1
|
Jiang X, Renkema H, Smeitink J, Beyrath J. Sonlicromanol's active metabolite KH176m normalizes prostate cancer stem cell mPGES-1 overexpression and inhibits cancer spheroid growth. PLoS One 2021; 16:e0254315. [PMID: 34242345 PMCID: PMC8270194 DOI: 10.1371/journal.pone.0254315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Aggressiveness of cancers, like prostate cancer, has been found to be associated with elevated expression of the microsomal prostaglandin E synthase-1 (mPGES-1). Here, we investigated whether KH176m (the active metabolite of sonlicromanol), a recently discovered selective mPGES-1 inhibitor, could affect prostate cancer cells-derived spheroid growth. We demonstrated that KH176m suppressed mPGES-1 expression and growth of DU145 (high mPGES-1 expression)-derived spheroids, while it had no effect on the LNCaP cell line, which has low mPGES-1 expression. By addition of exogenous PGE2, we found that the effect of KH176m on mPGES-1 expression and spheroid growth is due to the inhibition of a PGE2-driven positive feedback control-loop of mPGES-1 transcriptional regulation. Cancer stem cells (CSCs) are a subset of cancer cells exhibiting the ability of self-renewal, plasticity, and initiating and maintaining tumor growth. Our data shows that mPGES-1 is specifically expressed in this CSCs subpopulation (CD44+CD24-). KH176m inhibited the expression of mPGES-1 and reduced the growth of spheroids derived from the CSC. Based on the results obtained we propose selective mPGES-1 targeting by the sonlicromanol metabolite KH176m as a potential novel treatment approach for cancer patients with high mPGES-1 expression.
Collapse
Affiliation(s)
- Xiaolan Jiang
- Khondrion BV, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
2
|
DREAM-in-CDM Approach and Identification of a New Generation of Anti-inflammatory Drugs Targeting mPGES-1. Sci Rep 2020; 10:10187. [PMID: 32576928 PMCID: PMC7311425 DOI: 10.1038/s41598-020-67283-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022] Open
Abstract
Microsomal prostaglandin E2 synthase-1 (mPGES-1) is known as an ideal target for next generation of anti-inflammatory drugs without the side effects of currently available anti-inflammatory drugs. However, there has been no clinically promising mPGES-1 inhibitor identified through traditional drug discovery and development route. Here we report a new approach, called DREAM-in-CDM (Drug Repurposing Effort Applying Integrated Modeling-in vitro/vivo-Clinical Data Mining), to identify an FDA-approved drug suitable for use as an effective analgesic targeting mPGES-1. The DREAM-in-CDM approach consists of three steps: computational screening of FDA-approved drugs; in vitro and/or in vivo assays; and clinical data mining. By using the DREAM-in-CDM approach, lapatinib has been identified as a promising mPGES-1 inhibitor which may have significant anti-inflammatory effects to relieve various forms of pain and possibly treat various inflammation conditions involved in other inflammation-related diseases such as the lung inflammation caused by the newly identified COVID-19. We anticipate that the DREAM-in-CDM approach will be used to repurpose FDA-approved drugs for various new therapeutic indications associated with new targets.
Collapse
|
3
|
Lauro G, Terracciano S, Cantone V, Ruggiero D, Fischer K, Pace S, Werz O, Bruno I, Bifulco G. A Combinatorial Virtual Screening Approach Driving the Synthesis of 2,4-Thiazolidinedione-Based Molecules as New Dual mPGES-1/5-LO Inhibitors. ChemMedChem 2020; 15:481-489. [PMID: 32022480 DOI: 10.1002/cmdc.201900694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/24/2020] [Indexed: 12/13/2022]
Abstract
Dual inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) and 5-lipoxygenase (5-LO), two key enzymes involved in pro-inflammatory eicosanoid biosynthesis, represents a new strategy for treating inflammatory disorders. Herein we report the discovery of 2,4-thiazolidinedione-based mPGES-1/5-LO dual inhibitors following a multidisciplinary protocol, involving virtual combinatorial screening, chemical synthesis, and validation of the biological activities for the selected compounds. Following the multicomponent-based chemical route for the decoration of the 2,4-thiazolidinedione core, a large library of virtual compounds was built (∼2.0×104 items) and submitted to virtual screening. Nine selected molecules were synthesized and biologically evaluated, disclosing among them four compounds able to reduce the activity of both enzymes in the mid- and low- micromolar range of activities. These results are of interest for further expanding the chemical diversity around the 2,4-thiazolidinedione central core, facilitating the identification of novel anti-inflammatory agents endowed with a promising and safer pharmacological profile.
Collapse
Affiliation(s)
- Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Vincenza Cantone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Dafne Ruggiero
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy.,PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Katrin Fischer
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmacy, University of Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmacy, University of Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmacy, University of Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| |
Collapse
|
4
|
Zhou S, Zhou Z, Ding K, Yuan Y, Zheng F, Zhan CG. In Silico Observation of the Conformational Opening of the Glutathione-Binding Site of Microsomal Prostaglandin E2 Synthase-1. J Chem Inf Model 2019; 59:3839-3845. [DOI: 10.1021/acs.jcim.9b00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Chen Z, Cai X, Li M, Yan L, Wu L, Wang X, Tang N. CRISPR/Cas9-based liver-derived reporter cells for screening of mPGES-1 inhibitors. J Enzyme Inhib Med Chem 2019; 34:799-807. [PMID: 30879343 PMCID: PMC6427568 DOI: 10.1080/14756366.2019.1587416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
mPGES-1 is a terminal rate-limiting enzyme responsible for inflammation-induced PGE2 production. The inhibition of mPGES-1 has been considered as a safe and effective target for the treatment of inflammation and cancer. However, a specific, efficient, and simple method for high-throughput screening of mPGES-1 inhibitors is still lacking. In this study, we developed a fluorescence imaging strategy to monitor the expression of mPGES-1 via CRISPR/Cas9 knock-in system. Immunofluorescence colocalisation, Sanger sequencing, RNAi, and IL-1β treatment all confirmed the successful construction of mPGES-1 reporter cells. The fluorescence signal intensity of the reporter cells treated with four conventional mPGES-1 inhibitors was considerably attenuated via flow cytometry and fluorescent microplate reader, demonstrating that the reporter cells can be used as an efficient and convenient means for screening and optimising mPGES-1 inhibitors. Moreover, it provides a new technical support for the development of targeted small molecule compounds for anti-inflammatory and tumour therapy.
