1
|
Valdebenito S, Ajasin D, Prideaux B, Eugenin EA. Correlative Imaging to Detect Rare HIV Reservoirs and Associated Damage in Tissues. Methods Mol Biol 2024; 2807:93-110. [PMID: 38743223 DOI: 10.1007/978-1-0716-3862-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Correlative light-electron microscopy (CLEM) has evolved in the last decades, especially after significant developments in sample preparation, imaging acquisition, software, spatial resolution, and equipment, including confocal, live-cell, super-resolution, and electron microscopy (scanning, transmission, focused ion beam, and cryo-electron microscopy). However, the recent evolution of different laser-related techniques, such as mass spectrometry imaging (MSI) and laser capture microdissection, could further expand spatial imaging capabilities into high-resolution OMIC approaches such as proteomic, lipidomics, small molecule, and drug discovery. Here, we will describe a protocol to integrate the detection of rare viral reservoirs with imaging mass spectrometry.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - David Ajasin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Brendan Prideaux
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Eliseo A Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA.
| |
Collapse
|
2
|
Serra Lleti JM, Steyer AM, Schieber NL, Neumann B, Tischer C, Hilsenstein V, Holtstrom M, Unrau D, Kirmse R, Lucocq JM, Pepperkok R, Schwab Y. CLEMSite, a software for automated phenotypic screens using light microscopy and FIB-SEM. J Cell Biol 2022; 222:213779. [PMID: 36562752 PMCID: PMC9802685 DOI: 10.1083/jcb.202209127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) has emerged as a flexible method that enables semi-automated volume ultrastructural imaging. We present a toolset for adherent cells that enables tracking and finding cells, previously identified in light microscopy (LM), in the FIB-SEM, along with the automatic acquisition of high-resolution volume datasets. We detect the underlying grid pattern in both modalities (LM and EM), to identify common reference points. A combination of computer vision techniques enables complete automation of the workflow. This includes setting the coincidence point of both ion and electron beams, automated evaluation of the image quality and constantly tracking the sample position with the microscope's field of view reducing or even eliminating operator supervision. We show the ability to target the regions of interest in EM within 5 µm accuracy while iterating between different targets and implementing unattended data acquisition. Our results demonstrate that executing volume acquisition in multiple locations autonomously is possible in EM.
Collapse
Affiliation(s)
- José M. Serra Lleti
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anna M. Steyer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Anna M. Steyer:
| | - Nicole L. Schieber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Beate Neumann
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian Tischer
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Volker Hilsenstein
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | - John M. Lucocq
- Medical and Biological Sciences, Schools of Medicine and Biology, University of St. Andrews, St. Andrews, UK
| | - Rainer Pepperkok
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany,Correspondence to Yannick Schwab:
| |
Collapse
|
3
|
Parlanti P, Cappello V. Microscopes, tools, probes, and protocols: A guide in the route of correlative microscopy for biomedical investigation. Micron 2021; 152:103182. [PMID: 34801960 DOI: 10.1016/j.micron.2021.103182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022]
Abstract
In the last decades, the advancements of microscopes technology, together with the development of new imaging approaches, are trying to address some biological questions that have been unresolved in the past: the need to combine in the same analysis temporal, functional and morphological information on the biological sample has become pressing. For this reason, the use of correlative microscopy, in which two or more imaging techniques are combined in the same analysis, is getting increasingly widespread. In fact, correlative microscopy can overcome limitations of a single imaging method, giving access to a larger amount of information from the same specimen. However, correlative microscopy can be challenging, and appropriate protocols for sample preparation and imaging methods must be selected. Here we review the state of the art of correlating electron microscopy with different imaging methods, focusing on sample preparation, tools, and labeling methods, with the aim to provide a comprehensive guide for those scientists who are approaching the field of correlative methods.
Collapse
Affiliation(s)
- Paola Parlanti
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, I-56025, Pontedera (PI), Italy.
| | - Valentina Cappello
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, I-56025, Pontedera (PI), Italy.
| |
Collapse
|
4
|
Photonic-chip assisted correlative light and electron microscopy. Commun Biol 2020; 3:739. [PMID: 33288833 PMCID: PMC7721707 DOI: 10.1038/s42003-020-01473-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/10/2020] [Indexed: 11/23/2022] Open
Abstract
Correlative light and electron microscopy (CLEM) unifies the versatility of light microscopy (LM) with the high resolution of electron microscopy (EM), allowing one to zoom into the complex organization of cells. Here, we introduce photonic chip assisted CLEM, enabling multi-modal total internal reflection fluorescence (TIRF) microscopy over large field of view and high precision localization of the target area of interest within EM. The photonic chips are used as a substrate to hold, to illuminate and to provide landmarking of the sample through specially designed grid-like numbering systems. Using this approach, we demonstrate its applicability for tracking the area of interest, imaging the three-dimensional (3D) structural organization of nano-sized morphological features on liver sinusoidal endothelial cells such as fenestrations (trans-cytoplasmic nanopores), and correlating specific endo-lysosomal compartments with its cargo protein upon endocytosis. Tinguely et al. develop a photonic chip-based correlative light-electron microscopy system to generate co-registered multi-modal total internal reflection fluorescence microscopy (TIRF) and electron microscopy (EM) images of biological samples at nanometer scale.
Collapse
|
5
|
Correlative light and scanning electron microscopy (CLSEM) for analysis of bacterial infection of polarized epithelial cells. Sci Rep 2019; 9:17079. [PMID: 31745114 PMCID: PMC6863815 DOI: 10.1038/s41598-019-53085-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Infection of mammalian host cells by bacterial pathogens is a highly dynamic process and microscopy is instrumental to reveal the cellular and molecular details of host-pathogen interactions. Correlative light and electron microscopy (CLEM) combines the advantages of three-dimensional live cell imaging with ultrastructural analysis. The analyses of adhesion to, and invasion of polarized epithelial cells by pathogens often deploys scanning electron microscopy (SEM), since surface structures of the apical brush border can be analyzed in detail. Most available CLEM approaches focus on relocalization of separated single cells in different imaging modalities, but are not readily applicable to polarized epithelial cell monolayers, since orientation marks on substrate are overgrown during differentiation. To address this problem, we developed a simple and convenient workflow for correlative light and scanning electron microscopy (CLSEM), using gold mesh grids as carrier for growth of epithelial cell monolayers, and for imaging infection. The approach allows fast live cell imaging of bacterial infection of polarized cells with subsequent analyses by SEM. As examples for CLSEM applications, we investigated trigger invasion by Salmonella enterica, zipper invasion by Listeria monocytogenes, and the enterocyte attachment and effacement phenotype of enteropathogenic Escherichia coli. Our study demonstrates the versatile use of gold mesh grids for CLSEM of the interaction of bacterial pathogens with the apical side of polarized epithelial cells.
