1
|
Fentress MK, De Tomaso AW. Increased collective migration correlates with germline stem cell competition in a basal chordate. PLoS One 2023; 18:e0291104. [PMID: 37903140 PMCID: PMC10615308 DOI: 10.1371/journal.pone.0291104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/01/2023] Open
Abstract
Cell competition is a process that compares the relative fitness of progenitor cells, resulting in winners, which contribute further to development, and losers, which are excluded, and is likely a universal quality control process that contributes to the fitness of an individual. Cell competition also has pathological consequences, and can create super-competitor cells responsible for tumor progression. We are studying cell competition during germline regeneration in the colonial ascidian, Botryllus schlosseri. Germline regeneration is due to the presence of germline stem cells (GSCs) which have a unique property: a competitive phenotype. When GSCs from one individual are transplanted into another, the donor and recipient cells compete for germline development. Often the donor GSCs win, and completely replace the gametes of the recipient- a process called germ cell parasitism (gcp). gcp is a heritable trait, and winner and loser genotypes can be found in nature and reared in the lab. However, the molecular and cellular mechanisms underlying gcp are unknown. Using an ex vivo migration assay, we show that GSCs isolated from winner genotypes migrate faster and in larger clusters than losers, and that cluster size correlates with expression of the Notch ligand, Jagged. Both cluster size and jagged expression can be manipulated simultaneously in a genotype dependent manner: treatment of loser GSCs with hepatocyte growth factor increases both jagged expression and cluster size, while inhibitors of the MAPK pathway decrease jagged expression and cluster size in winner GSCs. Live imaging in individuals transplanted with labeled winner and loser GSCs reveal that they migrate to the niche, some as small clusters, with the winners having a slight advantage in niche occupancy. Together, this suggests that the basis of GSC competition resides in a combination in homing ability and niche occupancy, and may be controlled by differential utilization of the Notch pathway.
Collapse
Affiliation(s)
- Megan K. Fentress
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Anthony W. De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| |
Collapse
|
2
|
Kirolos SA, Gomer RH. A chemorepellent inhibits local Ras activation to inhibit pseudopod formation to bias cell movement away from the chemorepellent. Mol Biol Cell 2021; 33:ar9. [PMID: 34788129 PMCID: PMC8886819 DOI: 10.1091/mbc.e20-10-0656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of cells to sense chemical gradients is essential during development, morphogenesis, and immune responses. Although much is known about chemoattraction, chemorepulsion remains poorly understood. Proliferating Dictyostelium cells secrete a chemorepellent protein called AprA. AprA prevents pseudopod formation at the region of the cell closest to the source of AprA, causing the random movement of cells to be biased away from the AprA. Activation of Ras proteins in a localized sector of a cell cortex helps to induce pseudopod formation, and Ras proteins are needed for AprA chemorepulsion. Here we show that AprA locally inhibits Ras cortical activation through the G protein–coupled receptor GrlH, the G protein subunits Gβ and Gα8, Ras protein RasG, protein kinase B, the p21-activated kinase PakD, and the extracellular signal–regulated kinase Erk1. Diffusion calculations and experiments indicate that in a colony of cells, high extracellular concentrations of AprA in the center can globally inhibit Ras activation, while a gradient of AprA that naturally forms at the edge of the colony allows cells to activate Ras at sectors of the cell other than the sector of the cell closest to the center of the colony, effectively inducing both repulsion from the colony and cell differentiation. Together, these results suggest that a pathway that inhibits local Ras activation can mediate chemorepulsion.
Collapse
Affiliation(s)
- Sara A Kirolos
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| |
Collapse
|
3
|
Eckardt M, Painter KJ, Surulescu C, Zhigun A. Nonlocal and local models for taxis in cell migration: a rigorous limit procedure. J Math Biol 2020; 81:1251-1298. [PMID: 33068155 PMCID: PMC7716906 DOI: 10.1007/s00285-020-01536-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 08/18/2020] [Indexed: 01/20/2023]
Abstract
A rigorous limit procedure is presented which links nonlocal models involving adhesion or nonlocal chemotaxis to their local counterparts featuring haptotaxis and classical chemotaxis, respectively. It relies on a novel reformulation of the involved nonlocalities in terms of integral operators applied directly to the gradients of signal-dependent quantities. The proposed approach handles both model types in a unified way and extends the previous mathematical framework to settings that allow for general solution-dependent coefficient functions. The previous forms of nonlocal operators are compared with the new ones introduced in this paper and the advantages of the latter are highlighted by concrete examples. Numerical simulations in 1D provide an illustration of some of the theoretical findings.
Collapse
Affiliation(s)
- Maria Eckardt
- Felix-Klein-Zentrum für Mathematik, Technische Universität Kaiserslautern, Paul-Ehrlich-Str. 31, 67663, Kaiserslautern, Germany
| | - Kevin J Painter
- Department of Mathematics & Maxwell Institute, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| | - Christina Surulescu
- Felix-Klein-Zentrum für Mathematik, Technische Universität Kaiserslautern, Paul-Ehrlich-Str. 31, 67663, Kaiserslautern, Germany
| | - Anna Zhigun
- School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, UK.