Collapse
Affiliation(s)
- Zhanfei Chen
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Xiaoling Cai
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Man Li
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - LinLin Yan
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Luxi Wu
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Xiaoqian Wang
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China
| | - Nanhong Tang
- a Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital , Fuzhou , China.,b Key Laboratory of Ministry of Education for Gastrointestinal Cancer , Research Center for Molecular Medicine, Fujian Medical University , Fuzhou , China
| |
Collapse
|
6
|
Blair PJ, Hwang SJ, Shonnard MC, Peri LE, Bayguinov Y, Sanders KM, Ward SM. The Role of Prostaglandins in Disrupted Gastric Motor Activity Associated With Type 2 Diabetes. Diabetes 2019; 68:637-647. [PMID: 30626609 PMCID: PMC6385756 DOI: 10.2337/db18-1064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Patients with diabetes often develop gastrointestinal motor problems, including gastroparesis. Previous studies have suggested this gastric motor disorder was a consequence of an enteric neuropathy. Disruptions in interstitial cells of Cajal (ICC) have also been reported. A thorough examination of functional changes in gastric motor activity during diabetes has not yet been performed. We comprehensively examined the gastric antrums of Lepob mice using functional, morphological, and molecular techniques to determine the pathophysiological consequences in this type 2 diabetic animal model. Video analysis and isometric force measurements revealed higher frequency and less robust antral contractions in Lepob mice compared with controls. Electrical pacemaker activity was reduced in amplitude and increased in frequency. Populations of enteric neurons, ICC, and platelet-derived growth factor receptor α+ cells were unchanged. Analysis of components of the prostaglandin pathway revealed upregulation of multiple enzymes and receptors. Prostaglandin-endoperoxide synthase-2 inhibition increased slow wave amplitudes and reduced frequency of diabetic antrums. In conclusion, gastric pacemaker and contractile activity is disordered in type 2 diabetic mice, and this appears to be a consequence of excessive prostaglandin signaling. Inhibition of prostaglandin synthesis may provide a novel treatment for diabetic gastric motility disorders.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Matthew C Shonnard
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Lauren E Peri
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Yulia Bayguinov
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| |
Collapse
|
7
|
Lauro G, Cantone V, Potenza M, Fischer K, Koeberle A, Werz O, Riccio R, Bifulco G. Discovery of 3-hydroxy-3-pyrrolin-2-one-based mPGES-1 inhibitors using a multi-step virtual screening protocol. MEDCHEMCOMM 2018; 9:2028-2036. [PMID: 30746063 DOI: 10.1039/c8md00497h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/17/2018] [Indexed: 12/20/2022]
Abstract
Targeting microsomal prostaglandin E2 synthase-1 (mPGES-1) represents an efficient strategy for the development of novel drugs against inflammation and cancer with potentially reduced side effects. With this aim, a virtual screening was performed on a large library of commercially available molecules using the X-ray structure of mPGES-1 co-complexed with a potent inhibitor. Combining fast ligand-based shape alignment, molecular docking experiments, and qualitative analysis of the binding poses, a small set of molecules was selected for the subsequent steps of validation of the biological activity. Compounds 2 and 3, bearing the 3-hydroxy-3-pyrrolin-2-one nucleus, showed mPGES-1-inhibitory activity in the low micromolar range. These data highlighted the applicability of the reported virtual screening protocol for the selection of new mPGES-1 inhibitors as promising anti-inflammatory/anti-cancer drugs.