Collapse
|
6
|
Fréal A, Rai D, Tas RP, Pan X, Katrukha EA, van de Willige D, Stucchi R, Aher A, Yang C, Altelaar AFM, Vocking K, Post JA, Harterink M, Kapitein LC, Akhmanova A, Hoogenraad CC. Feedback-Driven Assembly of the Axon Initial Segment. Neuron 2019; 104:305-321.e8. [PMID: 31474508 PMCID: PMC6839619 DOI: 10.1016/j.neuron.2019.07.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/14/2019] [Accepted: 07/22/2019] [Indexed: 11/01/2022]
Abstract
The axon initial segment (AIS) is a unique neuronal compartment that plays a crucial role in the generation of action potential and neuronal polarity. The assembly of the AIS requires membrane, scaffolding, and cytoskeletal proteins, including Ankyrin-G and TRIM46. How these components cooperate in AIS formation is currently poorly understood. Here, we show that Ankyrin-G acts as a scaffold interacting with End-Binding (EB) proteins and membrane proteins such as Neurofascin-186 to recruit TRIM46-positive microtubules to the plasma membrane. Using in vitro reconstitution and cellular assays, we demonstrate that TRIM46 forms parallel microtubule bundles and stabilizes them by acting as a rescue factor. TRIM46-labeled microtubules drive retrograde transport of Neurofascin-186 to the proximal axon, where Ankyrin-G prevents its endocytosis, resulting in stable accumulation of Neurofascin-186 at the AIS. Neurofascin-186 enrichment in turn reinforces membrane anchoring of Ankyrin-G and subsequent recruitment of TRIM46-decorated microtubules. Our study reveals feedback-based mechanisms driving AIS assembly.
Collapse
Affiliation(s)
- Amélie Fréal
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Department of Axonal Signaling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Dipti Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Roderick P Tas
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Xingxiu Pan
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Dieudonnée van de Willige
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Amol Aher
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Chao Yang
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Karin Vocking
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Jan Andries Post
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Martin Harterink
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
7
|
TRIM46 Organizes Microtubule Fasciculation in the Axon Initial Segment. J Neurosci 2019; 39:4864-4873. [PMID: 30967428 DOI: 10.1523/jneurosci.3105-18.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022] Open
Abstract
Selective cargo transport into axons and dendrites over the microtubule network is essential for neuron polarization. The axon initial segment (AIS) separates the axon from the somatodendritic compartment and controls the microtubule-dependent transport into the axon. Interestingly, the AIS has a characteristic microtubule organization; it contains bundles of closely spaced microtubules with electron dense cross-bridges, referred to as microtubule fascicles. The microtubule binding protein TRIM46 localizes to the AIS and when overexpressed in non-neuronal cells forms microtubule arrays that closely resemble AIS fascicles in neurons. However, the precise role of TRIM46 in microtubule fasciculation in neurons has not been studied. Here we developed a novel correlative light and electron microscopy approach to study AIS microtubule organization. We show that in cultured rat hippocampal neurons of both sexes, TRIM46 levels steadily increase at the AIS during early neuronal differentiation and at the same time closely spaced microtubules form, whereas the fasciculated microtubules appear at later developmental stages. Moreover, we localized TRIM46 to the electron dense cross-bridges and show that depletion of TRIM46 causes loss of cross-bridges and increased microtubule spacing. These data indicate that TRIM46 has an essential role in organizing microtubule fascicles in the AIS.SIGNIFICANCE STATEMENT The axon initial segment (AIS) is a specialized region at the proximal axon where the action potential is initiated. In addition the AIS separates the axon from the somatodendritic compartment, where it controls protein transport to establish and maintain neuron polarity. Cargo vesicles destined for the axon recognize specialized microtubule tracks that enter the AIS. Interestingly the microtubules entering the AIS form crosslinked bundles, called microtubule fascicules. Recently we found that the microtubule-binding protein TRIM46 localizes to the AIS, where it may organize the AIS microtubules. In the present study we developed a novel correlative light and electron microscopy approach to study the AIS microtubules during neuron development and identified an essential role for TRIM46 in microtubule fasciculation.
Collapse
|
8
|
Lysova I, Spiegelhalter C, Réal E, Zgheib S, Anton H, Mély Y. ReAsH/tetracystein-based correlative light-electron microscopy for HIV-1 imaging during the early stages of infection. Methods Appl Fluoresc 2018; 6:045001. [PMID: 29938685 DOI: 10.1088/2050-6120/aacec1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Visualization of viruses in the host cell during the course of infection by correlative light-electron microscopy (CLEM) requires a specific labelling of the viral structures in order to recognize the nanometric viral cores in the intracellular environment. For Human immunodeficiency virus type 1 (HIV-1), the labelling approaches developed for fluorescence microscopy are generally not suited for transmission electron microscopy (TEM), so that imaging of HIV-1 particles in infected cells by CLEM is not straightforward. Herein, we adapt the labeling approach with a tetracystein tag (TC) and a biarsenical resorufin-based label (ReAsH) for monitoring the HIV-1 particles during the early stages of HIV-1 infection by CLEM. In this approach, the ReAsH fluorophore triggers the photo-conversion of 3,3-diaminobenzidine tetrahydrochloride (DAB), generating a precipitate sensitive to osmium tetroxide staining that can be visualized by transmission electron microscopy. The TC tag is fused to the nucleocapsid protein NCp7, a nucleic acid chaperone that binds to the viral genome. HeLa cells, infected by ReAsH-labeled pseudoviruses containg NCp7-TC proteins exhibit strong fluorescent cytoplasmic spots that overlap with dark precipitates in the TEM sections. The DAB precipitates corresponding to single viral cores are observed all over the cytoplasm, and notably near microtubules and nuclear pores. This work describes for the first time a specific contrast given by HIV-1 viral proteins in TEM images and opens new perspectives for the use of CLEM to monitor the intracellular traffic of viral complexes.