| |
Collapse
|
4
|
Kassmer SH, Rodriguez D, De Tomaso AW. Evidence that ABC transporter-mediated autocrine export of an eicosanoid signaling molecule enhances germ cell chemotaxis in the colonial tunicate Botryllus schlosseri. Development 2020; 147:dev.184663. [PMID: 32665242 DOI: 10.1242/dev.184663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/01/2020] [Indexed: 01/01/2023]
Abstract
The colonial ascidian Botryllus schlosseri regenerates the germline during repeated cycles of asexual reproduction. Germline stem cells (GSCs) circulate in the blood and migrate to new germline niches as they develop and this homing process is directed by a Sphigosine-1-Phosphate (S1P) gradient. Here, we find that inhibition of ABC transporter activity reduces migration of GSCs towards low concentrations of S1P in vitro In addition, inhibiting phospholipase A2 (PLA2) or lipoxygenase (Lox) blocks chemotaxis towards low concentrations of S1P. These effects can be rescued by addition of the 12-Lox product 12-S-HETE. Blocking ABC transporter, PLA2 or 12-Lox activity also inhibits homing of germ cells in vivo Using a live-imaging chemotaxis assay in a 3D matrix, we show that a shallow gradient of 12-S-HETE enhances chemotaxis towards low concentrations of S1P and stimulates motility. A potential homolog of the human receptor for 12-S-HETE, gpr31, is expressed on GSCs and differentiating vasa+ germ cells. These results suggest that 12-S-HETE might be an autocrine signaling molecule exported by ABC transporters that enhances chemotaxis in GSCs migrating towards low concentrations of S1P.
Collapse
Affiliation(s)
- Susannah H Kassmer
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Delany Rodriguez
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Anthony W De Tomaso
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
5
|
González-Velasco Ó, De Las Rivas J, Lacal J. Proteomic and Transcriptomic Profiling Identifies Early Developmentally Regulated Proteins in Dictyostelium Discoideum. Cells 2019; 8:cells8101187. [PMID: 31581556 PMCID: PMC6830349 DOI: 10.3390/cells8101187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP acts as a secondary messenger involving different cellular functions in eukaryotes. Here, proteomic and transcriptomic profiling has been combined to identify novel early developmentally regulated proteins in eukaryote cells. These proteomic and transcriptomic experiments were performed in Dictyostelium discoideum given the unique advantages that this organism offers as a eukaryotic model for cell motility and as a nonmammalian model of human disease. By comparing whole-cell proteome analysis of developed (cAMP-pulsed) wild-type AX2 cells and an independent transcriptomic analysis of developed wild-type AX4 cells, our results show that up to 70% of the identified proteins overlap in the two independent studies. Among them, we have found 26 proteins previously related to cAMP signaling and identified 110 novel proteins involved in calcium signaling, adhesion, actin cytoskeleton, the ubiquitin-proteasome pathway, metabolism, and proteins that previously lacked any annotation. Our study validates previous findings, mostly for the canonical cAMP-pathway, and also generates further insight into the complexity of the transcriptomic changes during early development. This article also compares proteomic data between parental and cells lacking glkA, a GSK-3 kinase implicated in substrate adhesion and chemotaxis in Dictyostelium. This analysis reveals a set of proteins that show differences in expression in the two strains as well as overlapping protein level changes independent of GlkA.
Collapse
Affiliation(s)
- Óscar González-Velasco
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Jesus Lacal
- Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
6
|
Advanced 2D/3D cell migration assay for faster evaluation of chemotaxis of slow-moving cells. PLoS One 2019; 14:e0219708. [PMID: 31314801 PMCID: PMC6636736 DOI: 10.1371/journal.pone.0219708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/28/2019] [Indexed: 11/19/2022] Open
Abstract
Considering the essential role of chemotaxis of adherent, slow-moving cells in processes such as tumor metastasis or wound healing, a detailed understanding of the mechanisms and cues that direct migration of cells through tissues is highly desirable. The state-of-the-art chemotaxis instruments (e.g. microfluidic-based devices, bridge assays) can generate well-defined, long-term stable chemical gradients, crucial for quantitative investigation of chemotaxis in slow-moving cells. However, the majority of chemotaxis tools are designed for the purpose of an in-depth, but labor-intensive analysis of migratory behavior of single cells. This is rather inefficient for applications requiring higher experimental throughput, as it is the case of e.g. clinical examinations, chemoattractant screening or studies of the chemotaxis-related signaling pathways based on subcellular perturbations. Here, we present an advanced migration assay for accelerated and facilitated evaluation of the chemotactic response of slow-moving cells. The revised chemotaxis chamber contains a hydrogel microstructure–the migration arena, designed to enable identification of chemotactic behavior of a cell population in respect to the end-point of the experiment. At the same time, the assay in form of a microscopy slide enables direct visualization of the cells in either 2D or 3D environment, and provides a stable and linear gradient of chemoattractant. We demonstrate the correctness of the assay on the model study of HT-1080 chemotaxis in 3D and on 2D surface. Finally, we apply the migration arena chemotaxis assay to screen for a chemoattractant of primary keratinocytes, cells that play a major role in wound healing, being responsible for skin re-epithelialization and a successful wound closure. In direction of new therapeutic strategies to promote wound repair, we identified the chemotactic activity of the epithelial growth factor receptor (EGFR) ligands EGF and TGFα (transforming growth factor α).
Collapse
|
7
|
Singer G, Araki T, Weijer CJ. Oscillatory cAMP cell-cell signalling persists during multicellular Dictyostelium development. Commun Biol 2019; 2:139. [PMID: 31044164 PMCID: PMC6478855 DOI: 10.1038/s42003-019-0371-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/06/2019] [Indexed: 01/27/2023] Open
Abstract
Propagating waves of cAMP, periodically initiated in the aggregation centre, are known to guide the chemotactic aggregation of hundreds of thousands of starving individual Dictyostelium discoideum cells into multicellular aggregates. Propagating optical density waves, reflecting cell periodic movement, have previously been shown to exist in streaming aggregates, mounds and migrating slugs. Using a highly sensitive cAMP-FRET reporter, we have now been able to measure periodically propagating cAMP waves directly in these multicellular structures. In slugs cAMP waves are periodically initiated in the tip and propagate backward through the prespore zone. Altered cAMP signalling dynamics in mutants with developmental defects strongly support a key functional role for cAMP waves in multicellular Dictyostelium morphogenesis. These findings thus show that propagating cAMP not only control the initial aggregation process but continue to be the long range cell-cell communication mechanism guiding cell movement during multicellular Dictyostelium morphogenesis at the mound and slugs stages.
