1
|
Watanabe J, Takayanagi Y, Yoshida M, Hattori T, Saito M, Kohno K, Kobayashi E, Onaka T. Conditional ablation of vasopressin-synthesizing neurons in transgenic rats. J Neuroendocrinol 2021; 33:e13057. [PMID: 34748241 PMCID: PMC9285515 DOI: 10.1111/jne.13057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/04/2022]
Abstract
Vasopressin-synthesizing neurons are located in several brain regions, including the hypothalamic paraventricular nucleus (PVN), supraoptic nucleus (SON) and suprachiasmatic nucleus (SCN). Vasopressin has been shown to have various functions in the brain, including social recognition memory, stress responses, emotional behaviors and circadian rhythms. The precise physiological functions of vasopressin-synthesizing neurons in specific brain regions remain to be clarified. Conditional ablation of local vasopressin-synthesizing neurons may be a useful tool for investigation of the functions of vasopressin neurons in the regions. In the present study, we characterized a transgenic rat line that expresses a mutated human diphtheria toxin receptor under control of the vasopressin gene promoter. Under a condition of salt loading, which activates the vasopressin gene in the hypothalamic PVN and SON, transgenic rats were i.c.v. injected with diphtheria toxin. Intracerebroventricular administration of diphtheria toxin after salt loading depleted vasopressin-immunoreactive cells in the hypothalamic PVN and SON, but not in the SCN. The number of oxytocin-immunoreactive cells in the hypothalamus was not significantly changed. The rats that received i.c.v. diphtheria toxin after salt loading showed polydipsia and polyuria, which were rescued by peripheral administration of 1-deamino-8-d-arginine vasopressin via an osmotic mini-pump. Intrahypothalamic administration of diphtheria toxin in transgenic rats under a normal hydration condition reduced the number of vasopressin-immunoreactive neurons, but not the number of oxytocin-immunoreactive neurons. The transgenic rat model can be used for selective ablation of vasopressin-synthesizing neurons and may be useful for clarifying roles of vasopressin neurons at least in the hypothalamic PVN and SON in the rat.
Collapse
Affiliation(s)
- Jun Watanabe
- Department of PhysiologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Yuki Takayanagi
- Department of PhysiologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Masahide Yoshida
- Department of PhysiologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Tatsuya Hattori
- Department of PhysiologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Michiko Saito
- Institute for Research InitiativesNara Institute of Science and TechnologyIkomaNaraJapan
- Present address:
Bio‐science Research CenterKyoto Pharmaceutical UniversityKyotoJapan
| | - Kenji Kohno
- Institute for Research InitiativesNara Institute of Science and TechnologyIkomaNaraJapan
| | - Eiji Kobayashi
- Department of Organ FabricationKeio University School of MedicineTokyoJapan
- Present address:
Department of Kidney Regenerative MedicineThe Jikei University School of MedicineTokyoJapan
| | - Tatsushi Onaka
- Department of PhysiologyJichi Medical UniversityShimotsukeTochigiJapan
| |
Collapse
|
2
|
Ueta Y. Transgenic approaches to opening up new fields of vasopressin and oxytocin research. J Neuroendocrinol 2021; 33:e13055. [PMID: 34713515 DOI: 10.1111/jne.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022]
Abstract
Transgenic approaches have been applied to generate transgenic rats that express exogenous genes in arginine vasopressin (AVP)- and oxytocin (OXT)-producing magnocellular neurosecretory cells (MNCs) of the hypothalamic-neurohypophyseal system (HNS). First, the fusion gene that expresses AVP-enhanced green fluorescent protein (eGFP) and OXT-monomeric red fluorescent protein 1 (mRFP1) was used to visualize AVP- and OXT-producing MNCs and their axon terminals in the HNS under fluorescence microscopy. Second, the fusion gene that expresses c-fos-eGFP and c-fos-mRFP1 was used to identify activated neurons physiologically in the central nervous system, including MNCs, circumventricular organs and spinal cord. In addition, AVP-eGFP x c-fos-mRFP1 and OXT-mRFP1 × c-fos-eGFP double transgenic rats were generated to identify activated AVP- and OXT-producing MNCs using appropriate physiological stimuli. Third, the fusion gene that expresses AVP-chanelrhodopsin 2 (ChR2)-eGFP and AVP-hM3Dq-mCherry was used to activate AVP- and OXT-producing MNCs by optogenetic and chemogenetic approaches. In each step, these transgenic approaches in rats have provided new insights on the physiological roles of AVP and OXT not only in the HNS, but also in the whole body. In this review, we summarize the transgenic rats that we generated, as well as related physiological findings.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