Collapse
Affiliation(s)
- Iryna Lysova
- Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Strasbourg University, Faculty of Pharmacy, 74 route du Rhin, Illkirch, France
| | | | | | | | | | | |
Collapse
|
9
|
VAN Donselaar EG, Dorresteijn B, Popov-Čeleketić D, VAN DE Wetering WJ, Verrips TC, Boekhout T, Schneijdenberg CTWM, Xenaki AT, VAN DER Krift TP, Müller WH. Extremely thin layer plastification for focused-ion beam scanning electron microscopy: an improved method to study cell surfaces and organelles of cultured cells. J Microsc 2018; 270:359-373. [PMID: 29574724 DOI: 10.1111/jmi.12694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/01/2023]
Abstract
Since the recent boost in the usage of electron microscopy in life-science research, there is a great need for new methods. Recently minimal resin embedding methods have been successfully introduced in the sample preparation for focused-ion beam scanning electron microscopy (FIB-SEM). In these methods several possibilities are given to remove as much resin as possible from the surface of cultured cells or multicellular organisms. Here we introduce an alternative way in the minimal resin embedding method to remove excess of resin from two widely different cell types by the use of Mascotte filter paper. Our goal in correlative light and electron microscopic studies of immunogold-labelled breast cancer SKBR3 cells was to visualise gold-labelled HER2 plasma membrane proteins as well as the intracellular structures of flat and round cells. We found a significant difference (p < 0.001) in the number of gold particles of selected cells per 0.6 μm2 cell surface: on average a flat cell contained 2.46 ± 1.98 gold particles, and a round cell 5.66 ± 2.92 gold particles. Moreover, there was a clear difference in the subcellular organisation of these two cells. The round SKBR3 cell contained many organelles, such as mitochondria, Golgi and endoplasmic reticulum, when compared with flat SKBR3 cells. Our next goal was to visualise crosswall associated organelles, septal pore caps, of Rhizoctonia solani fungal cells by the combined use of a heavy metal staining and our extremely thin layer plastification (ETLP) method. At low magnifications this resulted into easily finding septa which appeared as bright crosswalls in the back-scattered electron mode in the scanning electron microscope. Then, a septum was selected for FIB-SEM. Cross-sectioned views clearly revealed the perforate septal pore cap of R. solani next to other structures, such as mitochondria, endoplasmic reticulum, lipid bodies, dolipore septum, and the pore channel. As the ETLP method was applied on two widely different cell types, the use of the ETLP method will be beneficial to correlative studies of other cell model systems and multicellular organisms.
Collapse
Affiliation(s)
- E G VAN Donselaar
- Department of Cell Biology, University Medical Center Utrecht (UMCU), Utrecht, the Netherlands
| | - B Dorresteijn
- Science Faculty, Biology Department, Utrecht University, Utrecht, the Netherlands
| | - D Popov-Čeleketić
- Science Faculty, Biology Department, Utrecht University, Utrecht, the Netherlands.,Visuals Consulting, Utrecht, the Netherlands
| | - W J VAN DE Wetering
- Science Faculty, Biology Department, Utrecht University, Utrecht, the Netherlands.,QVQ, Utrecht, the Netherlands
| | | | - T Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht Science Park, Utrecht, the Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | | | - A T Xenaki
- Science Faculty, Biology Department, Utrecht University, Utrecht, the Netherlands
| | - T P VAN DER Krift
- Science Faculty, Chemistry Department, Utrecht University, Utrecht, the Netherlands
| | - W H Müller
- Science Faculty, Chemistry Department, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Abstract
Tau misfolding is a major cause of neurodegeneration, tauopathies being a growing group of diseases in which tau forms insoluble aggregates, best known in Alzheimer disease as neurofibrillary tangles (NFTs). Many transgenic mouse models of tauopathies have been generated, but it has been difficult to demonstrate disease in primary brain neurons from these mice because neurons need to be harvested within a few days of birth and tau fails to produce NFTs. Transgenic mice have been generated that express the 0N4R isoform of human tau mutated at amino acid 301 (P301S mice) under the Thy1.2 promoter. These mice, which model an inherited form of frontotemporal dementia, develop NFTs around 5 months of age. Taking advantage of the fact that Thy1.2 is expressed in the peripheral nervous system, we found that dorsal root ganglion (DRG) neurons express P301S tau and develop tau pathology along a similar time course to that found in central nervous system neurons in mice. Thus, NFTs are well-developed around 5 months of age. Because DRG neurons can be cultured from adult mice for months, they have proven to be an excellent model for studying how tau pathology develops and for screening compounds that may ameliorate tau pathology. Here we present a detailed protocol for the preparation of long-term DRG neuron cultures and describe how to study whether activation of autophagy ameliorates tau pathology.
Collapse
|
11
|
Kolovou A, Schorb M, Tarafder A, Sachse C, Schwab Y, Santarella-Mellwig R. A new method for cryo-sectioning cell monolayers using a correlative workflow. Methods Cell Biol 2017; 140:85-103. [PMID: 28528643 DOI: 10.1016/bs.mcb.2017.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cryo-electron microscopy (cryo-EM) techniques have made a huge advancement recently, providing close to atomic resolution of the structure of protein complexes. Interestingly, this imaging technique can be performed in cells, giving access to the molecular machines in their natural context, therefore bridging structural and cell biology. However, in situ structural electron microscopy faces one major challenge, which is the ability to focus on specific subcellular regions to capture the objects of interest. Correlative light and electron microscopy (CLEM) is one very efficient solution for this. Here we present a sample preparation technique that enables cryo-sections of vitrified cell monolayers in an orientation that places the cryo-section parallel to the fluorescence imaging plane. The main advantage of this approach is that it exploits the potentials of CLEM for cryo-EM investigation, for selecting specific cells of interest in a heterogeneous population, or for finding identified subcellular regions on sections.
Collapse
Affiliation(s)
| | - Martin Schorb
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Abul Tarafder
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yannick Schwab
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
12
|
Begemann I, Viplav A, Rasch C, Galic M. Stochastic Micro-Pattern for Automated Correlative Fluorescence - Scanning Electron Microscopy. Sci Rep 2015; 5:17973. [PMID: 26647824 PMCID: PMC4673610 DOI: 10.1038/srep17973] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/10/2015] [Indexed: 12/01/2022] Open
Abstract
Studies of cellular surface features gain from correlative approaches, where live cell information acquired by fluorescence light microscopy is complemented by ultrastructural information from scanning electron micrographs. Current approaches to spatially align fluorescence images with scanning electron micrographs are technically challenging and often cost or time-intensive. Relying exclusively on open-source software and equipment available in a standard lab, we have developed a method for rapid, software-assisted alignment of fluorescence images with the corresponding scanning electron micrographs via a stochastic gold micro-pattern. Here, we provide detailed instructions for micro-pattern production and image processing, troubleshooting for critical intermediate steps, and examples of membrane ultra-structures aligned with the fluorescence signal of proteins enriched at such sites. Together, the presented method for correlative fluorescence – scanning electron microscopy is versatile, robust and easily integrated into existing workflows, permitting image alignment with accuracy comparable to existing approaches with negligible investment of time or capital.