Collapse
Affiliation(s)
- Gail Singer
- Division of Cell and Developmental Biology, School of Life Sciences University of Dundee, Dundee, DD1 5EH UK
| | - Tsuyoshi Araki
- Division of Cell and Developmental Biology, School of Life Sciences University of Dundee, Dundee, DD1 5EH UK
- Present Address: Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554 Japan
| | - Cornelis J. Weijer
- Division of Cell and Developmental Biology, School of Life Sciences University of Dundee, Dundee, DD1 5EH UK
| |
Collapse
|
8
|
Kriebel PW, Majumdar R, Jenkins LM, Senoo H, Wang W, Ammu S, Chen S, Narayan K, Iijima M, Parent CA. Extracellular vesicles direct migration by synthesizing and releasing chemotactic signals. J Cell Biol 2018; 217:2891-2910. [PMID: 29884750 PMCID: PMC6080930 DOI: 10.1083/jcb.201710170] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/14/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023] Open
Abstract
Chemotactic signals are relayed to neighboring cells through the secretion of additional chemoattractants. We previously showed in Dictyostelium discoideum that the adenylyl cyclase A, which synthesizes the chemoattractant cyclic adenosine monophosphate (cAMP), is present in the intraluminal vesicles of multivesicular bodies (MVBs) that coalesce at the back of cells. Using ultrastructural reconstructions, we now show that ACA-containing MVBs release their contents to attract neighboring cells. We show that the released vesicles are capable of directing migration and streaming and are central to chemotactic signal relay. We demonstrate that the released vesicles not only contain cAMP but also can actively synthesize and release cAMP to promote chemotaxis. Through proteomic, pharmacological, and genetic approaches, we determined that the vesicular cAMP is released via the ABCC8 transporter. Together, our findings show that extracellular vesicles released by Ddiscoideum cells are functional entities that mediate signal relay during chemotaxis and streaming.
Collapse
Affiliation(s)
- Paul W Kriebel
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ritankar Majumdar
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hiroshi Senoo
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Weiye Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sonia Ammu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Song Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
- Institute for Physical Science and Technology, University of Maryland, College Park, MD
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
- Institute for Physical Science and Technology, University of Maryland, College Park, MD
| |
Collapse
|
9
|
Szatmary AC, Nossal R, Parent CA, Majumdar R. Modeling neutrophil migration in dynamic chemoattractant gradients: assessing the role of exosomes during signal relay. Mol Biol Cell 2017; 28:3457-3470. [PMID: 28954858 PMCID: PMC5687044 DOI: 10.1091/mbc.e17-05-0298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 01/07/2023] Open
Abstract
Cells chemotaxing in decaying gradients of primary chemoattractants maintain their
chemotactic response by releasing secondary chemoattractants. Steep, local gradients
of secondary chemoattractants can be reached with molecules of higher hydrophobicity,
whereas temporal stability can be achieved by packaging in extracellular
vesicles. Migrating cells often exhibit signal relay, a process in which cells migrating in
response to a chemotactic gradient release a secondary chemoattractant to enhance
directional migration. In neutrophils, signal relay toward the primary
chemoattractant N-formylmethionyl-leucyl-phenylalanine (fMLP) is mediated by
leukotriene B4 (LTB4). Recent evidence suggests that the
release of LTB4 from cells occurs through packaging in exosomes. Here we
present a mathematical model of neutrophil signal relay that focuses on
LTB4 and its exosome-mediated secretion. We describe neutrophil
chemotaxis in response to a combination of a defined gradient of fMLP and an evolving
gradient of LTB4, generated by cells in response to fMLP. Our model
enables us to determine the gradient of LTB4 arising either through
directed secretion from cells or through time-varying release from exosomes. We
predict that the secondary release of LTB4 increases recruitment range and
show that the exosomes provide a time delay mechanism that regulates the development
of LTB4 gradients. Additionally, we show that under decaying primary
gradients, secondary gradients are more stable when secreted through exosomes as
compared with direct secretion. Our chemotactic model, calibrated from observed
responses of cells to gradients, thereby provides insight into chemotactic signal
relay in neutrophils during inflammation.
Collapse
Affiliation(s)
- Alex C Szatmary
- Division of Basic and Translational Biophysics, National Institute of Child Health and Human Development, Rockville, MD 20847
| | - Ralph Nossal
- Division of Basic and Translational Biophysics, National Institute of Child Health and Human Development, Rockville, MD 20847
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ritankar Majumdar
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
10
|
Fold-change detection and scale invariance of cell-cell signaling in social amoeba. Proc Natl Acad Sci U S A 2017; 114:E4149-E4157. [PMID: 28495969 DOI: 10.1073/pnas.1702181114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell-cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively give rise to oscillations and waves of cyclic adenosine 3',5'-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change-dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism.