3
|
Ueno H, Serino R, Sanada K, Akiyama Y, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Motojima Y, Saito R, Yoshimura M, Maruyama T, Miyamoto T, Tamura M, Otsuji Y, Ueta Y. Effects of acute kidney dysfunction on hypothalamic arginine vasopressin synthesis in transgenic rats. J Physiol Sci 2019; 69:531-541. [PMID: 30937882 PMCID: PMC10717941 DOI: 10.1007/s12576-019-00675-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022]
Abstract
Acute loss of kidney function is a critical internal stressor. Arginine vasopressin (AVP) present in the parvocellular division of the paraventricular nucleus (PVN) plays a key role in the regulation of stress responses. However, hypothalamic AVP dynamics during acute kidney dysfunction remain unclear. In this study, we investigated the effects of bilateral nephrectomy on AVP, using a transgenic rat line that expressed the AVP-enhanced green fluorescent protein (eGFP). The eGFP fluorescent intensities in the PVN were dramatically increased after bilateral nephrectomy. The mRNA levels of eGFP, AVP, and corticotrophin-releasing hormone in the PVN were dramatically increased after bilateral nephrectomy. Bilateral nephrectomy also increased the levels of Fos-like immunoreactive cells in brainstem neurons. These results indicate that bilateral nephrectomy upregulates the AVP-eGFP synthesis. Further studies are needed to identify the neural and/or humoral factors that activate AVP synthesis and regulate neuronal circuits during acute kidney dysfunction.
Collapse
Affiliation(s)
- Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Ryota Serino
- Department of Nephrology, Yoshino Hospital, Kitakyushu, 808-0034, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yasuki Akiyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuhito Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tetsu Miyamoto
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Masahito Tamura
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yutaka Otsuji
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
4
|
Ueno H, Yoshimura M, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Motojima Y, Saito R, Maruyama T, Miyamoto T, Serino R, Tamura M, Onaka T, Otsuji Y, Ueta Y. Upregulation of hypothalamic arginine vasopressin by peripherally administered furosemide in transgenic rats expressing arginine vasopressin-enhanced green fluorescent protein. J Neuroendocrinol 2018; 30:e12603. [PMID: 29682811 DOI: 10.1111/jne.12603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/17/2018] [Indexed: 11/30/2022]
Abstract
Furosemide, which is used worldwide as a diuretic agent, inhibits sodium reabsorption in the Henle's loop, resulting in diuresis and natriuresis. Arginine vasopressin (AVP) is synthesized in the supraoptic nucleus (SON), paraventricular nucleus (PVN), and suprachiasmatic nucleus (SCN) of the hypothalamus. The synthesis AVP in the magnocellular neurons of SON and PVN physiologically regulated by plasma osmolality and blood volume and contributed water homeostasis by increasing water reabsorption in the collecting duct. Central AVP dynamics after peripheral administration of furosemide remain unclear. Here, we studied the effects of intraperitoneal (i.p.) administration of furosemide (20 mg/kg) on hypothalamic AVP by using transgenic rats expressing AVP-enhanced green fluorescent protein (eGFP) under the AVP promoter. The i.p. administration of furosemide did not affect plasma osmolality in the present study; however, eGFP in the SON and magnocellular divisions of the PVN (mPVN) were significantly increased after furosemide administration compared to the control. Immunohistochemical analysis