Collapse
Affiliation(s)
- Isabell Begemann
- DFG Cluster of Excellence 'Cells in Motion', (EXC 1003).,Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Abhiyan Viplav
- DFG Cluster of Excellence 'Cells in Motion', (EXC 1003).,Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Christiane Rasch
- Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Milos Galic
- DFG Cluster of Excellence 'Cells in Motion', (EXC 1003).,Institute of Medical Physics and Biophysics, University of Münster, Germany
| |
Collapse
|
13
|
Visualization of adherent cell monolayers by cryo-electron microscopy: A snapshot of endothelial adherens junctions. J Struct Biol 2015; 192:470-477. [DOI: 10.1016/j.jsb.2015.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 01/05/2023]
|
14
|
Beckwith MS, Beckwith KS, Sikorski P, Skogaker NT, Flo TH, Halaas Ø. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography. PLoS One 2015; 10:e0134644. [PMID: 26406896 PMCID: PMC4583302 DOI: 10.1371/journal.pone.0134644] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/10/2015] [Indexed: 12/13/2022] Open
Abstract
Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D.
Collapse
Affiliation(s)
- Marianne Sandvold Beckwith
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway
- * E-mail:
| | | | | | - Nan Tostrup Skogaker
- Department of Laboratory Medicine, Children’s and Women’s Health, NTNU, Trondheim, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway
| | - Øyvind Halaas
- Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway
| |
Collapse
|
15
|
Leishmania infection modulates beta-1 integrin activation and alters the kinetics of monocyte spreading over fibronectin. Sci Rep 2015; 5:12862. [PMID: 26249106 PMCID: PMC4528201 DOI: 10.1038/srep12862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/10/2015] [Indexed: 11/29/2022] Open
Abstract
Contact with Leishmania leads to a decreases in mononuclear phagocyte adherence to connective tissue. In this work, we studied the early stages of bond formation between VLA4 and fibronectin, measured the kinetics of membrane alignment and the monocyte cytoplasm spreading area over a fibronectin-coated surface, and studied the expression of high affinity integrin epitope in uninfected and Leishmania-infected human monocytes. Our results show that the initial VLA4-mediated interaction of Leishmania-infected monocyte with a fibronectin-coated surface is preserved, however, the later stage, leukocyte spreading over the substrate is abrogated in Leishmania-infected cells. The median of spreading area was 72 [55–89] μm2 for uninfected and 41 [34–51] μm2 for Leishmania-infected monocyte. This cytoplasm spread was inhibited using an anti-VLA4 blocking antibody. After the initial contact with the fibronectrin-coated surface, uninfected monocyte quickly spread the cytoplasm at a 15 μm2 s−1 ratio whilst Leishmania-infected monocytes only made small contacts at a 5.5 μm2 s−1 ratio. The expression of high affinity epitope by VLA4 (from 39 ± 21% to 14 ± 3%); and LFA1 (from 37 ± 32% to 18 ± 16%) molecules was reduced in Leishmania-infected monocytes. These changes in phagocyte function may be important for parasite dissemination and distribution of lesions in leishmaniasis.
Collapse
|
16
|
Heiligenstein X, Hurbain I, Delevoye C, Salamero J, Antony C, Raposo G. Step by step manipulation of the CryoCapsule with HPM high pressure freezers. Methods Cell Biol 2015; 124:259-74. [PMID: 25287845 DOI: 10.1016/b978-0-12-801075-4.00012-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The CryoCapsule is a tool dedicated to correlative light to electron microscopy experiments. Focused on simplifying the specimen manipulation throughout the entire workflow from live-cell imaging to freeze substitution following cryofixation by high pressure freezing, we introduce here a step by step procedure to use the CryoCapsule either with the high pressure freezing machines: HPM010 or the HPM100.
Collapse
Affiliation(s)
- Xavier Heiligenstein
- Centre de Recherche, Institut Curie, Paris, France; Structure and Membrane Compartments, CNRS UMR144, Paris, France
| | - Ilse Hurbain
- Centre de Recherche, Institut Curie, Paris, France; Structure and Membrane Compartments, CNRS UMR144, Paris, France; Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR144, Paris, France
| | - Cédric Delevoye
- Centre de Recherche, Institut Curie, Paris, France; Structure and Membrane Compartments, CNRS UMR144, Paris, France
| | - Jean Salamero
- Centre de Recherche, Institut Curie, Paris, France; Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR144, Paris, France; Spatio-Temporal Modeling Imaging and Cellular Dynamics, CNRS UMR144, Paris, France
| | - Claude Antony
- Department of Structural Biology and Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS UMR7104, Illkirch, France
| | - Graca Raposo
- Centre de Recherche, Institut Curie, Paris, France; Structure and Membrane Compartments, CNRS UMR144, Paris, France; Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR144, Paris, France
| |
Collapse
|
17
|
Miranda K, Girard-Dias W, Attias M, de Souza W, Ramos I. Three dimensional reconstruction by electron microscopy in the life sciences: An introduction for cell and tissue biologists. Mol Reprod Dev 2015; 82:530-47. [PMID: 25652003 DOI: 10.1002/mrd.22455] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/10/2014] [Indexed: 12/26/2022]
Abstract
Early applications of transmission electron microscopy (TEM) in the life sciences have contributed tremendously to our current understanding at the subcellular level. Initially limited to two-dimensional representations of three-dimensional (3D) objects, this approach has revolutionized the fields of cellular and structural biology-being instrumental for determining the fine morpho-functional characterization of most cellular structures. Electron microscopy has progressively evolved towards the development of tools that allow for the 3D characterization of different structures. This was done with the aid of a wide variety of techniques, which have become increasingly diverse and highly sophisticated. We start this review by examining the principles of 3D reconstruction of cells and tissues using classical approaches in TEM, and follow with a discussion of the modern approaches utilizing TEM as well as on new scanning electron microscopy-based techniques. 3D reconstruction techniques from serial sections and (cryo) electron-tomography are examined, and the recent applications of focused ion beam-scanning microscopes and serial-block-face techniques for the 3D reconstruction of large volumes are discussed. Alternative low-cost techniques and more accessible approaches using basic transmission or field emission scanning electron microscopes are also examined.
Collapse
Affiliation(s)
- Kildare Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica, Carlos Chagas Filho and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens-Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Xer, é, m, Rio de Janeiro, Brazil
| | - Wendell Girard-Dias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica, Carlos Chagas Filho and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens-Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Attias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica, Carlos Chagas Filho and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens-Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica, Carlos Chagas Filho and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens-Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Xer, é, m, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Laboratório de Bioquímica de Insetos, Instituto de Bioquímica Médica, Leopoldo de Meis -Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Goetz JG, Monduc F, Schwab Y, Vermot J. Using correlative light and electron microscopy to study zebrafish vascular morphogenesis. Methods Mol Biol 2015; 1189:31-46. [PMID: 25245685 DOI: 10.1007/978-1-4939-1164-6_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Live imaging is extremely useful to characterize the dynamics of cellular events in vivo, yet it is limited in terms of spatial resolution. Correlative light and electron microscopy (CLEM) allows combining live confocal microscopy with electron microscopy (EM) for the characterization of biological samples at high temporal and spatial resolution. Here we describe a protocol allowing extracting endothelial cell ultrastructure after having imaged the same cell in its in vivo context through live confocal imaging during zebrafish embryonic development.
