1
|
In vivo monitoring of bone microstructure by propagation-based phase-contrast computed tomography using monochromatic synchrotron light. J Transl Med 2020; 100:72-83. [PMID: 31641229 DOI: 10.1038/s41374-019-0337-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 11/09/2022] Open
Abstract
Hard X-ray phase-contrast imaging is sensitive to density variation in objects and shows a dose advantage for in vivo observation over absorption-contrast imaging. We examined the capability of propagation-based phase-contrast tomography (PB-PCT) with single-distance phase retrieval for tracking of bone structure and mineral changes using monochromatic synchrotron light. Female mice underwent ovariectomy and drill-hole surgery in the right tibial diaphysis and were divided into two groups: OVX and OVX-E (n = 6 each); the latter group was treated with intraperitoneal administration of 14,15-epoxyeicosatrienoic acid (14,15-EET) for promoting bone repair. Age-matched mice subjected to sham ovariectomy and drill-hole surgery (Sham) were also prepared (n = 6). In vivo CT scans of the drilled defect were acquired 3, 7, and 11 days after surgery, and tomographic images were matched by three-dimensional registration between successive time points for monitoring the process of defect filling. In addition, using absorption-contrast CT as the reference method, the validity of PB-PCT was evaluated in one mouse by comparing images of tibial metaphyseal bone between the two methods in terms of bone geometry as well as the measure of mineralization. Although phase retrieval is strictly valid only for single-material objects, PB-PCT, with its lower radiation dose, could provide a depiction of bone structure similar to that from absorption-contrast CT. There was a significant correlation of linear absorption coefficients between the two methods, indicating the possibility of a rough estimate of the measure of mineralization by PB-PCT. Indeed, delayed bone regeneration (OVX vs. Sham) and the efficacy of 14,15-EET for improving osteoporotic bone repair (OVX-E vs. OVX) could be detected in both bone volume and mineralization by PB-PCT. Thus, in combination with single-distance phase retrieval, PB-PCT would have great potential for providing a valuable tool to track changes in bone structure and mineralization, and for evaluating the effects of therapeutic interventions as well.
Collapse
|
2
|
Bawolin NK, Chen XB. Remote Determination of Time-Dependent Stiffness of Surface-Degrading-Polymer Scaffolds Via Synchrotron-Based Imaging. J Biomech Eng 2017; 139:2607050. [DOI: 10.1115/1.4036021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 11/08/2022]
Abstract
Surface-degrading polymers have been widely used to fabricate scaffolds with the mechanical properties appropriate for tissue regeneration/repair. During their surface degradation, the material properties of polymers remain approximately unchanged, but the scaffold geometry and thus mechanical properties vary with time. This paper presents a novel method to determine the time-dependent mechanical properties, particularly stiffness, of scaffolds from the geometric changes captured by synchrotron-based imaging, with the help of finite element analysis (FEA). Three-dimensional (3D) tissue scaffolds were fabricated from surface-degrading polymers, and during their degradation, the tissue scaffolds were imaged via the synchrotron-based imaging to characterize their changing geometry. On this basis, the stiffness behavior of scaffolds was estimated from the FEA, and the results obtained were compared to the direct measurements of scaffold stiffness from the load–displacement material testing. The comparison illustrates that the Young's moduli estimated from the FEA and characterized geometry are in agreement with the ones of direct measurements. The developed method of estimating the mechanical behavior was also demonstrated effective with a nondegrading scaffold that displays the nonlinear stress–strain behavior. The in vivo monitoring of Young's modulus by morphology characterization also suggests the feasibility of characterizing experimentally the difference between in vivo and in vitro surface degradation of tissue engineering constructs.
