1
|
Zhang Y, Gu S, Du J, Huang G, Shi J, Lu X, Wang J, Yang W, Guo X, Zhao C. Plant microphenotype: from innovative imaging to computational analysis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:802-818. [PMID: 38217351 PMCID: PMC10955502 DOI: 10.1111/pbi.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 01/15/2024]
Abstract
The microphenotype plays a key role in bridging the gap between the genotype and the complex macro phenotype. In this article, we review the advances in data acquisition and the intelligent analysis of plant microphenotyping and present applications of microphenotyping in plant science over the past two decades. We then point out several challenges in this field and suggest that cross-scale image acquisition strategies, powerful artificial intelligence algorithms, advanced genetic analysis, and computational phenotyping need to be established and performed to better understand interactions among genotype, environment, and management. Microphenotyping has entered the era of Microphenotyping 3.0 and will largely advance functional genomics and plant science.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shenghao Gu
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianjun Du
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guanmin Huang
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiawei Shi
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jinglu Wang
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunjiang Zhao
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
2
|
Tutorial: avoiding and correcting sample-induced spherical aberration artifacts in 3D fluorescence microscopy. Nat Protoc 2020; 15:2773-2784. [PMID: 32737465 DOI: 10.1038/s41596-020-0360-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/18/2020] [Indexed: 11/08/2022]
Abstract
Spherical aberration (SA) occurs when light rays entering at different points of a spherical lens are not focused to the same point of the optical axis. SA that occurs inside the lens elements of a fluorescence microscope is well understood and corrected for. However, SA is also induced when light passes through an interface of refractive index (RI)-mismatched substances (i.e., a discrepancy between the RI of the immersion medium and the RI of the sample). SA due to RI mismatches has many deleterious effects on imaging. Perhaps most important for 3D imaging is that the distance the image plane moves in a sample is not equivalent to the distance traveled by an objective (or stage) during z-stack acquisition. This non-uniform translation along the z axis gives rise to artifactually elongated images (if the objective is immersed in a medium with a higher RI than that of the sample) or compressed images (if the objective is immersed in a medium with a lower RI than that of the sample) and alters the optimal axial sampling rate. In this tutorial, we describe why this distortion occurs, how it impacts quantitative measurements and axial resolution, and what can be done to avoid SA and thereby prevent distorted images. In addition, this tutorial aims to better inform researchers of how to correct RI mismatch-induced axial distortions and provides a practical ImageJ/Fiji-based tool to reduce the prevalence of volumetric measurement errors and lost axial resolution.
Collapse
|
3
|
Petrov PN, Moerner WE. Addressing systematic errors in axial distance measurements in single-emitter localization microscopy. OPTICS EXPRESS 2020; 28:18616-18632. [PMID: 32672159 PMCID: PMC7340385 DOI: 10.1364/oe.391496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 05/05/2023]
Abstract
Nanoscale localization of point emitters is critical to several methods in optical fluorescence microscopy, including single-molecule super-resolution imaging and tracking. While the precision of the localization procedure has been the topic of extensive study, localization accuracy has been less emphasized, in part due to the challenge of producing an experimental sample containing unperturbed point emitters at known three-dimensional positions in a relevant geometry. We report a new experimental system which reproduces a widely-adopted geometry in high-numerical aperture localization microscopy, in which molecules are situated in an aqueous medium above a glass coverslip imaged with an oil-immersion objective. We demonstrate a calibration procedure that enables measurement of the depth-dependent point spread function (PSF) for open aperture imaging as well as imaging with engineered PSFs with index mismatch. We reveal the complicated, depth-varying behavior of the focal plane position in this system and discuss the axial localization biases incurred by common approximations of this behavior. We compare our results to theoretical calculations.
Collapse
Affiliation(s)
- Petar N. Petrov
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305, USA
| | - W. E. Moerner
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Scofield MD. Exploring the Role of Astroglial Glutamate Release and Association With Synapses in Neuronal Function and Behavior. Biol Psychiatry 2018; 84:778-786. [PMID: 29258653 PMCID: PMC5948108 DOI: 10.1016/j.biopsych.2017.10.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 12/25/2022]
Abstract
Astrocytes are stellate cells whose appearance can resemble a pointed star, especially when visualizing glial fibrillary acidic protein, a canonical marker for astrocytes. Accordingly, there is a commonly made connection between the points of light that shine in the night sky and the diffuse and abundant cells that buffer ions and provide support for neurons. An exceptional amount of function has been attributed to, negated for, and potentially reaffirmed for these cells, especially regarding their ability to release neuroactive molecules and influence synaptic plasticity. This makes the precise role of astrocytes in tuning neural communication seem difficult to grasp. However, data from animal models of addiction demonstrate that a variety of drug-induced molecular adaptations responsible for relapse vulnerability take place in astrocyte systems that regulate glutamate uptake and release. These findings highlight astrocytes as a critical component of the neural systems responsible for addiction, serving as a key component of the plasticity responsible for relapse and drug seeking. Here I assemble recent findings that utilize genetic tools to selectively manipulate or measure flux of internal calcium in astrocytes, focusing on G protein-coupled receptor-mediated mobilization of calcium and the induction of glutamate release. Further, I compile evidence regarding astrocyte glutamate release as well as astrocyte association with synapses with respect to the impact of these cellular phenomena in shaping synaptic transmission. I also place these findings in the context of the previous studies of Scofield et al., who explored the role of astrocytes in the nucleus accumbens in the neural mechanisms underlying cocaine seeking.