Collapse
Affiliation(s)
- Jacky G Goetz
- The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Inserm U1109, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
| | | | | | | |
Collapse
|
19
|
Karreman MA, Mercier L, Schieber NL, Shibue T, Schwab Y, Goetz JG. Correlating intravital multi-photon microscopy to 3D electron microscopy of invading tumor cells using anatomical reference points. PLoS One 2014; 9:e114448. [PMID: 25479106 PMCID: PMC4257674 DOI: 10.1371/journal.pone.0114448] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/06/2014] [Indexed: 01/24/2023] Open
Abstract
Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D) mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis.
Collapse
Affiliation(s)
- Matthia A. Karreman
- European Molecular Biology Laboratory Heidelberg, Heidelberg, 69117, Germany
| | - Luc Mercier
- Inserm U1109, MN3T, Strasbourg, F-67200, France
- Université de Strasbourg, Strasbourg, F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
| | - Nicole L. Schieber
- European Molecular Biology Laboratory Heidelberg, Heidelberg, 69117, Germany
| | - Tsukasa Shibue
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Yannick Schwab
- European Molecular Biology Laboratory Heidelberg, Heidelberg, 69117, Germany
- * E-mail: (YS); (JGG)
| | - Jacky G. Goetz
- Inserm U1109, MN3T, Strasbourg, F-67200, France
- Université de Strasbourg, Strasbourg, F-67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- * E-mail: (YS); (JGG)
| |
Collapse
|
20
|
Customized patterned substrates for highly versatile correlative light-scanning electron microscopy. Sci Rep 2014; 4:7033. [PMID: 25391455 PMCID: PMC4229662 DOI: 10.1038/srep07033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/23/2014] [Indexed: 01/09/2023] Open
Abstract
Correlative light electron microscopy (CLEM) combines the advantages of light and electron microscopy, thus making it possible to follow dynamic events in living cells at nanometre resolution. Various CLEM approaches and devices have been developed, each of which has its own advantages and technical challenges. We here describe our customized patterned glass substrates, which improve the feasibility of correlative fluorescence/confocal and scanning electron microscopy.
Collapse
|
21
|
Lucocq JM, Mayhew TM, Schwab Y, Steyer AM, Hacker C. Systems biology in 3D space--enter the morphome. Trends Cell Biol 2014; 25:59-64. [PMID: 25455351 DOI: 10.1016/j.tcb.2014.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/27/2022]
Abstract
Systems-based understanding of living organisms depends on acquiring huge datasets from arrays of genes, transcripts, proteins, and lipids. These data, referred to as 'omes', are assembled using 'omics' methodologies. Currently a comprehensive, quantitative view of cellular and organellar systems in 3D space at nanoscale/molecular resolution is missing. We introduce here the term 'morphome' for the distribution of living matter within a 3D biological system, and 'morphomics' for methods of collecting 3D data systematically and quantitatively. A sampling-based approach termed stereology currently provides rapid, precise, and minimally biased morphomics. We propose that stereology solves the 'big data' problem posed by emerging wide-scale electron microscopy (EM) and can establish quantitative links between the newer nanoimaging platforms such as electron tomography, cryo-EM, and correlative microscopy.
Collapse
Affiliation(s)
- John M Lucocq
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK.
| | - Terry M Mayhew
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Yannick Schwab
- Electron Microscopy Core Facility, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anna M Steyer
- Electron Microscopy Core Facility, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christian Hacker
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| |
Collapse
|
22
|
Kolotuev I. Positional correlative anatomy of invertebrate model organisms increases efficiency of TEM data production. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1392-1403. [PMID: 25180638 DOI: 10.1017/s1431927614012999] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Transmission electron microscopy (TEM) is an important tool for studies in cell biology, and is essential to address research questions from bacteria to animals. Recent technological innovations have advanced the entire field of TEM, yet classical techniques still prevail for most present-day studies. Indeed, the majority of cell and developmental biology studies that use TEM do not require cutting-edge methodologies, but rather fast and efficient data generation. Although access to state-of-the-art equipment is frequently problematic, standard TEM microscopes are typically available, even in modest research facilities. However, a major unmet need in standard TEM is the ability to quickly prepare and orient a sample to identify a region of interest. Here, I provide a detailed step-by-step method for a positional correlative anatomy approach to flat-embedded samples. These modifications make the TEM preparation and analytic procedures faster and more straightforward, supporting a higher sampling rate. To illustrate the modified procedures, I provide numerous examples addressing research questions in Caenorhabditis elegans and Drosophila. This method can be equally applied to address questions of cell and developmental biology in other small multicellular model organisms.
Collapse
Affiliation(s)
- Irina Kolotuev
- 1Fédération de Recherche BIOSIT,Université de Rennes 1,Plateforme microscopie électronique MRic,Campus santé,2 avenue du Professeur Léon-Bernard,35043 Rennes,France
| |
Collapse
|
23
|
Heiligenstein X, Heiligenstein J, Delevoye C, Hurbain I, Bardin S, Paul-Gilloteaux P, Sengmanivong L, Régnier G, Salamero J, Antony C, Raposo G. The CryoCapsule: simplifying correlative light to electron microscopy. Traffic 2014; 15:700-16. [PMID: 24533564 PMCID: PMC4064126 DOI: 10.1111/tra.12164] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 11/28/2022]
Abstract
Correlating complementary multiple scale images of the same object is a straightforward means to decipher biological processes. Light microscopy and electron microscopy are the most commonly used imaging techniques, yet despite their complementarity, the experimental procedures available to correlate them are technically complex. We designed and manufactured a new device adapted to many biological specimens, the CryoCapsule, that simplifies the multiple sample preparation steps, which at present separate live cell fluorescence imaging from contextual high-resolution electron microscopy, thus opening new strategies for full correlative light to electron microscopy. We tested the biological application of this highly optimized tool on three different specimens: the in vitro Xenopus laevis mitotic spindle, melanoma cells over-expressing YFP-langerin sequestered in organized membranous subcellular organelles and a pigmented melanocytic cell in which the endosomal system was labeled with internalized fluorescent transferrin.