Collapse
Affiliation(s)
- N. K. Bawolin
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - X. B. Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
3
|
Weber L, Langer M, Tavella S, Ruggiu A, Peyrin F. Quantitative evaluation of regularized phase retrieval algorithms on bone scaffolds seeded with bone cells. Phys Med Biol 2016; 61:N215-31. [DOI: 10.1088/0031-9155/61/9/n215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Sonnaert M, Kerckhofs G, Papantoniou I, Van Vlierberghe S, Boterberg V, Dubruel P, Luyten FP, Schrooten J, Geris L. Multifactorial Optimization of Contrast-Enhanced Nanofocus Computed Tomography for Quantitative Analysis of Neo-Tissue Formation in Tissue Engineering Constructs. PLoS One 2015; 10:e0130227. [PMID: 26076131 PMCID: PMC4467978 DOI: 10.1371/journal.pone.0130227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/17/2015] [Indexed: 11/26/2022] Open
Abstract
To progress the fields of tissue engineering (TE) and regenerative medicine, development of quantitative methods for non-invasive three dimensional characterization of engineered constructs (i.e. cells/tissue combined with scaffolds) becomes essential. In this study, we have defined the most optimal staining conditions for contrast-enhanced nanofocus computed tomography for three dimensional visualization and quantitative analysis of in vitro engineered neo-tissue (i.e. extracellular matrix containing cells) in perfusion bioreactor-developed Ti6Al4V constructs. A fractional factorial ‘design of experiments’ approach was used to elucidate the influence of the staining time and concentration of two contrast agents (Hexabrix and phosphotungstic acid) and the neo-tissue volume on the image contrast and dataset quality. Additionally, the neo-tissue shrinkage that was induced by phosphotungstic acid staining was quantified to determine the operating window within which this contrast agent can be accurately applied. For Hexabrix the staining concentration was the main parameter influencing image contrast and dataset quality. Using phosphotungstic acid the staining concentration had a significant influence on the image contrast while both staining concentration and neo-tissue volume had an influence on the dataset quality. The use of high concentrations of phosphotungstic acid did however introduce significant shrinkage of the neo-tissue indicating that, despite sub-optimal image contrast, low concentrations of this staining agent should be used to enable quantitative analysis. To conclude, design of experiments allowed us to define the most optimal staining conditions for contrast-enhanced nanofocus computed tomography to be used as a routine screening tool of neo-tissue formation in Ti6Al4V constructs, transforming it into a robust three dimensional quality control methodology.
Collapse
Affiliation(s)
- Maarten Sonnaert
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Materials Engineering, KU Leuven, Heverlee, Belgium
| | - Greet Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Biomechanics Research Unit, Université de Liege, Liège, Belgium
- * E-mail:
| | - Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | - Veerle Boterberg
- Polymer Chemistry and Biomaterials Group, University of Ghent, Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group, University of Ghent, Ghent, Belgium
| | - Frank P. Luyten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Jan Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Materials Engineering, KU Leuven, Heverlee, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Biomechanics Research Unit, Université de Liege, Liège, Belgium
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Heverlee, Belgium
| |
Collapse
|
5
|
Appel AA, Larson JC, Garson AB, Guan H, Zhong Z, Nguyen BNB, Fisher JP, Anastasio MA, Brey EM. X-ray phase contrast imaging of calcified tissue and biomaterial structure in bioreactor engineered tissues. Biotechnol Bioeng 2014; 112:612-20. [DOI: 10.1002/bit.25467] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Alyssa A. Appel
- Department of Biomedical Engineering; Illinois Institute of Technology; 3255 South Dearborn St Chicago Illinois 60616
- Research Services; Edward Hines Jr. VA Hospital; 5000 S. 5th Avenue Hines Illinois 60141
| | - Jeffery C. Larson
- Department of Biomedical Engineering; Illinois Institute of Technology; 3255 South Dearborn St Chicago Illinois 60616
- Research Services; Edward Hines Jr. VA Hospital; 5000 S. 5th Avenue Hines Illinois 60141
| | - Alfred B. Garson
- Department of Biomedical Engineering; Washington University in St. Louis; St. Louis Missouri
| | - Huifeng Guan
- Department of Biomedical Engineering; Washington University in St. Louis; St. Louis Missouri
| | - Zhong Zhong
- National Synchrotron Light Source; Brookhaven National Laboratory; Upton New York
| | - Bao-Ngoc B. Nguyen
- Fischell Department of Bioengineering; University of Maryland; College Park Maryland
| | - John P. Fisher
- Fischell Department of Bioengineering; University of Maryland; College Park Maryland
| | - Mark A. Anastasio
- Department of Biomedical Engineering; Washington University in St. Louis; St. Louis Missouri
| | - Eric M. Brey
- Department of Biomedical Engineering; Illinois Institute of Technology; 3255 South Dearborn St Chicago Illinois 60616
- Research Services; Edward Hines Jr. VA Hospital; 5000 S. 5th Avenue Hines Illinois 60141
| |
Collapse
|
6
|
Langer M, Cloetens P, Hesse B, Suhonen H, Pacureanu A, Raum K, Peyrin F. Priors for X-ray in-line phase tomography of heterogeneous objects. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130129. [PMID: 24470421 DOI: 10.1098/rsta.2013.0129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a new prior for phase retrieval from X-ray Fresnel diffraction patterns. Fresnel diffraction patterns are achieved by letting a highly coherent X-ray beam propagate in free space after interaction with an object. Previously, either homogeneous or multi-material object assumptions have been used. The advantage of the homogeneous object assumption is that the prior can be introduced in the Radon domain. Heterogeneous object priors, on the other hand, have to be applied in the object domain. Here, we let the relationship between attenuation and refractive index vary as a function of the measured attenuation index. The method is evaluated using images acquired at beamline ID19 (ESRF, Grenoble, France) of a phantom where the prior is calculated by linear interpolation and of a healing bone obtained from a rat osteotomy model. It is shown that the ratio between attenuation and refractive index in bone for different levels of mineralization follows a power law. Reconstruction was performed using the mixed approach but is compatible with other, more advanced models. We achieve more precise reconstructions than previously reported in literature. We believe that the proposed method will find application in biomedical imaging problems where the object is strongly heterogeneous, such as bone healing and biomaterials engineering.