Collapse
Affiliation(s)
- Gianluigi Lauro
- Department of Pharmacy , University of Salerno , via Giovanni Paolo II 132 , 84084 Fisciano , Italy . ; ; Tel: +39 (0)89 969741
| | - Vincenza Cantone
- Department of Pharmacy , University of Salerno , via Giovanni Paolo II 132 , 84084 Fisciano , Italy . ; ; Tel: +39 (0)89 969741
| | - Marianna Potenza
- Department of Pharmacy , University of Salerno , via Giovanni Paolo II 132 , 84084 Fisciano , Italy . ; ; Tel: +39 (0)89 969741
| | - Katrin Fischer
- Department of Pharmaceutical/Medicinal Chemistry , Institute of Pharmacy , Friedrich-Schiller-University Jena , Philosophenweg 14 , D-07743 Jena , Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry , Institute of Pharmacy , Friedrich-Schiller-University Jena , Philosophenweg 14 , D-07743 Jena , Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry , Institute of Pharmacy , Friedrich-Schiller-University Jena , Philosophenweg 14 , D-07743 Jena , Germany
| | - Raffaele Riccio
- Department of Pharmacy , University of Salerno , via Giovanni Paolo II 132 , 84084 Fisciano , Italy . ; ; Tel: +39 (0)89 969741
| | - Giuseppe Bifulco
- Department of Pharmacy , University of Salerno , via Giovanni Paolo II 132 , 84084 Fisciano , Italy . ; ; Tel: +39 (0)89 969741
| |
Collapse
|
8
|
Structure-based discovery of mPGES-1 inhibitors suitable for preclinical testing in wild-type mice as a new generation of anti-inflammatory drugs. Sci Rep 2018; 8:5205. [PMID: 29581541 PMCID: PMC5979965 DOI: 10.1038/s41598-018-23482-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/09/2018] [Indexed: 12/24/2022] Open
Abstract
Human mPGES-1 is recognized as a promising target for next generation of anti-inflammatory drugs without the side effects of currently available anti-inflammatory drugs, and various inhibitors have been reported in the literature. However, none of the reported potent inhibitors of human mPGES-1 has shown to be also a potent inhibitor of mouse or rat mPGES-1, which prevents using the well-established mouse/rat models of inflammation-related diseases for preclinical studies. Hence, despite of extensive efforts to design and discover various human mPGES-1 inhibitors, the promise of mPGES-1 as a target for the next generation of anti-inflammatory drugs has never been demonstrated in any wild-type mouse/rat model using an mPGES-1 inhibitor. Here we report discovery of a novel type of selective mPGES-1 inhibitors potent for both human and mouse mPGES-1 enzymes through structure-based rational design. Based on in vivo studies using wild-type mice, the lead compound is indeed non-toxic, orally bioavailable, and more potent in decreasing the PGE2 (an inflammatory marker) levels compared to the currently available drug celecoxib. This is the first demonstration in wild-type mice that mPGES-1 is truly a promising target for the next generation of anti-inflammatory drugs.
Collapse
|
9
|
Michaelis M, Rothweiler F, Wurglics M, Aniceto N, Dittrich M, Zettl H, Wiese M, Wass M, Ghafourian T, Schubert-Zsilavecz M, Cinatl J. Substrate-specific effects of pirinixic acid derivatives on ABCB1-mediated drug transport. Oncotarget 2017; 7:11664-76. [PMID: 26887049 PMCID: PMC4905501 DOI: 10.18632/oncotarget.7345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
Pirinixic acid derivatives, a new class of drug candidates for a range of diseases, interfere with targets including PPARα, PPARγ, 5-lipoxygenase (5-LO), and microsomal prostaglandin and E2 synthase-1 (mPGES1). Since 5-LO, mPGES1, PPARα, and PPARγ represent potential anti-cancer drug targets, we here investigated the effects of 39 pirinixic acid derivatives on prostate cancer (PC-3) and neuroblastoma (UKF-NB-3) cell viability and, subsequently, the effects of selected compounds on drug-resistant neuroblastoma cells. Few compounds affected cancer cell viability in low micromolar concentrations but there was no correlation between the anti-cancer effects and the effects on 5-LO, mPGES1, PPARα, or PPARγ. Most strikingly, pirinixic acid derivatives interfered with drug transport by the ATP-binding cassette (ABC) transporter ABCB1 in a drug-specific fashion. LP117, the compound that exerted the strongest effect on ABCB1, interfered in the investigated concentrations of up to 2μM with the ABCB1-mediated transport of vincristine, vinorelbine, actinomycin D, paclitaxel, and calcein-AM but not of doxorubicin, rhodamine 123, or JC-1. In silico docking studies identified differences in the interaction profiles of the investigated ABCB1 substrates with the known ABCB1 binding sites that may explain the substrate-specific effects of LP117. Thus, pirinixic acid derivatives may offer potential as drug-specific modulators of ABCB1-mediated drug transport.
Collapse
Affiliation(s)
- Martin Michaelis
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main 60596, Germany.,Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.,Current address: Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Florian Rothweiler
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main 60596, Germany
| | - Mario Wurglics
- Institute for Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main 60438, Germany
| | - Natália Aniceto
- Medway School of Pharmacy, Universities of Kent and Greenwich in Medway, Chatham, Kent ME4 4TB, UK
| | - Michaela Dittrich
- Institute for Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main 60438, Germany
| | - Heiko Zettl
- Institute for Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main 60438, Germany
| | - Michael Wiese
- Medway School of Pharmacy, Universities of Kent and Greenwich in Medway, Chatham, Kent ME4 4TB, UK.,Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| | - Mark Wass
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | | | | | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main 60596, Germany
| |
Collapse
|
10
|
Abstract
The severity and course of inflammatory processes differ between women and men, but the biochemical mechanisms underlying these sex differences are elusive. Prostaglandins (PG) and leukotrienes (LT) are lipid mediators linked to inflammation. We demonstrated superior LT biosynthesis in human neutrophils and monocytes, and in mouse macrophages from females, and we confirmed these sex differences in vivo where female mice produced more LTs during zymosan-induced peritonitis versus males. Here, we report sex differences in PG production in neutrophils during acute inflammation. In the late phase (4–8 hrs) of mouse zymosan-induced peritonitis and rat carrageenan-induced pleurisy, PG levels in males were higher versus females, seemingly due to higher PG production in infiltrated neutrophils. Accordingly, human neutrophils from males produced more PGE2 than cells from females. Increased PG biosynthesis in males was accompanied by elevated cyclooxygenase (COX)-2 expression connected to increased nuclear factor-kappa B activation, and was abolished when LT synthesis was pharmacologically blocked, suggesting that elevated PG production in males might be caused by increased COX-2 expression and by shunting phenomena due to suppressed LT formation. Conclusively, our data reveal that the biosynthesis of pro-inflammatory PGs and LTs is conversely regulated by sex with consequences for the inflammatory response.