Collapse
|
11
|
Scavello M, Petlick AR, Ramesh R, Thompson VF, Lotfi P, Charest PG. Protein kinase A regulates the Ras, Rap1 and TORC2 pathways in response to the chemoattractant cAMP in Dictyostelium. J Cell Sci 2017; 130:1545-1558. [PMID: 28302905 PMCID: PMC5450229 DOI: 10.1242/jcs.177170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 03/06/2017] [Indexed: 12/19/2022] Open
Abstract
Efficient directed migration requires tight regulation of chemoattractant signal transduction pathways in both space and time, but the mechanisms involved in such regulation are not well understood. Here, we investigated the role of protein kinase A (PKA) in controlling signaling of the chemoattractant cAMP in Dictyostelium discoideum We found that cells lacking PKA display severe chemotaxis defects, including impaired directional sensing. Although PKA is an important regulator of developmental gene expression, including the cAMP receptor cAR1, our studies using exogenously expressed cAR1 in cells lacking PKA, cells lacking adenylyl cyclase A (ACA) and cells treated with the PKA-selective pharmacological inhibitor H89, suggest that PKA controls chemoattractant signal transduction, in part, through the regulation of RasG, Rap1 and TORC2. As these pathways control the ACA-mediated production of intracellular cAMP, they lie upstream of PKA in this chemoattractant signaling network. Consequently, we propose that the PKA-mediated regulation of the upstream RasG, Rap1 and TORC2 signaling pathways is part of a negative feedback mechanism controlling chemoattractant signal transduction during Dictyostelium chemotaxis.
Collapse
Affiliation(s)
- Margarethakay Scavello
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Alexandra R Petlick
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Ramya Ramesh
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Valery F Thompson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Pouya Lotfi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Pascale G Charest
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| |
Collapse
|
12
|
Bretschneider T, Othmer HG, Weijer CJ. Progress and perspectives in signal transduction, actin dynamics, and movement at the cell and tissue level: lessons from Dictyostelium. Interface Focus 2016; 6:20160047. [PMID: 27708767 DOI: 10.1098/rsfs.2016.0047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Movement of cells and tissues is a basic biological process that is used in development, wound repair, the immune response to bacterial invasion, tumour formation and metastasis, and the search for food and mates. While some cell movement is random, directed movement stimulated by extracellular signals is our focus here. This involves a sequence of steps in which cells first detect extracellular chemical and/or mechanical signals via membrane receptors that activate signal transduction cascades and produce intracellular signals. These intracellular signals control the motile machinery of the cell and thereby determine the spatial localization of the sites of force generation needed to produce directed motion. Understanding how force generation within cells and mechanical interactions with their surroundings, including other cells, are controlled in space and time to produce cell-level movement is a major challenge, and involves many issues that are amenable to mathematical modelling.
Collapse
Affiliation(s)
- Till Bretschneider
- Warwick Systems Biology Centre , University of Warwick , Coventry CV4 7AL , UK
| | - Hans G Othmer
- School of Mathematics , University of Minnesota , Minneapolis, MN 55455 , USA
| | | |
Collapse
|
13
|
Khanna A, Lotfi P, Chavan AJ, Montaño NM, Bolourani P, Weeks G, Shen Z, Briggs SP, Pots H, Van Haastert PJM, Kortholt A, Charest PG. The small GTPases Ras and Rap1 bind to and control TORC2 activity. Sci Rep 2016; 6:25823. [PMID: 27172998 PMCID: PMC4865869 DOI: 10.1038/srep25823] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/22/2016] [Indexed: 02/05/2023] Open
Abstract
Target of Rapamycin Complex 2 (TORC2) has conserved roles in regulating cytoskeleton dynamics and cell migration and has been linked to cancer metastasis. However, little is known about the mechanisms regulating TORC2 activity and function in any system. In Dictyostelium, TORC2 functions at the front of migrating cells downstream of the Ras protein RasC, controlling F-actin dynamics and cAMP production. Here, we report the identification of the small GTPase Rap1 as a conserved binding partner of the TORC2 component RIP3/SIN1, and that Rap1 positively regulates the RasC-mediated activation of TORC2 in Dictyostelium. Moreover, we show that active RasC binds to the catalytic domain of TOR, suggesting a mechanism of TORC2 activation that is similar to Rheb activation of TOR complex 1. Dual Ras/Rap1 regulation of TORC2 may allow for integration of Ras and Rap1 signaling pathways in directed cell migration.
Collapse
Affiliation(s)
- Ankita Khanna
- Department of Cell Biochemistry, University of Groningen, Groningen, 9747AG, Netherlands
| | - Pouya Lotfi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Anita J. Chavan
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Nieves M. Montaño
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Parvin Bolourani
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Gerald Weeks
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0380, USA
| | - Steven P. Briggs
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0380, USA
| | - Henderikus Pots
- Department of Cell Biochemistry, University of Groningen, Groningen, 9747AG, Netherlands
| | | | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, 9747AG, Netherlands
| | - Pascale G. Charest
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721-0088, USA
| |
Collapse
|
14
|
Tolosa EJ, Fernández-Zapico ME, Battiato NL, Rovasio RA. Sonic hedgehog is a chemotactic neural crest cell guide that is perturbed by ethanol exposure. Eur J Cell Biol 2016; 95:136-52. [DOI: 10.1016/j.ejcb.2016.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 01/23/2016] [Accepted: 02/17/2016] [Indexed: 12/12/2022] Open
|
15
|
Abstract
Asymmetric protein localization is essential for cell polarity and migration. We report a novel protein, Callipygian (CynA), which localizes to the lagging edge before other proteins and becomes more tightly restricted as cells polarize; additionally, it accumulates in the cleavage furrow during cytokinesis. CynA protein that is tightly localized, or "clustered," to the cell rear is immobile, but when polarity is disrupted, it disperses throughout the membrane and responds to uniform chemoattractant stimulation by transiently localizing to the cytosol. These behaviors require a pleckstrin homology-domain membrane tether and a WD40 clustering domain, which can also direct other membrane proteins to the back. Fragments of CynA lacking the pleckstrin homology domain, which are normally found in the cytosol, localize to the lagging edge membrane when coexpressed with full-length protein, showing that CynA clustering is mediated by oligomerization. Cells lacking CynA have aberrant lateral protrusions, altered leading-edge morphology, and decreased directional persistence, whereas those overexpressing the protein display exaggerated features of polarity. Consistently, actin polymerization is inhibited at sites of CynA accumulation, thereby restricting protrusions to the opposite edge. We suggest that the mutual antagonism between CynA and regions of responsiveness creates a positive feedback loop that restricts CynA to the rear and contributes to the establishment of the cell axis.