Collapse
Affiliation(s)
- Xavier Heiligenstein
- Institut Curie, Centre de Recherche, Paris 75248, France
- Structure and Membrane Compartments, CNRS UMR144, Paris 75248, France
| | - Jérôme Heiligenstein
- Processes and Engineering in Mechanics and Materials, Centre National de la Recherche Scientifique (CNRS), UMR 8006, CER de Paris, Arts et Métiers ParisTech, Paris, France
- CryoCapCell, 75015 Paris, France
| | - Cédric Delevoye
- Institut Curie, Centre de Recherche, Paris 75248, France
- Structure and Membrane Compartments, CNRS UMR144, Paris 75248, France
| | - Ilse Hurbain
- Institut Curie, Centre de Recherche, Paris 75248, France
- Structure and Membrane Compartments, CNRS UMR144, Paris 75248, France
- Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR144, Paris 75248, France
| | - Sabine Bardin
- Institut Curie, Centre de Recherche, Paris 75248, France
- Molecular Mechanisms of Intracellular Transport, CNRS UMR144, Paris 75248, France
| | - Perrine Paul-Gilloteaux
- Institut Curie, Centre de Recherche, Paris 75248, France
- Spatio-temporal modeling Imaging and cellular dynamics, CNRS UMR144, Paris 75248, France
- Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR144, Paris 75248, France
| | - Lucie Sengmanivong
- Institut Curie, Centre de Recherche, Paris 75248, France
- Spatio-temporal modeling Imaging and cellular dynamics, CNRS UMR144, Paris 75248, France
- Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR144, Paris 75248, France
| | - Gilles Régnier
- Processes and Engineering in Mechanics and Materials, Centre National de la Recherche Scientifique (CNRS), UMR 8006, CER de Paris, Arts et Métiers ParisTech, Paris, France
| | - Jean Salamero
- Institut Curie, Centre de Recherche, Paris 75248, France
- Spatio-temporal modeling Imaging and cellular dynamics, CNRS UMR144, Paris 75248, France
- Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR144, Paris 75248, France
| | - Claude Antony
- Department of Structural Biology and Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR7104, Illkirch BP10142, France
| | - Graca Raposo
- Institut Curie, Centre de Recherche, Paris 75248, France
- Structure and Membrane Compartments, CNRS UMR144, Paris 75248, France
- Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR144, Paris 75248, France
| |
Collapse
|
24
|
Padman BS, Bach M, Ramm G. An improved procedure for subcellular spatial alignment during live-cell CLEM. PLoS One 2014; 9:e95967. [PMID: 24755651 PMCID: PMC3995996 DOI: 10.1371/journal.pone.0095967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
Live-cell correlative light and electron microscopy (CLEM) offers unique insights into the ultrastructure of dynamic cellular processes. A critical and technically challenging part of CLEM is the 3-dimensional relocation of the intracellular region of interest during sample processing. We have developed a simple CLEM procedure that uses toner particles from a laser printer as orientation marks. This facilitates easy tracking of a region of interest even by eye throughout the whole procedure. Combined with subcellular fluorescence markers for the plasma membrane and nucleus, the toner particles allow for precise subcellular spatial alignment of the optical and electron microscopy data sets. The toner-based reference grid is printed and transferred onto a polymer film using a standard office printer and laminator. We have also designed a polymer film holder that is compatible with most inverted microscopes, and have validated our strategy by following the ultrastructure of mitochondria that were selectively photo-irradiated during live-cell microscopy. In summary, our inexpensive and robust CLEM procedure simplifies optical imaging, without limiting the choice of optical microscope.
Collapse
Affiliation(s)
- Benjamin S. Padman
- Department of Biochemistry and Molecular Biology, Monash University, Clayton campus, Victoria, Australia
- Monash Micro Imaging, Monash University, Clayton campus, Victoria, Australia
| | - Markus Bach
- Department of Biochemistry and Molecular Biology, Monash University, Clayton campus, Victoria, Australia
- Monash Micro Imaging, Monash University, Clayton campus, Victoria, Australia
| | - Georg Ramm
- Department of Biochemistry and Molecular Biology, Monash University, Clayton campus, Victoria, Australia
- Monash Micro Imaging, Monash University, Clayton campus, Victoria, Australia
- * E-mail:
| |
Collapse
|
25
|
|
26
|
Jiménez N, Post JA. A novel permeabilization protocol to obtain intracellular 3D immunolabeling for electron tomography. Methods Mol Biol 2014; 1174:285-295. [PMID: 24947390 DOI: 10.1007/978-1-4939-0944-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Electron tomography (ET) is a very important high-resolution tool for 3D imaging in cell biology. By combining the technique with immunolabeling, ET can provide essential insights into both cellular architecture and dynamics. We recently developed a protocol to achieve 3D immunolabeling of intracellular antigens without the need for uncontrolled permeabilization steps that cause random, extensive cell membrane disruption. Here we describe this novel method based on well-controlled permeabilization by targeted laser cell perforation. Mechanical permeabilization of the plasma membrane can be applied at specific sites without affecting other parts of the plasma membrane and intracellular membranes. Despite the relatively small opening created in the plasma membrane, the method allows specific 3D immunolocalization of cytoplasmic antigens in cultured cells by a pre-embedment protocol. The approach is unique and leads to a superior ultrastructural preservation for transmission electron microscopy and electron tomography.
Collapse
Affiliation(s)
- Nuria Jiménez
- Biology Department, Faculty of Science, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | | |
Collapse
|
27
|
Correlative light and electron microscopy: from live cell dynamic to 3D ultrastructure. Methods Mol Biol 2014; 1117:485-501. [PMID: 24357376 DOI: 10.1007/978-1-62703-776-1_21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Correlative light and electron microscopy (CLEM) aims at combining data acquired from the same sample through both imaging modalities. Many combinations can be found in the literature where almost any kind of light microscopy (LM) has been associated to different processing in electron microscopy (EM) and applied to a wide variety of specimen, from cultured cells to multicellular organisms. In this chapter, we focus on a technique that intends to combine LM acquisition on living cells with transmission EM (TEM) analysis. A specific attention is given to the description of a method to bring precise coordinates to the object of interest, to allow a straightforward correlation between LM and EM. Moreover, we describe how, by using high-pressure freezing as a fixation technique, dynamic events observed at the LM are captured and studied at the ultrastructural level.
Collapse
|
28
|
Madela K, Banhart S, Zimmermann A, Piesker J, Bannert N, Laue M. A simple procedure to analyze positions of interest in infectious cell cultures by correlative light and electron microscopy. Methods Cell Biol 2014; 124:93-110. [PMID: 25287838 DOI: 10.1016/b978-0-12-801075-4.00005-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Plastic cell culture dishes that contain a thin bottom of highest optical quality including an imprinted finder grid (μ-Dish Grid-500) are optimally suited for routine correlative light and electron microscopy using chemical fixation. Such dishes allow high-resolution fluorescence and bright-field imaging using fixed and living cells and are compatible with standard protocols for scanning and transmission electron microscopy. Ease of use during cell culture and imaging, as well as a tight cover render the dishes particularly suitable for working with infectious organisms up to the highest biosafety level. Detailed protocols are provided and demonstrated by showing two examples: monitoring the production of virus-like particles of the Human Endogenous Retrovirus HERV-K(HML-2) by HeLa cells and investigation of Rab11-positive membrane-compartments of HeLa cells after infection with Chlamydia trachomatis.