Collapse
Affiliation(s)
- Michael D. Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425 USA,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425 USA
| |
Collapse
|
5
|
Chen Y, Chen M, Zhu L, Wu JY, Du S, Li Y. Measure and model a 3-D space-variant PSF for fluorescence microscopy image deblurring. OPTICS EXPRESS 2018; 26:14375-14391. [PMID: 29877477 PMCID: PMC6005672 DOI: 10.1364/oe.26.014375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Conventional deconvolution methods assume that the microscopy system is spatially invariant, introducing considerable errors. We developed a method to more precisely estimate space-variant point-spread functions from sparse measurements. To this end, a space-variant version of deblurring algorithm was developed and combined with a total-variation regularization. Validation with both simulation and real data showed that our PSF model is more accurate than the piecewise-invariant model and the blending model. Comparing with the orthogonal basis decomposition based PSF model, our proposed model also performed with a considerable improvement. We also evaluated the proposed deblurring algorithm. Our new deblurring algorithm showed a significantly better signal-to-noise ratio and higher image quality than those of the conventional space-invariant algorithm.
Collapse
Affiliation(s)
- Yemeng Chen
- School of Electronic Science and Engineering, Nanjing University, Nanjing,
China
| | - Mengmeng Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing,
China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL,
USA
| | - Li Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing,
China
| | - Jane Y. Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing,
China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL,
USA
| | - Sidan Du
- School of Electronic Science and Engineering, Nanjing University, Nanjing,
China
| | - Yang Li
- School of Electronic Science and Engineering, Nanjing University, Nanjing,
China
| |
Collapse
|
6
|
Abstract
Dendritic spines are diverse and plastic components of the neuronal cell apparatus and are highly responsive to trophic factors during both development and adulthood. Diolistic labeling of neurons with lipophilic fluorescent dyes, coupled with advanced high-resolution microscopy methods, provides robust labeling of dendritic spines for assessment of their density and morphology. Here, we describe a method for labeling of dendritic spines using diolistic labeling in ex vivo brain slices, visualization using confocal laser scanning microscopy, deconvolution, and analysis using the Surpass module of Bitplane Imaris software.
Collapse
Affiliation(s)
- M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, USA.
| | | | | |
Collapse
|
7
|
Abstract
Volume is an essential characteristic of a cell, and this review describes the main methods of its measurement that have been used in the past several decades. The discussed methods include various implementations of light scattering, estimates based on one or two cell dimensions, surface scanning, fluorescence confocal and transmission slice-by-slice imaging, intracellular volume markers, displacement of extracellular solution, quantitative phase imaging, radioactive methods, and some others. Suitability of these methods to some typical samples and applications is discussed. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Michael A Model
- Department of Biological Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
8
|
Obara B, Jabeen A, Fernandez N, Laissue PP. A novel method for quantified, superresolved, three-dimensional colocalisation of isotropic, fluorescent particles. Histochem Cell Biol 2013; 139:391-402. [PMID: 23381680 DOI: 10.1007/s00418-012-1068-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
Abstract
Colocalisation, the overlap of subcellular structures labelled with different colours, is a key step to characterise cellular phenotypes. We have developed a novel bioimage informatics approach for quantifying colocalisation of round, blob-like structures in two-colour, highly resolved, three-dimensional fluorescence microscopy datasets. First, the algorithm identifies isotropic fluorescent particles, of relative brightness compared to their immediate neighbourhood, in three dimensions and for each colour. The centroids of these spots are then determined, and each object in one location of a colour image is checked for a corresponding object in the other colour image. Three-dimensional distance maps between the centroids of differently coloured spots then display where and how closely they colocalise, while histograms allow to analyse all colocalisation distances. We use the method to reveal sparse colocalisation of different human leukocyte antigen receptors in choriocarcinoma cells. It can also be applied to other isotropic subcellular structures such as vesicles, aggresomes and chloroplasts. The simple, robust and fast approach yields superresolved, object-based colocalisation maps and provides a first indication of protein-protein interactions of fluorescent, isotropic particles.
Collapse
Affiliation(s)
- Boguslaw Obara
- School of Engineering and Computing Sciences, University of Durham, Durham DH1 3LE, UK.
| | | | | | | |
Collapse
|
9
|
Daims H, Wagner M. In situ techniques and digital image analysis methods for quantifying spatial localization patterns of nitrifiers and other microorganisms in biofilm and flocs. Methods Enzymol 2011; 496:185-215. [PMID: 21514465 DOI: 10.1016/b978-0-12-386489-5.00008-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The spatial localization patterns of microorganisms in multispecies biofilms reflect numerous phenomena that influence sessile microbial life, such as substrate concentration gradients within the biofilm and biological interactions with other biofilm populations. Quantitative and population-specific in situ analyses of spatial patterns have a high potential to provide novel insights into the biology of biofilm organisms, including yet uncultured microbes, but such approaches have been developed and used in a few studies only. Here, we outline digital image analysis methods to quantify the coaggregation, mutual avoidance, or random distribution of microbial populations in biofilm and flocs. A protocol is provided for fluorescence in situ hybridization with rRNA-targeted probes, which preserves the three-dimensional biofilm architecture for confocal microscopy and image analysis, and the combined use of these approaches is demonstrated by spatial analyses of nitrifying bacteria in complex biofilm samples.
Collapse
Affiliation(s)
- Holger Daims
- Department of Microbial Ecology, Ecology Center, University of Vienna, Vienna, Austria
| | | |
Collapse
|