Collapse
|
16
|
Cai D, Montell DJ. Diverse and dynamic sources and sinks in gradient formation and directed migration. Curr Opin Cell Biol 2014; 30:91-8. [PMID: 25022255 DOI: 10.1016/j.ceb.2014.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 02/08/2023]
Abstract
The traditional view of directional cell migration within a tissue is that it requires a gradient of a soluble attractive chemical that is stable in space and time due to the presence of a source and a sink. However, advances in live imaging technology and the ability to study cell migration in vivo have revealed that endogenous sources and sinks are typically far more varied and complex. Both sources and sinks can be made up of multiple tissues. During long-range migrations, cells tend to divide up their trajectories and follow different source signals in each segment. When a single source signal is used repeatedly in each segment, its expression is dynamically controlled. Source signals can also originate locally from neighboring migrating cells. Sinks are important in some cases but not all, to sculpt a permissive migratory path or allow cells to move from one intermediate target to another. Migrating cells themselves can function as sinks to create a gradient out of an initially uniform chemoattractant. These diverse ways of building sources and sinks allow different cell types to navigate distinct trajectories through the same embryo even as the whole embryo undergoes the dramatic changes in cell number, position, arrangement and fate that are the essence of development.
Collapse
Affiliation(s)
- Danfeng Cai
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106-9625, USA
| | - Denise J Montell
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106-9625, USA.
| |
Collapse
|
17
|
Ludtmann MHR, Otto GP, Schilde C, Chen ZH, Allan CY, Brace S, Beesley PW, Kimmel AR, Fisher P, Killick R, Williams RSB. An ancestral non-proteolytic role for presenilin proteins in multicellular development of the social amoeba Dictyostelium discoideum. J Cell Sci 2014; 127:1576-84. [PMID: 24463814 PMCID: PMC3970561 DOI: 10.1242/jcs.140939] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/29/2013] [Indexed: 11/20/2022] Open
Abstract
Mutations in either of two presenilin genes can cause familial Alzheimer's disease. Presenilins have both proteolysis-dependent functions, as components of the γ-secretase complex, and proteolysis-independent functions in signalling. In this study, we investigate a conserved function of human presenilins in the development of the simple model organism Dictyostelium discoideum. We show that the block in Dictyostelium development caused by the ablation of both Dictyostelium presenilins is rescued by the expression of human presenilin 1, restoring the terminal differentiation of multiple cell types. This developmental role is independent of proteolytic activity, because the mutation of both catalytic aspartates does not affect presenilin ability to rescue development, and the ablation of nicastrin, a γ-secretase component that is crucial for proteolytic activity, does not block development. The role of presenilins during Dictyostelium development is therefore independent of their proteolytic activity. However, presenilin loss in Dictyostelium results in elevated cyclic AMP (cAMP) levels and enhanced stimulation-induced calcium release, suggesting that presenilins regulate these intracellular signalling pathways. Our data suggest that presenilin proteins perform an ancient non-proteolytic role in regulating intracellular signalling and development, and that Dictyostelium is a useful model for analysing human presenilin function.
Collapse
Affiliation(s)
- Marthe H. R. Ludtmann
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London TW20 0EX, UK
| | - Grant P. Otto
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London TW20 0EX, UK
| | | | - Zhi-Hui Chen
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Claire Y. Allan
- Faculty of Science, Technology and Engineering, La Trobe University, Bundoora VIC 3086, Australia
| | - Selina Brace
- Centre for Ecology and Evolution, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Philip W. Beesley
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London TW20 0EX, UK
| | - Alan R. Kimmel
- NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Fisher
- Faculty of Science, Technology and Engineering, La Trobe University, Bundoora VIC 3086, Australia
| | - Richard Killick
- Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - Robin S. B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London TW20 0EX, UK
| |
Collapse
|
18
|
Snaar-Jagalska BE, Cambi A, Schmidt T, de Keijzer S. Single-molecule imaging technique to study the dynamic regulation of GPCR function at the plasma membrane. Methods Enzymol 2013; 521:47-67. [PMID: 23351733 DOI: 10.1016/b978-0-12-391862-8.00003-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The lateral diffusion of a G-protein-coupled receptor (GPCR) in the plasma membrane determines its interaction capabilities with downstream signaling molecules and critically modulates its function. Mechanisms that control GPCR mobility, like compartmentalization, enable a cell to fine-tune its response through local changes in the rate, duration, and extent of signaling. These processes are known to be highly dynamic and tightly regulated in time and space, usually not completely synchronized in time. Therefore, bulk studies such as protein biochemistry or conventional confocal microscopy will only yield information on the average properties of the interactions and are compromised by poor time resolution. Single-particle tracking (SPT) in living cells is a key approach to directly monitor the function of a GPCR within its natural environment and to obtain unprecedented detailed information about receptor mobility, binding kinetics, aggregation states, and domain formation. This review provides a detailed description on how to perform single GPCR tracking experiments.