Collapse
Affiliation(s)
- Kazimierz Madela
- Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - Sebastian Banhart
- Junior Research Group Sexually Transmitted Bacterial Pathogens (NG 5), Robert Koch Institute, Berlin, Germany
| | - Anja Zimmermann
- Centre for HIV and other Retroviruses (FG 18), Robert Koch Institute, Berlin, Germany
| | - Janett Piesker
- Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - Norbert Bannert
- Centre for HIV and other Retroviruses (FG 18), Robert Koch Institute, Berlin, Germany
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
29
|
Mesman RJ. A novel method for high-pressure freezing of adherent cells for frozen hydrated sectioning and CEMOVIS. J Struct Biol 2013; 183:527-530. [PMID: 23831450 DOI: 10.1016/j.jsb.2013.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 11/19/2022]
Abstract
With the development of Cryo Electron Microscopy Of Vitreous Sections (CEMOVIS), imaging cells in a close to native state has become a reality. However with the commonly used carriers for high-pressure freezing and cryo-sectioning, adherent grown cells either need to be detached from their substrate. Here a new method is presented for high-pressure freezing adherent growing cells for frozen-hydrated sectioning and CEMOVIS. Cells are cultured on golden grids, containing a carbon coated Formvar film, and frozen on a membrane carrier which provides the grids with the structural support needed to withstand the strain of trimming and cryo-sectioning. This method was successfully tested for the two different types of high-pressure freezers, those using a pressure chamber (HPM010, EMHPF, Wohlwend Compact 01/02, HPM100) and those directly pressurizing the sample (EMPact series).
Collapse
Affiliation(s)
- R J Mesman
- Membrane Enzymology, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Biomolecular Imaging, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
30
|
In-situ integrity control of frozen-hydrated, vitreous lamellas prepared by the cryo-focused ion beam-scanning electron microscope. J Struct Biol 2013; 183:11-8. [PMID: 23742839 DOI: 10.1016/j.jsb.2013.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/14/2013] [Accepted: 05/28/2013] [Indexed: 11/22/2022]
Abstract
Recently a number of new approaches have been presented with the intention to produce electron beam transparent cryo-sections (lamellas in FIB-SEM terminology) from hydrated vitreously frozen cryo samples with a Focused Ion Beam (FIB) system, suitable for cryo-Transmission Electron Microscopy (cryo-TEM). As the workflow is still challenging and time consuming, it is important to be able to determine the integrity and suitability (cells vs. no cells; vitreous vs. crystalline) of the lamellas. Here we present an in situ method that tests both conditions by using the cryo-Scanning Electron Microscope (cryo-SEM) in transmission mode (TSEM; Transmission Scanning Electron Microscope) once the FIB-made lamella is ready. Cryo-TSEM imaging of unstained cells yields strong contrast, enabling direct imaging of material present in the lamellas. In addition, orientation contrast is shown to be suitable for distinguishing crystalline lamellas from vitreous lamellas. Tilting the stage a few degrees results in changes of contrast between ice grains as a function of the tilt angle, whereas the contrast of areas with vitreous ice remains unchanged as a function of the tilt angle. This orientation contrast has subsequently been validated by cryo-Electron BackScattered Diffraction (EBSD) in transmission mode. Integration of the presented method is discussed and the role it can play in future developments for a new and innovative all-in-one cryo-FIB-SEM life sciences instrument.
Collapse
|
31
|
Wierzbicki R, Købler C, Jensen MRB, Łopacińska J, Schmidt MS, Skolimowski M, Abeille F, Qvortrup K, Mølhave K. Mapping the complex morphology of cell interactions with nanowire substrates using FIB-SEM. PLoS One 2013; 8:e53307. [PMID: 23326412 PMCID: PMC3541134 DOI: 10.1371/journal.pone.0053307] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022] Open
Abstract
Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells’ interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered.
Collapse
Affiliation(s)
| | - Carsten Købler
- DTU Nanotech, Technical University of Denmark, Lyngby, Denmark
- DTU CEN, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | - Fabien Abeille
- DTU Nanotech, Technical University of Denmark, Lyngby, Denmark
| | - Klaus Qvortrup
- Department of Biomedical Sciences, CFIM, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Mølhave
- DTU Nanotech, Technical University of Denmark, Lyngby, Denmark
- * E-mail:
| |
Collapse
|
32
|
Jiménez N, Krouwer VJD, Post JA. A new, rapid and reproducible method to obtain high quality endothelium in vitro. Cytotechnology 2012; 65:1-14. [PMID: 22573289 PMCID: PMC3536875 DOI: 10.1007/s10616-012-9459-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/17/2012] [Indexed: 11/16/2022] Open
Abstract
Human umbilical vein endothelial cells (HUVECs) cultured in vitro are a commonly used experimental system. When properly differentiated they acquire the so-called cobblestone phenotype; thereby mimicking an endothelium in vivo that can be used to shed light on multiple endothelial-related processes. In the present paper we report a simple, flexible, fast and reproducible method for an efficient isolation of viable HUVECs. The isolation is performed by sequential short trypsinization steps at room temperature. As umbilical cords are often damaged during labor, it is noteworthy that this new method can be applied even to short pieces of cord with success. In addition, we describe how to culture HUVECs as valid cobblestone cells in vitro on different types of extracellular matrix (basement membrane matrix, fibronectin and gelatin). We also show how to recognize mature cobblestone HUVECs by ordinary phase contrast microscopy. Our HUVEC model is validated as a system that retains important features inherent to the human umbilical vein endothelium in vivo. Phase contrast microscopy, immuno-fluorescence and electron microscopy reveal a tight cobblestone monolayer. Therein cells show Weibel-Palade bodies, caveolae and junctional complexes (comparable to the in vivo situation, as also shown in this study) and can internalize human low density lipoprotein. Isolation and culture of HUVECs as reported in this paper will result in an endothelium-mimicking experimental model convenient for multiple research goals.