Collapse
|
11
|
Liu X, Wang D, Yu C, Li T, Liu J, Sun S. Potential Antifungal Targets against a Candida Biofilm Based on an Enzyme in the Arachidonic Acid Cascade-A Review. Front Microbiol 2016; 7:1925. [PMID: 27999568 PMCID: PMC5138225 DOI: 10.3389/fmicb.2016.01925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/16/2016] [Indexed: 11/21/2022] Open
Abstract
Candida is an important opportunistic fungal pathogen, especially in biofilm associated infections. The formation of a Candida biofilm can decrease Candida sensitivity to antifungal drugs and cause drug resistance. Although many effective antifungal drugs are available, their applications are limited due to their high toxicity and cost. Seeking new antifungal agents that are effective against biofilm-associated infection is an urgent need. Many research efforts are underway, and some progress has been made in this field. It has been shown that the arachidonic acid cascade plays an important role in fungal morphogenesis and pathogenicity. Notably, prostaglandin E2 (PGE2) can promote the formation of a Candida biofilm. Recently, the inhibition of PGE2 has received much attention. Studies have shown that cyclooxygenase (COX) inhibitors, such as aspirin, ibuprofen, and indomethacin, combined with fluconazole can significantly reduce Candida adhesion and biofilm development and increase fluconazole susceptibility; the MIC of fluconazole can be decrease from 64 to 2 μg/ml when used in combination with ibuprofen. In addition, in vivo studies have also confirmed the antifungal activities of these inhibitors. In this article, we mainly review the relationship between PGE2 and Candida biofilm, summarize the antifungal activities of COX inhibitors and analyze the possible antifungal activity of microsomal prostaglandin E synthase-1 (MPGES-1) inhibitors; additionally, other factors that influence PGE2 production are also discussed. Hopefully this review can disclose potential antifungal targets based on the arachidonic acid cascade and provide a prevailing strategy to alleviate Candida albicans biofilm formation.
Collapse
Affiliation(s)
- Xinning Liu
- Department of Clinical Pharmacy, Taishan Medical University Taian, China
| | - Decai Wang
- Department of Clinical Pharmacy, Taishan Medical University Taian, China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University Jinan, China
| | - Tao Li
- Intensive Care Unit, Qianfoshan Hospital Affiliated to Shandong University Jinnan, China
| | - Jianqiao Liu
- General Practice, Shandong Provincial Hospital Jinnan, China
| | - Shujuan Sun
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong University Jinnan, China
| |
Collapse
|
12
|
Koeberle A, Laufer SA, Werz O. Design and Development of Microsomal Prostaglandin E2 Synthase-1 Inhibitors: Challenges and Future Directions. J Med Chem 2016; 59:5970-86. [DOI: 10.1021/acs.jmedchem.5b01750] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andreas Koeberle
- Chair
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Stefan A. Laufer
- Department
of Pharmaceutical Chemistry, Pharmaceutical Institute, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Oliver Werz
- Chair
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Jena, Philosophenweg 14, 07743 Jena, Germany
| |
Collapse
|
13
|
Noha SM, Fischer K, Koeberle A, Garscha U, Werz O, Schuster D. Discovery of novel, non-acidic mPGES-1 inhibitors by virtual screening with a multistep protocol. Bioorg Med Chem 2015; 23:4839-4845. [PMID: 26088337 PMCID: PMC4528062 DOI: 10.1016/j.bmc.2015.05.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/13/2015] [Accepted: 05/19/2015] [Indexed: 11/22/2022]
Abstract
Microsomal prostaglandin E2 synthase-1 (mPGES-1) inhibitors are considered as potential therapeutic agents for the treatment of inflammatory pain and certain types of cancer. So far, several series of acidic as well as non-acidic inhibitors of mPGES-1 have been discovered. Acidic inhibitors, however, may have issues, such as loss of potency in human whole blood and in vivo, stressing the importance of the design and identification of novel, non-acidic chemical scaffolds of mPGES-1 inhibitors. Using a multistep virtual screening protocol, the Vitas-M compound library (∼1.3 million entries) was filtered and 16 predicted compounds were experimentally evaluated in a biological assay in vitro. This approach yielded two molecules active in the low micromolar range (IC50 values: 4.5 and 3.8 μM, respectively).
Collapse
Affiliation(s)
- Stefan M Noha
- Computer Aided Molecular Design (CAMD) Group, Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Katrin Fischer
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Ulrike Garscha
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Daniela Schuster
- Computer Aided Molecular Design (CAMD) Group, Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| |
Collapse
|
14
|
Role of COX-2/mPGES-1/prostaglandin E2 cascade in kidney injury. Mediators Inflamm 2015; 2015:147894. [PMID: 25729216 PMCID: PMC4333324 DOI: 10.1155/2015/147894] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/19/2015] [Indexed: 12/26/2022] Open
Abstract
COX-2/mPGES-1/PGE2 cascade plays critical roles in modulating many physiological and pathological actions in different organs. In the kidney, this cascade is of high importance in regulating fluid metabolism, blood pressure, and renal hemodynamics. Under some disease conditions, this cascade displays various actions in response to the different pathological insults. In the present review, the roles of this cascade in the pathogenesis of kidney injuries including diabetic and nondiabetic kidney diseases and acute kidney injuries were introduced and discussed. The new insights from this review not only increase the understanding of the pathological role of the COX-2/mPGES-1/PGE2 pathway in kidney injuries, but also shed new light on the innovation of the strategies for the treatment of kidney diseases.