Collapse
Affiliation(s)
- B E Snaar-Jagalska
- Cell Biology, Leiden Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | | |
Collapse
|
19
|
Tirella A, Ahluwalia A. The impact of fabrication parameters and substrate stiffness in direct writing of living constructs. Biotechnol Prog 2012; 28:1315-20. [DOI: 10.1002/btpr.1586] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/12/2012] [Indexed: 11/12/2022]
|
20
|
Read ND, Goryachev AB, Lichius A. The mechanistic basis of self-fusion between conidial anastomosis tubes during fungal colony initiation. FUNGAL BIOL REV 2012. [DOI: 10.1016/j.fbr.2012.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Lusche DF, Wessels D, Scherer A, Daniels K, Kuhl S, Soll DR. The IplA Ca2+ channel of Dictyostelium discoideum is necessary for chemotaxis mediated through Ca2+, but not through cAMP, and has a fundamental role in natural aggregation. J Cell Sci 2012; 125:1770-83. [PMID: 22375061 DOI: 10.1242/jcs.098301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
During aggregation of Dictyostelium discoideum, nondissipating, symmetrical, outwardly moving waves of cAMP direct cells towards aggregation centers. It has been assumed that the spatial and temporal characteristics of the front and back of each cAMP wave regulate both chemokinesis and chemotaxis. However, during the period preceding aggregation, cells acquire not only the capacity to chemotax in a spatial gradient of cAMP, but also in a spatial gradient of Ca(2+). The null mutant of the putative IplA Ca(2+) channel gene, iplA(-), undergoes normal chemotaxis in spatial gradients of cAMP and normal chemokinetic responses to increasing temporal gradients of cAMP, both generated in vitro. However, iplA(-) cells lose the capacity to undergo chemotaxis in response to a spatial gradient of Ca(2+), suggesting that IplA is either the Ca(2+) chemotaxis receptor or an essential component of the Ca(2+) chemotaxis regulatory pathway. In response to natural chemotactic waves generated by wild-type cells, the chemokinetic response of iplA(-) cells to the temporal dynamics of the cAMP wave is intact, but the capacity to reorient in the direction of the aggregation center at the onset of each wave is lost. These results suggest that transient Ca(2+) gradients formed between cells at the onset of each natural cAMP wave augment reorientation towards the aggregation center. If this hypothesis proves correct, it will provide a more complex contextual framework for interpreting D. discoideum chemotaxis.
Collapse
Affiliation(s)
- Daniel F Lusche
- W M Keck Dynamic Image Analysis Facility, Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
22
|
Chen CL, Wang Y, Sesaki H, Iijima M. Myosin I links PIP3 signaling to remodeling of the actin cytoskeleton in chemotaxis. Sci Signal 2012; 5:ra10. [PMID: 22296834 DOI: 10.1126/scisignal.2002446] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Class I myosins participate in various interactions between the cell membrane and the cytoskeleton. Several class I myosins preferentially bind to acidic phospholipids, such as phosphatidylserine and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], through a tail homology 1 (TH1) domain. Here, we show that the second messenger lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3) binds to the TH1 domain of a subset of Dictyostelium class I myosins (ID, IE, and IF) and recruits them to the plasma membrane. The PIP3-regulated membrane recruitment of myosin I promoted chemotaxis and induced chemoattractant-stimulated actin polymerization. Similarly, PIP3 recruited human myosin IF to the plasma membrane upon chemotactic stimulation in a neutrophil cell line. These data suggest a mechanism through which the PIP3 signal is transmitted through myosin I to the actin cytoskeleton.
Collapse
Affiliation(s)
- Chun-Lin Chen
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
23
|
Goryachev AB, Lichius A, Wright GD, Read ND. Excitable behavior can explain the "ping-pong" mode of communication between cells using the same chemoattractant. Bioessays 2012; 34:259-66. [PMID: 22271443 DOI: 10.1002/bies.201100135] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Here we elucidate a paradox: how a single chemoattractant-receptor system in two individuals is used for communication despite the seeming inevitability of self-excitation. In the filamentous fungus Neurospora crassa, genetically identical cells that produce the same chemoattractant fuse via the homing of individual cell protrusions toward each other. This is achieved via a recently described "ping-pong" pulsatile communication. Using a generic activator-inhibitor model of excitable behavior, we demonstrate that the pulse exchange can be fully understood in terms of two excitable systems locked into a stable oscillatory pattern of mutual excitation. The most puzzling properties of this communication are the sudden onset of oscillations with final amplitude, and the absence of seemingly inevitable self-excitation. We show that these properties result directly from both the excitability threshold and refractory period characteristic of excitable systems. Our model suggests possible molecular mechanisms for the ping-pong communication.
Collapse
|
24
|
Das S, Rericha EC, Bagorda A, Parent CA. Direct biochemical measurements of signal relay during Dictyostelium development. J Biol Chem 2011; 286:38649-38658. [PMID: 21911494 DOI: 10.1074/jbc.m111.284182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon starvation, individual Dictyostelium discoideum cells enter a developmental program that leads to collective migration and the formation of a multicellular organism. The process is mediated by extracellular cAMP binding to the G protein-coupled cAMP receptor 1, which initiates a signaling cascade leading to the activation of adenylyl cyclase A (ACA), the synthesis and secretion of additional cAMP, and an autocrine and paracrine activation loop. The release of cAMP allows neighboring cells to polarize and migrate directionally and form characteristic chains of cells called streams. We now report that cAMP relay can be measured biochemically by assessing ACA, ERK2, and TORC2 activities at successive time points in development after stimulating cells with subsaturating concentrations of cAMP. We also find that the activation profiles of ACA, ERK2, and TORC2 change in the course of development, with later developed cells showing a loss of sensitivity to the relayed signal. We examined mutants in PKA activity that have been associated with precocious development and find that this loss in responsiveness occurs earlier in these mutants. Remarkably, we show that this loss in sensitivity correlates with a switch in migration patterns as cells transition from streams to aggregates. We propose that as cells proceed through development, the cAMP-induced desensitization and down-regulation of cAMP receptor 1 impacts the sensitivities of chemotactic signaling cascades leading to changes in migration patterns.