Collapse
Affiliation(s)
- Max Langer
- Université de Lyon, Creatis; CNRS UMR 5220; INSERM U 1022; Université Lyon 1, INSA Lyon; 7 avenue Jean Capelle, 69621 Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Papantoniou I, Sonnaert M, Geris L, Luyten FP, Schrooten J, Kerckhofs G. Three-dimensional characterization of tissue-engineered constructs by contrast-enhanced nanofocus computed tomography. Tissue Eng Part C Methods 2013; 20:177-87. [PMID: 23800097 DOI: 10.1089/ten.tec.2013.0041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To successfully implement tissue-engineered (TE) constructs as part of a clinical therapy, it is necessary to develop quality control tools that will ensure accurate and consistent TE construct release specifications. Hence, advanced methods to monitor TE construct properties need to be further developed. In this study, we showed proof of concept for contrast-enhanced nanofocus computed tomography (CE-nano-CT) as a whole-construct imaging technique with a noninvasive potential that enables three-dimensional (3D) visualization and quantification of in vitro engineered extracellular matrix (ECM) in TE constructs. In particular, we performed a 3D qualitative and quantitative structural and spatial assessment of the in vitro engineered ECM, formed during static and perfusion bioreactor cell culture in 3D TE scaffolds, using two contrast agents, namely, Hexabrix® and phosphotungstic acid (PTA). To evaluate the potential of CE-nano-CT, a comparison was made to standardly used techniques such as Live/Dead viability/cytotoxicity, Picrosirius Red staining, and to net dry weight measurements of the TE constructs. When using Hexabrix as the contrast agent, the ECM volume fitted linearly with the net dry ECM weight independent from the flow rate used, thus suggesting that it stains most of the ECM. When using PTA as the contrast agent, comparing to net weight measurements showed that PTA only stains a part of the ECM. This was attributed to the binding specificity of this contrast agent. In addition, the PTA-stained CE-nano-CT data showed pronounced distinction between flow conditions when compared to Hexabrix, indicating culture-specific structural ECM differences. This novel type of information can contribute to optimize bioreactor culture conditions and potentially critical quality characteristics of TE constructs such as ECM quantity and homogeneity, facilitating the gradual transformation of TE constructs in well-characterized TE products.
Collapse
Affiliation(s)
- Ioannis Papantoniou
- 1 Prometheus, Division of Skeletal Tissue Engineering , KU Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Appel AA, Anastasio MA, Larson JC, Brey EM. Imaging challenges in biomaterials and tissue engineering. Biomaterials 2013; 34:6615-30. [PMID: 23768903 PMCID: PMC3799904 DOI: 10.1016/j.biomaterials.2013.05.033] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/18/2013] [Indexed: 12/11/2022]
Abstract
Biomaterials are employed in the fields of tissue engineering and regenerative medicine (TERM) in order to enhance the regeneration or replacement of tissue function and/or structure. The unique environments resulting from the presence of biomaterials, cells, and tissues result in distinct challenges in regards to monitoring and assessing the results of these interventions. Imaging technologies for three-dimensional (3D) analysis have been identified as a strategic priority in TERM research. Traditionally, histological and immunohistochemical techniques have been used to evaluate engineered tissues. However, these methods do not allow for an accurate volume assessment, are invasive, and do not provide information on functional status. Imaging techniques are needed that enable non-destructive, longitudinal, quantitative, and three-dimensional analysis of TERM strategies. This review focuses on evaluating the application of available imaging modalities for assessment of biomaterials and tissue in TERM applications. Included is a discussion of limitations of these techniques and identification of areas for further development.
