocols that used Pron, sodium thiosulfate, and/or methylene blue (given alone, in various combinations, or all three combined) with 50 and 100 ppm sodium hypochlorite performed 6 and 24 h postfertilization (HPF). All groups were evaluated for survival, hatching, and malformations at 5 days postfertilization. Maximal survival (69%-97%) and hatching rates (66%-94%) were generally observed with sodium hypochlorite disinfection followed by exposure to both Pron and sodium thiosulfate and maintenance in standard embryo medium without methylene blue. Methylene blue had variable effects on survival and hatching. Higher survival and hatching rates were seen in AB embryos disinfected at 6 HPF and casper embryos disinfected at 24 HPF. Susceptibility to sodium hypochlorite toxicity differed by strain, emphasizing the need to test disinfection protocols on small embryo cohorts.
Collapse
Affiliation(s)
- Samantha M. Peneyra
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and the Hospital For Special Surgery, New York, New York, USA
| | - Kvin Lerpiriyapong
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and the Hospital For Special Surgery, New York, New York, USA
| | - Elyn R. Riedel
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Neil S. Lipman
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and the Hospital For Special Surgery, New York, New York, USA
| | - Christine Lieggi
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and the Hospital For Special Surgery, New York, New York, USA
| |
Collapse
|
6
|
Madison BN, Hodson PV, Langlois VS. Cold Lake Blend diluted bitumen toxicity to the early development of Japanese medaka. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:579-586. [PMID: 28336089 DOI: 10.1016/j.envpol.2017.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/24/2017] [Accepted: 03/11/2017] [Indexed: 05/25/2023]
Abstract
Diluted bitumen (dilbit) from Alberta oil sands (Canada) is transported across major continental watersheds, yet little is known about its toxicity to fish if spilled into aquatic environments. The toxicity of Cold Lake (CLB) dilbit was assessed for medaka embryos (Oryzias latipes) exposed to water accommodated fractions (WAF) and chemically-enhanced WAF (CEWAF) using Corexit®EC9500A as dispersant. The effects of CLB toxicity were similar to conventional crude oils and Access Western Blend (AWB) dilbit. The prevalence of malformations and cyp1a mRNA synthesis in hatched fish increased monotonically with concentration during WAF and CEWAF treatments and provided a novel indicator of dilbit PAH toxicity. Apart from nfe2 (an antioxidant transcription factor), there were no statistically significant monotonic exposure-responses of ahr, arnt2, cat, sod, gpx, gst, gsr, g6pdh, p53, and hsp70 transcripts at total polycyclic aromatic hydrocarbons (TPAH) concentrations bracketing EC50s for embryotoxicity (WAF ≅ 3 μg/L; CEWAF ≅ 0.1 μg/L TPAH). Based on measured TPAH concentrations in exposure test solutions, CLB dilbit was 6-10 fold more toxic to medaka than AWB during chronic exposures. Lack of direct monotonic gene transcription responses to increasing oil concentrations during exposures that were embryotoxic suggests that the capacity of the oxidative stress response is limited in earlier lifestages or that differences exist among species in mechanisms of toxicity. This study provides a comparative framework for identifying suitable biomarkers and toxicity methods for those fish species in sensitive lifestages at highest risk of Canadian oil sands dilbit exposure following a spill in the freshwater environment.
Collapse
Affiliation(s)
- Barry N Madison
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Canada; School of Environmental Studies, Queen's University, Kingston, ON, Canada
| | - Peter V Hodson
- School of Environmental Studies, Queen's University, Kingston, ON, Canada
| | - Valerie S Langlois
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Canada; School of Environmental Studies, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
7
|
Pathogenesis of mixed infection by Spironucleus sp. and Citrobacter freundii in freshwater angelfish Pterophyllum scalare. Microb Pathog 2016; 100:119-123. [PMID: 27599811 DOI: 10.1016/j.micpath.2016.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 01/21/2023]
Abstract
The present study was carried out to identify and describe the pathology of the freshwater angelfish Pterophyllum scalare during chronic mortality in an in-door aquaculture system. Scraping of the integument and gills and the collection of intestinal contents to search for external and internal parasites were performed. Kidneys were collected aseptically for the microbiological analysis and the isolates were subjected to antibiotics to test for susceptibility. Subsequently, necropsy for macroscopic assessment and collection of internal organs for histopathology were performed. The fish exhibited lethargy, lip tumor, hemorrhage and liver granuloma. No ectoparasites were diagnosed. Endoparasites of the genus Spironucleus were found in large numbers in the intestine of the affected fish. In the microbiological analysis, Citrobacter freundii was isolated from the kidney and identified by colony PCR. This bacterium showed susceptibility to three of the eight antibiotics evaluated: ciprofloxacin, cefoxitin and tetracycline. For the pathological analysis, liver and spleen granulomas were present. In the intestinal tissue, a large and unusual amount of mast cells and their free granules were described and discussed in detail. The present study showed that mast cells play an important role during the chronic infection of freshwater angelfish.
Collapse
|
8
|
Jönsson ME, Kubota A, Timme-Laragy AR, Woodin B, Stegeman JJ. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish. Toxicol Appl Pharmacol 2012; 265:166-74. [PMID: 23036320 DOI: 10.1016/j.taap.2012.09.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/18/2012] [Accepted: 09/26/2012] [Indexed: 01/01/2023]
Abstract
The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR(2)) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC(50) values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2nM PCB126 approximately 30% of eleutheroembryos(3) failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells.
Collapse
Affiliation(s)
- Maria E Jönsson
- Dept. of Environmental Toxicology, Evolutionary Biology, Centre, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
9
|
Zheng W, Wang Z, Collins JE, Andrews RM, Stemple D, Gong Z. Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung. PLoS One 2011; 6:e24019. [PMID: 21887364 PMCID: PMC3162596 DOI: 10.1371/journal.pone.0024019] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/03/2011] [Indexed: 01/21/2023] Open
Abstract
The fish swimbladder is a unique organ in vertebrate evolution and it functions for regulating buoyancy in most teleost species. It has long been postulated as a homolog of the tetrapod lung, but the molecular evidence is scarce. In order to understand the molecular function of swimbladder as well as its relationship with lungs in tetrapods, transcriptomic analyses of zebrafish swimbladder were carried out by RNA-seq. Gene ontology classification showed that genes in cytoskeleton and endoplasmic reticulum were enriched in the swimbladder. Further analyses depicted gene sets and pathways closely related to cytoskeleton constitution and regulation, cell adhesion, and extracellular matrix. Several prominent transcription factor genes in the swimbladder including hoxc4a, hoxc6a, hoxc8a and foxf1 were identified and their expressions in developing swimbladder during embryogenesis were confirmed. By comparison of enriched transcripts in the swimbladder with those in human and mouse lungs, we established the resemblance of transcriptome of the zebrafish swimbladder and mammalian lungs. Based on the transcriptomic data of zebrafish swimbladder, the predominant functions of swimbladder are in its epithelial and muscular tissues. Our comparative analyses also provide molecular evidence of the relatedness of the fish swimbladder and mammalian lung.
Collapse
Affiliation(s)
- Weiling Zheng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhengyuan Wang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - John E. Collins
- Vertebrate Development and Genetics, Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Robert M. Andrews
- Vertebrate Development and Genetics, Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Derek Stemple
- Vertebrate Development and Genetics, Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|