Collapse
Affiliation(s)
- Satarupa Das
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Erin C Rericha
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742
| | - Anna Bagorda
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
25
|
Zengel P, Nguyen-Hoang A, Schildhammer C, Zantl R, Kahl V, Horn E. μ-Slide Chemotaxis: a new chamber for long-term chemotaxis studies. BMC Cell Biol 2011; 12:21. [PMID: 21592329 PMCID: PMC3118187 DOI: 10.1186/1471-2121-12-21] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 05/18/2011] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Effective tools for measurement of chemotaxis are desirable since cell migration towards given stimuli plays a crucial role in tumour metastasis, angiogenesis, inflammation, and wound healing. As for now, the Boyden chamber assay is the longstanding "gold-standard" for in vitro chemotaxis measurements. However, support for live cell microscopy is weak, concentration gradients are rather steep and poorly defined, and chemotaxis cannot be distinguished from migration in a single experiment. RESULTS Here, we describe a novel all-in-one chamber system for long-term analysis of chemotaxis in vitro that improves upon many of the shortcomings of the Boyden chamber assay. This chemotaxis chamber was developed to provide high quality microscopy, linear concentration gradients, support for long-term assays, and observation of slowly migrating cells via video microscopy. AlexaFluor 488 dye was used to demonstrate the establishment, shape and time development of linear chemical gradients. Human fibrosarcoma cell line HT1080 and freshly isolated human umbilical vein endothelial cells (HUVEC) were used to assess chemotaxis towards 10% fetal calf serum (FCS) and FaDu cells' supernatant. Time-lapse video microscopy was conducted for 48 hours, and cell tracking and analysis was performed using ImageJ plugins. The results disclosed a linear steady-state gradient that was reached after approximately 8 hours and remained stable for at least 48 hours. Both cell types were chemotactically active and cell movement as well as cell-to-cell interaction was assessable. CONCLUSIONS Compared to the Boyden chamber assay, this innovative system allows for the generation of a stable gradient for a much longer time period as well as for the tracking of cell locomotion along this gradient and over long distances. Finally, random migration can be distinguished from primed and directed migration along chemotactic gradients in the same experiment, a feature, which can be qualified via cell morphology imaging.
Collapse
Affiliation(s)
- Pamela Zengel
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev Cell 2011; 19:845-57. [PMID: 21145500 DOI: 10.1016/j.devcel.2010.11.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 09/16/2010] [Accepted: 11/03/2010] [Indexed: 11/22/2022]
Abstract
We studied the role of the target of rapamycin complex 2 (mTORC2) during neutrophil chemotaxis, a process that is mediated through the polarization of actin and myosin filament networks. We show that inhibition of mTORC2 activity, achieved via knock down (KD) of Rictor, severely inhibits neutrophil polarization and directed migration induced by chemoattractants, independently of Akt. Rictor KD also abolishes the ability of chemoattractants to induce cAMP production, a process mediated through the activation of the adenylyl cyclase 9 (AC9). Cells with either reduced or higher AC9 levels also exhibit specific and severe tail retraction defects that are mediated through RhoA. We further show that cAMP is excluded from extending pseudopods and remains restricted to the cell body of migrating neutrophils. We propose that the mTORC2-dependent regulation of MyoII occurs through a cAMP/RhoA-signaling axis, independently of actin reorganization during neutrophil chemotaxis.
Collapse
|
27
|
Shu S, Liu X, Kriebel PW, Hong MS, Daniels MP, Parent CA, Korn ED. Expression of Y53A-actin in Dictyostelium disrupts the cytoskeleton and inhibits intracellular and intercellular chemotactic signaling. J Biol Chem 2010; 285:27713-25. [PMID: 20610381 DOI: 10.1074/jbc.m110.116277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We showed previously that phosphorylation of Tyr(53), or its mutation to Ala, inhibits actin polymerization in vitro with formation of aggregates of short filaments, and that expression of Y53A-actin in Dictyostelium blocks differentiation and development at the mound stage (Liu, X., Shu, S., Hong, M. S., Levine, R. L., and Korn, E. D. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 13694-13699; Liu, X., Shu, S., Hong, M. S., Yu, B., and Korn, E. D. (2010) J. Biol. Chem. 285, 9729-9739). We now show that expression of Y53A-actin, which does not affect cell growth, phagocytosis, or pinocytosis, inhibits the formation of head-to-tail cell streams during cAMP-induced aggregation, although individual amoebae chemotax normally. We show that expression of Y53A-actin causes a 50% reduction of cell surface cAMP receptors, and inhibits cAMP-induced increases in adenylyl cyclase A activity, phosphorylation of ERK2, and actin polymerization. Trafficking of vesicles containing adenylyl cyclase A to the rear of the cell and secretion of the ACA vesicles are also inhibited. The actin cytoskeleton of cells expressing Y53A-actin is characterized by numerous short filaments, and bundled and aggregated filaments similar to the structures formed by copolymerization of purified Y53A-actin and wild-type actin in vitro. This disorganized actin cytoskeleton may be responsible for the inhibition of intracellular and intercellular cAMP signaling in cells expressing F-Y53A-actin.