Collapse
|
15
|
Nemenoff R, Gijon M. Inflammation and Lung Cancer: Eicosanoids. INFLAMMATION AND LUNG CANCER 2015:161-189. [DOI: 10.1007/978-1-4939-2724-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
16
|
Oettl SK, Gerstmeier J, Khan SY, Wiechmann K, Bauer J, Atanasov AG, Malainer C, Awad EM, Uhrin P, Heiss EH, Waltenberger B, Remias D, Breuss JM, Boustie J, Dirsch VM, Stuppner H, Werz O, Rollinger JM. Imbricaric acid and perlatolic acid: multi-targeting anti-inflammatory depsides from Cetrelia monachorum. PLoS One 2013; 8:e76929. [PMID: 24130812 PMCID: PMC3793931 DOI: 10.1371/journal.pone.0076929] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
In vitro screening of 17 Alpine lichen species for their inhibitory activity against 5-lipoxygenase, microsomal prostaglandin E2 synthase-1 and nuclear factor kappa B revealed Cetrelia monachorum (Zahlbr.) W.L. Culb. & C.F. Culb. As conceivable source for novel anti-inflammatory compounds. Phytochemical investigation of the ethanolic crude extract resulted in the isolation and identification of 11 constituents, belonging to depsides and derivatives of orsellinic acid, olivetolic acid and olivetol. The two depsides imbricaric acid (4) and perlatolic acid (5) approved dual inhibitory activities on microsomal prostaglandin E2 synthase-1 (IC50 = 1.9 and 0.4 µM, resp.) and on 5-lipoxygenase tested in a cell-based assay (IC50 = 5.3 and 1.8 µM, resp.) and on purified enzyme (IC50 = 3.5 and 0.4 µM, resp.). Additionally, these two main constituents quantified in the extract with 15.22% (4) and 9.10% (5) showed significant inhibition of tumor necrosis factor alpha-induced nuclear factor kappa B activation in luciferase reporter cells with IC50 values of 2.0 and 7.0 µM, respectively. In a murine in vivo model of inflammation, 5 impaired the inflammatory, thioglycollate-induced recruitment of leukocytes to the peritoneum. The potent inhibitory effects on the three identified targets attest 4 and 5 a pronounced multi-target anti-inflammatory profile which warrants further investigation on their pharmacokinetics and in vivo efficacy.
Collapse
Affiliation(s)
- Sarah K. Oettl
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Jana Gerstmeier
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Shafaat Y. Khan
- Institute of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Katja Wiechmann
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Julia Bauer
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, University Tuebingen, Tuebingen, Germany
| | | | - Clemens Malainer
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Ezzat M. Awad
- Institute of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Pavel Uhrin
- Institute of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Elke H. Heiss
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Daniel Remias
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Johannes M. Breuss
- Institute of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Joel Boustie
- Institute of Chemical Sciences of Rennes, Team PNSCM, University of Rennes 1, Rennes, France
| | - Verena M. Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University of Jena, Jena, Germany
- * E-mail: (JR); (OW)
| | - Judith M. Rollinger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
- * E-mail: (JR); (OW)
| |
Collapse
|
17
|
Crystal structure of microsomal prostaglandin E2 synthase provides insight into diversity in the MAPEG superfamily. Proc Natl Acad Sci U S A 2013; 110:3806-11. [PMID: 23431194 DOI: 10.1073/pnas.1218504110] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a key mediator in inflammatory response. The main source of inducible PGE2, microsomal PGE2 synthase-1 (mPGES-1), has emerged as an interesting drug target for treatment of pain. To support inhibitor design, we have determined the crystal structure of human mPGES-1 to 1.2 Å resolution. The structure reveals three well-defined active site cavities within the membrane-spanning region in each monomer interface of the trimeric structure. An important determinant of the active site cavity is a small cytosolic domain inserted between transmembrane helices I and II. This extra domain is not observed in other structures of proteins within the MAPEG (Membrane-Associated Proteins involved in Eicosanoid and Glutathione metabolism) superfamily but is likely to be present also in microsomal GST-1 based on sequence similarity. An unexpected feature of the structure is a 16-Å-deep cone-shaped cavity extending from the cytosolic side into the membrane-spanning region. We suggest a potential role for this cavity in substrate access. Based on the structure of the active site, we propose a catalytic mechanism in which serine 127 plays a key role. We have also determined the structure of mPGES-1 in complex with a glutathione-based analog, providing insight into mPGES-1 flexibility and potential for structure-based drug design.
Collapse
|
18
|
Allaj V, Guo C, Nie D. Non-steroid anti-inflammatory drugs, prostaglandins, and cancer. Cell Biosci 2013; 3:8. [PMID: 23388178 PMCID: PMC3599181 DOI: 10.1186/2045-3701-3-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/21/2013] [Indexed: 01/10/2023] Open
Abstract
Fatty acids are involved in multiple pathways and play a pivotal role in health. Eicosanoids, derived from arachidonic acid, have received extensive attention in the field of cancer research. Following release from the phospholipid membrane, arachidonic acid can be metabolized into different classes of eicosanoids through cyclooxygenases, lipoxygenases, or p450 epoxygenase pathways. Non-steroid anti-inflammatory drugs (NSAIDs) are widely consumed as analgesics to relieve minor aches and pains, as antipyretics to reduce fever, and as anti-inflammatory medications. Most NSAIDs are nonselective inhibitors of cyclooxygenases, the rate limiting enzymes in the formation of prostaglandins. Long term use of some NSAIDs has been linked with reduced incidence and mortality in many cancers. In this review, we appraise the biological activities of prostanoids and their cognate receptors in the context of cancer biology. The existing literature supports that these lipid mediators are involved to a great extent in the occurrence and progression of cancer.