Collapse
Affiliation(s)
- Nuria Jiménez
- Department of Biomolecular Imaging, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands,
| | | | | |
Collapse
|
33
|
Jiménez N, Post JA. A Novel Approach for Intracellular 3D Immuno-Labeling for Electron Tomography. Traffic 2012; 13:926-33. [DOI: 10.1111/j.1600-0854.2012.01363.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 04/04/2012] [Accepted: 04/09/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Nuria Jiménez
- Department of Biomolecular Imaging; Institute of Biomembranes, Utrecht University; Padualaan 8; Utrecht; 3584 CH; The Netherlands
| | - Jan Andries Post
- Department of Biomolecular Imaging; Institute of Biomembranes, Utrecht University; Padualaan 8; Utrecht; 3584 CH; The Netherlands
| |
Collapse
|
34
|
Sjollema KA, Schnell U, Kuipers J, Kalicharan R, Giepmans BNG. Correlated light microscopy and electron microscopy. Methods Cell Biol 2012; 111:157-73. [PMID: 22857928 DOI: 10.1016/b978-0-12-416026-2.00009-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding where, when, and how biomolecules (inter)act is crucial to uncover fundamental mechanisms in cell biology. Recent developments in fluorescence light microscopy (FLM) allow protein imaging in living cells and at the near molecular level. However, fluorescence microscopy only reveals selected biomolecules or organelles but not the (ultra)structural context, as can be examined by electron microscopy (EM). LM and EM of the same cells, so-called correlative (or correlated) light and electron microscopy (CLEM), allow examining rare or dynamic events first by LM, and subsequently by EM. Here, we review progress in CLEM, with focus on matching the areas between different microscopic modalities. Moreover, we introduce a method that includes a virtual overlay and automated large-scale imaging, allowing to switch between most microscopes. Ongoing developments will revolutionize and standardize CLEM in the near future, which thus holds great promise to become a routine technique in cell biology.
Collapse
Affiliation(s)
- Klaas A Sjollema
- Department of Cell Biology, University Medical Center Groningen (UMCG), University of Groningen, A. Deusinglaan 1, Bldg 3215, room 749, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Jahn KA, Barton DA, Kobayashi K, Ratinac KR, Overall RL, Braet F. Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 2011; 43:565-82. [PMID: 22244153 DOI: 10.1016/j.micron.2011.12.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 12/16/2022]
Abstract
Correlative microscopy is the application of two or more distinct microscopy techniques to the same region of a sample, generating complementary morphological, structural and chemical information that exceeds what is possible with any single technique. As a variety of complementary microscopy approaches rather than a specific type of instrument, correlative microscopy has blossomed in recent years as researchers have recognised that it is particularly suited to address the intricate questions of the modern biological sciences. Specialised technical developments in sample preparation, imaging methods, visualisation and data analysis have also accelerated the uptake of correlative approaches. In light of these advances, this critical review takes the reader on a journey through recent developments in, and applications of, correlative microscopy, examining its impact in biomedical research and in the field of plant science. This twin emphasis gives a unique perspective into use of correlative microscopy in fields that often advance independently, and highlights the lessons that can be learned from both fields for the future of this important area of research.
Collapse
Affiliation(s)
- K A Jahn
- Australian Centre for Microscopy & Microanalysis and The School of Biological Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Murphy GE, Narayan K, Lowekamp BC, Hartnell LM, Heymann JAW, Fu J, Subramaniam S. Correlative 3D imaging of whole mammalian cells with light and electron microscopy. J Struct Biol 2011; 176:268-78. [PMID: 21907806 PMCID: PMC3210386 DOI: 10.1016/j.jsb.2011.08.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 01/19/2023]
Abstract
We report methodological advances that extend the current capabilities of ion-abrasion scanning electron microscopy (IA-SEM), also known as focused ion beam scanning electron microscopy, a newly emerging technology for high resolution imaging of large biological specimens in 3D. We establish protocols that enable the routine generation of 3D image stacks of entire plastic-embedded mammalian cells by IA-SEM at resolutions of ∼10-20nm at high contrast and with minimal artifacts from the focused ion beam. We build on these advances by describing a detailed approach for carrying out correlative live confocal microscopy and IA-SEM on the same cells. Finally, we demonstrate that by combining correlative imaging with newly developed tools for automated image processing, small 100nm-sized entities such as HIV-1 or gold beads can be localized in SEM image stacks of whole mammalian cells. We anticipate that these methods will add to the arsenal of tools available for investigating mechanisms underlying host-pathogen interactions, and more generally, the 3D subcellular architecture of mammalian cells and tissues.
Collapse
Affiliation(s)
- Gavin E. Murphy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - Kedar Narayan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - Bradley C. Lowekamp
- Office of High Performance Computing and Communications, National Library of Medicine, NIH, Bethesda, MD 20814 USA
| | - Lisa M. Hartnell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - Jurgen A. W. Heymann
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - Jing Fu
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| |
Collapse
|
37
|
Varicella-zoster virus (VZV) infection of neurons derived from human embryonic stem cells: direct demonstration of axonal infection, transport of VZV, and productive neuronal infection. J Virol 2011; 85:6220-33. [PMID: 21525353 DOI: 10.1128/jvi.02396-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Study of the human neurotrophic herpesvirus varicella-zoster virus (VZV) and of its ability to infect neurons has been severely limited by strict viral human tropism and limited availability of human neurons for experimentation. Human embryonic stem cells (hESC) can be differentiated to all the cell types of the body including neurons and are therefore a potentially unlimited source of human neurons to study their interactions with human neurotropic viruses. We report here reproducible infection of hESC-derived neurons by cell-associated green fluorescent protein (GFP)-expressing VZV. hESC-derived neurons expressed GFP within 2 days after incubation with mitotically inhibited MeWo cells infected with recombinant VZV expressing GFP as GFP fusions to VZV proteins or under an independent promoter. VZV infection was confirmed by immunostaining for immediate-early and viral capsid proteins. Infection of hESC-derived neurons was productive, resulting in release into the medium of infectious virions that appeared fully assembled when observed by electron microscopy. We also demonstrated, for the first time, VZV infection of axons and retrograde transport from axons to neuronal cell bodies using compartmented microfluidic chambers. The use of hESC-derived human neurons in conjunction with fluorescently tagged VZV shows great promise for the study of VZV neuronal infection and axonal transport and has potential for the establishment of a model for VZV latency in human neurons.
Collapse
|
38
|
McDonald K, Schwarz H, Müller-Reichert T, Webb R, Buser C, Morphew M. "Tips and tricks" for high-pressure freezing of model systems. Methods Cell Biol 2010; 96:671-93. [PMID: 20869543 DOI: 10.1016/s0091-679x(10)96028-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-pressure freezing (HPF) has been around since the mid-1980s as a cryopreparation technique for biological electron microscopy. It has taken quite some time to "catch on" but with the recent interest in cellular tomography and electron microscopy of vitreous cryosections it has been used more frequently. While HPF is relatively easy to do, there are a number of steps, such as loading the sample into the specimen carrier correctly, that are critical to the success of this method. In this chapter we discuss some of the "little" things that can make the difference between successful or unsuccessful freezing. We cover all aspects of HPF, from specimen loading to removing your sample from the carriers in polymerized resin. Our goal is to make it easier and more reliable for HPF users to get well-frozen samples for their research.
Collapse
Affiliation(s)
- Kent McDonald
- Electron Microscope Laboratory, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|