Collapse
Affiliation(s)
- Shi Shu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
McCann CP, Kriebel PW, Parent CA, Losert W. Cell speed, persistence and information transmission during signal relay and collective migration. J Cell Sci 2010; 123:1724-31. [PMID: 20427323 DOI: 10.1242/jcs.060137] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Collective migration is a key feature of the social amoebae Dictyostelium discoideum, where the binding of chemoattractants leads to the production and secretion of additional chemoattractant and the relay of the signal to neighboring cells. This then guides cells to migrate collectively in a head-to-tail fashion. We used mutants that were defective in signal relay to elucidate which quantitative metrics of cell migration are most strongly affected by signal relay and collective motion. We show that neither signal relay nor collective motion markedly impact the speed of cell migration. Cells maintained a preferred overall direction of motion for several minutes with similar persistence, regardless of whether or not they were attracted to moving neighbors, moving collectively in contact with their neighbors, or simply following a fixed exogenous signal. We quantitatively establish that signal relay not only increases the number of cells that respond to a chemotactic signal, but most remarkably, also transmits information about the location of the source accurately over large distances, independently of the strength of the exogenous signal. We envision that signal relay has a similar key role in the migration of a variety of chemotaxing mammalian cells that can relay chemoattractant signals.
Collapse
Affiliation(s)
- Colin P McCann
- Department of Physics, University of Maryland College Park, College Park, MD 20742-4111, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Collective cell migration is a key process during the development of most organisms. It can involve either the migration of closely packed mesenchymal cells that make dynamic contacts with frequently changing neighbour cells, or the migration of epithelial sheets that typically display more stable cell-cell interactions and less frequent changes in neighbours. These collective movements can be controlled by short- or long-range dynamic gradients of extracellular signalling molecules, depending on the number of cells involved and their distance of migration. These gradients are sensed by some or all of the migrating cells and translated into directed migration, which in many settings is further modulated by cell-contact-mediated attractive or repulsive interactions that result in contact-following or contact-inhibition of locomotion, respectively. Studies of collective migration of groups of epithelial cells during development indicate that, in some cases, only leader cells sense and migrate up an external signal gradient, and that adjacent cells follow through strong cell-cell contacts. In this Commentary, I review studies of collective cell migration of differently sized cell populations during the development of several model organisms, and discuss our current understanding of the molecular mechanisms that coordinate this migration.
Collapse
Affiliation(s)
- Cornelis J Weijer
- Division of Cell and Developmental Biology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
30
|
Lusche DF, Wessels D, Soll DR. The effects of extracellular calcium on motility, pseudopod and uropod formation, chemotaxis, and the cortical localization of myosin II in Dictyostelium discoideum. ACTA ACUST UNITED AC 2009; 66:567-87. [PMID: 19363786 DOI: 10.1002/cm.20367] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular Ca(++), a ubiquitous cation in the soluble environment of cells both free living and within the human body, regulates most aspects of amoeboid cell motility, including shape, uropod formation, pseudopod formation, velocity, and turning in Dictyostelium discoideum. Hence it affects the efficiency of both basic motile behavior and chemotaxis. Extracellular Ca(++) is optimal at 10 mM. A gradient of the chemoattractant cAMP generated in the absence of added Ca(++) only affects turning, but in combination with extracellular Ca(++), enhances the effects of extracellular Ca(++). Potassium, at 40 mM, can partially substitute for Ca(++). Mg(++), Mn(++), Zn(++), and Na(+) cannot. Extracellular Ca(++), or K(+), also induce the cortical localization of myosin II in a polar fashion. The effects of Ca(++), K(+) or a cAMP gradient do not appear to be similarly mediated by an increase in the general pool of free cytosolic Ca(++). These results suggest a model, in which each agent functioning through different signaling systems, converge to affect the cortical localization of myosin II, which in turn effects the behavioral changes leading to efficient cell motility and chemotaxis. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Daniel F Lusche
- Department of Biology, The W.M. Keck Dynamic Image Analysis Facility, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
31
|
Garcia GL, Rericha EC, Heger CD, Goldsmith PK, Parent CA. The group migration of Dictyostelium cells is regulated by extracellular chemoattractant degradation. Mol Biol Cell 2009; 20:3295-304. [PMID: 19477920 DOI: 10.1091/mbc.e09-03-0223] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Starvation of Dictyostelium induces a developmental program in which cells form an aggregate that eventually differentiates into a multicellular structure. The aggregate formation is mediated by directional migration of individual cells that quickly transition to group migration in which cells align in a head-to-tail manner to form streams. Cyclic AMP acts as a chemoattractant and its production, secretion, and degradation are highly regulated. A key protein is the extracellular phosphodiesterase PdsA. In this study we examine the role and localization of PdsA during chemotaxis and streaming. We find that pdsA(-) cells respond chemotactically to a narrower range of chemoattractant concentrations compared with wild-type (WT) cells. Moreover, unlike WT cells, pdsA(-) cells do not form streams at low cell densities and form unusual thick and transient streams at high cell densities. We find that the intracellular pool of PdsA is localized to the endoplasmic reticulum, which may provide a compartment for storage and secretion of PdsA. Because we find that cAMP synthesis is normal in cells lacking PdsA, we conclude that signal degradation regulates the external cAMP gradient field generation and that the group migration behavior of these cells is compromised even though their signaling machinery is intact.
Collapse
Affiliation(s)
- Gene L Garcia
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|