Collapse
Affiliation(s)
- Viola Allaj
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine and Simmons Cancer Institute, Springfield, IL, 62794, USA.
| | | | | |
Collapse
|
19
|
Bauer J, Waltenberger B, Noha SM, Schuster D, Rollinger JM, Boustie J, Chollet M, Stuppner H, Werz O. Discovery of depsides and depsidones from lichen as potent inhibitors of microsomal prostaglandin E2 synthase-1 using pharmacophore models. ChemMedChem 2012; 7:2077-81. [PMID: 23109349 DOI: 10.1002/cmdc.201200345] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Indexed: 12/13/2022]
Abstract
Nature in silico: Virtual screening using validated pharmacophore models identified lichen depsides and depsidones as potential inhibitors of mPGES-1, an emerging target for NSAIDs. Evaluation of the virtual hits in a cell-free assay revealed physodic acid and perlatolic acid as potent inhibitors of mPGES-1 (IC(50) = 0.4 and 0.43 μM, respectively), indicating that these natural products have potential as novel anti-inflammatory agents.
Collapse
Affiliation(s)
- Julia Bauer
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hofmann B, Rödl CB, Kahnt AS, Maier TJ, Michel AA, Hoffmann M, Rau O, Awwad K, Pellowska M, Wurglics M, Wacker M, Zivković A, Fleming I, Schubert-Zsilavecz M, Stark H, Schneider G, Steinhilber D. Molecular pharmacological profile of a novel thiazolinone-based direct and selective 5-lipoxygenase inhibitor. Br J Pharmacol 2012; 165:2304-13. [PMID: 21955369 DOI: 10.1111/j.1476-5381.2011.01707.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The potency of many 5-lipoxygenase (5-LOX) inhibitors depends on the cellular peroxide tone and the mechanism of 5-LOX enzyme activation. Therefore, new inhibitors that act regardless of the mode of enzyme activation need to be developed. Recently, we identified a novel class of thiazolinone-based compounds as potent 5-LOX inhibitors. Here, we present the molecular pharmacological profile of (Z)-5-(4-methoxybenzylidene)-2-(p-tolyl)-5H-thiazol-4-one, compound C06. EXPERIMENTAL APPROACH Inhibition of 5-LOX product formation was determined in intact cells [polymorphonuclear leukocytes (PMNL), rat basophilic leukaemia-1, RAW264.7] and in cell-free assays [homogenates, 100, 000×g supernatant (S100), partially purified 5-LOX] applying different stimuli for 5-LOX activation. Inhibition of peroxisome proliferator-activated receptor (PPAR), cytosolic phospholipase A(2) (cPLA(2) ), 12-LOX, 15-LOX-1 and 15-LOX-2 as well as cyclooxygenase-2 (COX-2) were measured in vitro. KEY RESULTS C06 induced non-cytotoxic, direct 5-LOX inhibition with IC(50) values about 0.66 µM (intact PMNL, PMNL homogenates) and approximately 0.3 µM (cell-free PMNL S100, partially purified 5-LOX). Action of C06 was independent of the stimulus used for 5-LOX activation and cellular redox tone and was selective for 5-LOX compared with other arachidonic acid binding proteins (PPAR, cPLA(2) , 12-LOX, 15-LOX-1, 15-LOX-2, COX-2). Experimental results suggest an allosteric binding distinct from the active site and the C2-like domain of 5-LOX. CONCLUSIONS AND IMPLICATIONS C06 was identified as a potent selective direct 5-LOX inhibitor exhibiting a novel and unique mode of action, different from other established 5-LOX inhibitors. This thiazolinone may possess potential for intervention with inflammatory and allergic diseases and certain types of cancer.
Collapse
Affiliation(s)
- B Hofmann
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Finetti F, Terzuoli E, Bocci E, Coletta I, Polenzani L, Mangano G, Alisi MA, Cazzolla N, Giachetti A, Ziche M, Donnini S. Pharmacological inhibition of microsomal prostaglandin E synthase-1 suppresses epidermal growth factor receptor-mediated tumor growth and angiogenesis. PLoS One 2012; 7:e40576. [PMID: 22815767 PMCID: PMC3399882 DOI: 10.1371/journal.pone.0040576] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/11/2012] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Blockade of Prostaglandin (PG) E(2) production via deletion of microsomal Prostaglandin E synthase-1 (mPGES-1) gene reduces tumor cell proliferation in vitro and in vivo on xenograft tumors. So far the therapeutic potential of the pharmacological inhibition of mPGES-1 has not been elucidated. PGE(2) promotes epithelial tumor progression via multiple signaling pathways including the epidermal growth factor receptor (EGFR) signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS Here we evaluated the antitumor activity of AF3485, a compound of a novel family of human mPGES-1 inhibitors, in vitro and in vivo, in mice bearing human A431 xenografts overexpressing EGFR. Treatment of the human cell line A431 with interleukin-1beta (IL-1β) increased mPGES-1 expression, PGE(2) production and induced EGFR phosphorylation, and vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) expression. AF3485 reduced PGE(2) production, both in quiescent and in cells stimulated by IL-1β. AF3485 abolished IL-1β-induced activation of the EGFR, decreasing VEGF and FGF-2 expression, and tumor-mediated endothelial tube formation. In vivo, in A431 xenograft, AF3485, administered sub-chronically, decreased tumor growth, an effect related to inhibition of EGFR signalling, and to tumor microvessel rarefaction. In fact, we observed a decrease of EGFR phosphorylation, and VEGF and FGF-2 expression in tumours explanted from treated mice. CONCLUSION Our work demonstrates that the pharmacological inhibition of mPGES-1 reduces squamous carcinoma growth by suppressing PGE(2) mediated-EGFR signalling and by impairing tumor associated angiogenesis. These results underscore the potential of mPGES-1 inhibitors as agents capable of controlling tumor growth.