Collapse
Affiliation(s)
- Alyssa A. Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Mark A. Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffery C. Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Eric M. Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| |
Collapse
|
9
|
Varga P, Pacureanu A, Langer M, Suhonen H, Hesse B, Grimal Q, Cloetens P, Raum K, Peyrin F. Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography. Acta Biomater 2013; 9:8118-27. [PMID: 23707503 DOI: 10.1016/j.actbio.2013.05.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/18/2013] [Accepted: 05/14/2013] [Indexed: 11/28/2022]
Abstract
We investigate the three-dimensional (3-D) organization of mineralized collagen fibrils in human cortical bone based on synchrotron X-ray phase nano-tomography images. In lamellar bone the collagen fibrils are assumed to have a plywood-like arrangement, but due to experimental limitations the 3-D fibril structure has only been deduced from section surfaces so far and the findings have been controversial. Breakthroughs in synchrotron tomographic imaging have given access to direct 3-D information on the bone structure at the nanoscale level. Using an autocorrelation-based orientation measure we confirm that the fibrils are unidirectional in quasi-planes of sub-lamellae and find two specific dominant patterns, oscillating and twisted plywoods coexisting in a single osteon. Both patterns exhibit smooth orientation changes between adjacent quasi-planes. Moreover, we find that the periodic changes in collagen fibril orientation are independent of fluctuations in local mass density. These data improve our understanding of the lamellar arrangement in bone and allow more detailed investigations of structure-function relationships at this scale, providing templates for bio-inspired materials. The presented methodology can be applied to non-destructive 3-D characterization of the sub-micron scale structure of other natural and artificial mineralized biomaterials.
Collapse
Affiliation(s)
- Peter Varga
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Histological and Synchrotron Radiation-Based Computed Microtomography Study of 2 Human-Retrieved Direct Laser Metal Formed Titanium Implants. IMPLANT DENT 2013; 22:175-81. [DOI: 10.1097/id.0b013e318282817d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Preininger B, Hesse B, Rohrbach D, Varga P, Gerigk H, Langer M, Peyrin F, Perka C, Raum K. Histogram Feature–Based Classification Improves Differentiability of Early Bone Healing Stages From Micro-Computed Tomographic Data. J Comput Assist Tomogr 2012; 36:469-76. [DOI: 10.1097/rct.0b013e31825eae8a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Morris DE, Mather ML, Simon CG, Crowe JA. Time-optimized X-ray micro-CT imaging of polymer based scaffolds. J Biomed Mater Res B Appl Biomater 2011; 100:360-7. [DOI: 10.1002/jbm.b.31957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/12/2011] [Accepted: 08/28/2011] [Indexed: 11/09/2022]
|
13
|
Abstract
This paper reviews the possibilities offered by X-ray micro-CT in bone tissue engineering. This technique provides a fast, nondestructive, and 3D quantification of bone scaffolds, bone ingrowth, and microvascularization. Synchrotron radiation absorption and phase micro-CT offer additional advantages to image newly formed bone in bioceramic scaffolds and pre-bone matrix.
Collapse
Affiliation(s)
- F Peyrin
- INSERM U1044, CREATIS; CNRS UMR 5220; INSA-Lyon, Villeurbanne, F-69621 Villeurbanne Cedex, France.
| |
Collapse
|
14
|
Bohner M, Loosli Y, Baroud G, Lacroix D. Commentary: Deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater 2011; 7:478-84. [PMID: 20709195 DOI: 10.1016/j.actbio.2010.08.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/07/2010] [Accepted: 08/10/2010] [Indexed: 01/12/2023]
Abstract
Hundreds of studies have been devoted to the search for the ideal architecture for bone scaffold. Despite these efforts, results are often contradictory, and rules derived from these studies are accordingly vague. In fact, there is enough evidence to postulate that ideal scaffold architecture does not exist. The aim of this document is to explain this statement and review new approaches to decipher the existing but complex link between scaffold architecture and in vivo response.
Collapse
|