Collapse
Affiliation(s)
- Federica Finetti
- Department of Biotechnology, University of Siena, Via Aldo Moro, 2, Siena, and Istituto Toscano Tumori (ITT), Italy
| | - Erika Terzuoli
- Department of Biotechnology, University of Siena, Via Aldo Moro, 2, Siena, and Istituto Toscano Tumori (ITT), Italy
| | - Elena Bocci
- Department of Biotechnology, University of Siena, Via Aldo Moro, 2, Siena, and Istituto Toscano Tumori (ITT), Italy
| | - Isabella Coletta
- Angelini Research Center–A.C.R.A.F. S.p.A., Piazzale della stazione, S. Palomba-Pomezia (Rome), Italy
| | - Lorenzo Polenzani
- Angelini Research Center–A.C.R.A.F. S.p.A., Piazzale della stazione, S. Palomba-Pomezia (Rome), Italy
| | - Giorgina Mangano
- Angelini Research Center–A.C.R.A.F. S.p.A., Piazzale della stazione, S. Palomba-Pomezia (Rome), Italy
| | - Maria Alessandra Alisi
- Angelini Research Center–A.C.R.A.F. S.p.A., Piazzale della stazione, S. Palomba-Pomezia (Rome), Italy
| | - Nicola Cazzolla
- Angelini Research Center–A.C.R.A.F. S.p.A., Piazzale della stazione, S. Palomba-Pomezia (Rome), Italy
| | - Antonio Giachetti
- Department of Biotechnology, University of Siena, Via Aldo Moro, 2, Siena, and Istituto Toscano Tumori (ITT), Italy
| | - Marina Ziche
- Department of Biotechnology, University of Siena, Via Aldo Moro, 2, Siena, and Istituto Toscano Tumori (ITT), Italy
- * E-mail: (MZ); (SD)
| | - Sandra Donnini
- Department of Biotechnology, University of Siena, Via Aldo Moro, 2, Siena, and Istituto Toscano Tumori (ITT), Italy
- * E-mail: (MZ); (SD)
| |
Collapse
|
22
|
Bauer J, Kuehnl S, Rollinger JM, Scherer O, Northoff H, Stuppner H, Werz O, Koeberle A. Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E2 synthase-1. J Pharmacol Exp Ther 2012; 342:169-76. [PMID: 22511203 DOI: 10.1124/jpet.112.193847] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Prostaglandin E(2) (PGE(2)), the most relevant eicosanoid promoting inflammation and tumorigenesis, is formed by cyclooxygenases (COXs) and PGE(2) synthases from free arachidonic acid. Preparations of the leaves of Salvia officinalis are commonly used in folk medicine as an effective antiseptic and anti-inflammatory remedy and possess anticancer activity. Here, we demonstrate that a standard ethyl acetate extract of S. officinalis efficiently suppresses the formation of PGE(2) in a cell-free assay by direct interference with microsomal PGE(2) synthase (mPGES)-1. Bioactivity-guided fractionation of the extract yielded closely related fractions that potently suppressed mPGES-1 with IC(50) values between 1.9 and 3.5 μg/ml. Component analysis of these fractions revealed the diterpenes carnosol and carnosic acid as potential bioactive principles inhibiting mPGES-1 activity with IC(50) values of 5.0 μM. Using a human whole-blood assay as a robust cell-based model, carnosic acid, but not carnosol, blocked PGE(2) generation upon stimulation with lipopolysaccharide (IC(50) = 9.3 μM). Carnosic acid neither inhibited the concomitant biosynthesis of other prostanoids [6-keto PGF(1α), 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid, and thromboxane B(2)] in human whole blood nor affected the activities of COX-1/2 in a cell-free assay. Together, S. officinalis extracts and its ingredients carnosol and carnosic acid inhibit PGE(2) formation by selectively targeting mPGES-1. We conclude that the inhibitory effect of carnosic acid on PGE(2) formation, observed in the physiologically relevant whole-blood model, may critically contribute to the anti-inflammatory and anticarcinogenic properties of S. officinalis.
Collapse
Affiliation(s)
- Julia Bauer
- Department for Pharmaceutical Analytics, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang M, FitzGerald GA. Cardiovascular biology of microsomal prostaglandin E synthase-1. Trends Cardiovasc Med 2012; 20:189-95. [PMID: 22137640 DOI: 10.1016/j.tcm.2011.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/13/2011] [Indexed: 10/14/2022]
Abstract
Both traditional and purpose-designed nonsteroidal anti-inflammatory drugs, selective for inhibition of cyclooxygenase (COX)-2, alleviate pain and inflammation but confer a cardiovascular hazard attributable to inhibition of COX-2-derived prostacyclin (PGI(2)). Deletion of microsomal PGE synthase-1 (mPGES-1), the dominant enzyme that converts the COX-derived intermediate product PGH(2) to PGE(2), modulates inflammatory pain in rodents. In contrast with COX-2 deletion or inhibition, PGI(2) formation is augmented in mPGES-1(-/-) mice-an effect that may confer cardiovascular benefit but may undermine the analgesic potential of inhibitors of this enzyme. This review considers the cardiovascular biology of mPGES1 and the complex challenge of developing inhibitors of this enzyme.
Collapse
Affiliation(s)
- Miao Wang
- Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA
| | | |
Collapse
|
24
|
Abstract
Polyunsaturated fatty acids (PUFA) play important roles in the normal physiology and in pathological states including inflammation and cancer. While much is known about the biosynthesis and biological activities of eicosanoids derived from ω6 PUFA, our understanding of the corresponding ω3 series lipid mediators is still rudimentary. The purpose of this review is not to offer a comprehensive summary of the literature on fatty acids in prostate cancer but rather to highlight some of the areas where key questions remain to be addressed. These include substrate preference and polymorphic variants of enzymes involved in the metabolism of PUFA, the relationship between de novo lipid synthesis and dietary lipid metabolism pathways, the contribution of cyclooxygenases and lipoxygenases as well as terminal synthases and prostanoid receptors in prostate cancer, and the potential role of PUFA in angiogenesis and cell surface receptor signaling.
Collapse
|
25
|
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal synthase responsible for the synthesis of the pro-tumorigenic prostaglandin E(2) (PGE(2)). mPGES-1 is overexpressed in a wide variety of cancers. Since its discovery in 1997 by Bengt Samuelsson and collaborators, the enzyme has been the object of over 200 peer-reviewed articles. Although today mPGES-1 is considered a validated and promising therapeutic target for anticancer drug discovery, challenges in inhibitor design and selectivity are such that up to this date there are only a few published records of small-molecule inhibitors targeting the enzyme and exhibiting some in vivo anticancer activity. This review summarizes the structures, and the in vitro and in vivo activities of these novel mPGES-1 inhibitors. Challenges that have been encountered are also discussed.
Collapse
|
26
|
Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 2011; 111:5821-65. [PMID: 21942677 PMCID: PMC3285496 DOI: 10.1021/cr2002992] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- William L Smith
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, 5301 MSRB III, Ann Arbor, Michigan 48109-5606, USA.
| | | | | |
Collapse
|
27
|
Abstract
Our understanding of the key players involved in the differential regulation of T-cell responses during inflammation, infection and auto-immunity is fundamental for designing efficient therapeutic strategies against immune diseases. With respect to this, the inhibitory role of the lipid mediator prostaglandin E2 (PGE2) in T-cell immunity has been documented since the 1970s. Studies that ensued investigating the underlying mechanisms substantiated the suppressive function of micromolar concentrations of PGE2 in T-cell activation, proliferation, differentiation and migration. However, the past decade has seen a revolution in this perspective, since nanomolar concentrations of PGE2 have been shown to potentiate Th1 and Th17 responses and aid in T-cell proliferation. The understanding of concentration-specific effects of PGE2 in other cell types, the development of mice deficient in each subtype of the PGE2 receptors (EP receptors) and the delineation of signalling pathways mediated by the EP receptors have enhanced our understanding of PGE2 as an immune-stimulator. PGE2 regulates a multitude of functions in T-cell activation and differentiation and these effects vary depending on the micro-environment of the cell, maturation and activation state of the cell, type of EP receptor involved, local concentration of PGE2 and whether it is a homeostatic or inflammatory scenario. In this review, we compartmentalize the various aspects of this complex relationship of PGE2 with T lymphocytes. Given the importance of this molecule in T-cell activation, we also address the possibility of using EP receptor antagonism as a potential therapeutic approach for some immune disorders.
Collapse
|
28
|
Nakanishi M, Menoret A, Tanaka T, Miyamoto S, Montrose DC, Vella AT, Rosenberg DW. Selective PGE(2) suppression inhibits colon carcinogenesis and modifies local mucosal immunity. Cancer Prev Res (Phila) 2011; 4:1198-208. [PMID: 21576350 DOI: 10.1158/1940-6207.capr-11-0188] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostaglandin E(2) (PGE(2)) is a bioactive lipid that mediates a wide range of physiologic effects and plays a central role in inflammation and cancer. PGE(2) is generated from arachidonic acid by the sequential actions of the COX and terminal synthases (PGES). Increased levels of COX-2, with a concomitant elevation of PGE(2), are often found in colorectal cancers (CRC), providing the rationale for the use of COX-2 inhibitors for chemoprevention. Despite their proven efficacy in cancer prevention, however, COX-2 inhibitors exhibit dose-dependent toxicities that are mediated in part by their nonspecific reduction of essential prostanoids, thus limiting their chemopreventive benefit. To achieve enhanced specificity, recent efforts have been directed toward targeting the inducible terminal synthase in the production of PGE(2), microsomal PGES (mPGES-1). In the present study, we show that genetic deletion of mPGES-1 affords significant protection against carcinogen-induced colon cancer. mPGES-1 gene deletion results in an about 80% decrease in tumor multiplicity and up to a 90% reduction in tumor load in the distal colon of azoxymethane (AOM)-treated mice. Associated with the striking cancer suppression, we have identified a critical role for PGE(2) in the control of immunoregulatory cell expansion (FoxP3-positive regulatory T cells) within the colon-draining mesenteric lymph nodes, providing a potential mechanism by which suppression of PGE(2) may protect against CRC. These results provide new insights into how PGE(2) controls antitumor immunity.
Collapse
Affiliation(s)
- Masako Nakanishi
- Center for Molecular Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Palmblad J. The acute inflammatory reaction: new concepts for old cells. J Intern Med 2010; 268:1-4. [PMID: 20497298 DOI: 10.1111/j.1365-2796.2010.02245.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J Palmblad
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|