revealed Fos-like immunoreactivity (IR) in eGFP-positive neurons in the SON and mPVN 90 min after i.p. administration of furosemide, and AVP heteronuclear (hn) RNA and eGFP mRNA levels were significantly increased. These furosemide-induced changes were not observed in the suprachiasmatic AVP neurons. Furthermore, furosemide induced a remarkable increase in Fos-IR in the organum vasculosum laminae terminals (OVLT), median preoptic nucleus (MnPO), subfornical organ (SFO), locus coeruleus (LC), nucleus of the solitary tract (NTS), and rostral ventrolateral medulla (RVLM) after i.p. administration of furosemide. In conclusion, we were able to visualize and quantitatively evaluate AVP-eGFP synthesis and neuronal activations after peripheral administration of furosemide, using the AVP-eGFP transgenic rats. The results of this study may provide new insights into the elucidation of physiological mechanisms underlying body fluid homeostasis induced by furosemide. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hiromichi Ueno
- Department of Physiology
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | | | | | | | | | | | | | | | | | - Tetsu Miyamoto
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Ryota Serino
- Department of Nephrology, Yoshino Hospital, Kitakyushu, 808-0034, Japan
| | - Masahito Tamura
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, 329-0498, Japan
| | - Yutaka Otsuji
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | | |
Collapse
|
5
|
Abstract
The supraoptic nucleus (SON) is a particularly good model for the study of cell-type specific gene expression because it contains two distinct neuronal phenotypes, the oxytocin (OT) and vasopressin (AVP) synthesising magnocellular neurones (MCNs). The MCNs are found in approximately equal numbers and selectively express either the OT or the AVP gene in approximately 97% of the MCN population in the SON. An unresolved issue has been to determine what mechanisms are responsible for the highly selective regulation of the cell-type specific expression of OT and AVP genes in the MCNs. Previous attempts to address this question have used various bioinformatic and molecular approaches, which included using heterologous cell lines to study the putative cis-elements in the OT and AVP genes, and the use of OT and/or AVP transgenes in transgenic rodents. The data from all of the above studies identified a region < 0.6 kbp upstream of OT exon I and approximately 3 kb upstream of AVP exon I as being sufficient to produce cell-specific expression of the OT and AVP genes, respectively, although they failed to identify the specific cis-domains responsible for the MCN-specific gene expression. An alternative experimental approach to perform promoter deletion analysis in vivo (i.e. to use stereotaxic viral vector gene transfer into the SON to further dissect the cis-elements in the OT and AVP genes) will be described here. This in vivo method uses adeno-associated viral (AAV) vectors expressing OT-promoter deletion constructs and utilises the enhanced green fluorescent protein (EGFP) as the reporter. The AAV constructs are stereotaxically injected into the rat brain above the SON and, 2 weeks post injection, the rats are sacrificed and assayed for EGFP expression. Using this method, it has been possible to identify specific regions upstream of the transcription start site in the OT and AVP gene promoters that are responsible for conferring the cell-type specificity of the OT and AVP gene expression in the SON.
Collapse
Affiliation(s)
- H Gainer
- Section on Molecular Neuroscience, Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Ueta Y, Fujihara H, Dayanithi G, Kawata M, Murphy D. Specific expression of optically active reporter gene in arginine vasopressin-secreting neurosecretory cells in the hypothalamic-neurohypophyseal system. J Neuroendocrinol 2008; 20:660-4. [PMID: 18601686 DOI: 10.1111/j.1365-2826.2008.01706.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The anti-diuretic hormone arginine vasopressin (AVP) is synthesised in the magnocellular neurosecretory cells (MNCs) in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) of the hypothalamus. AVP-containing MNCs that project their axon terminals to the posterior pituitary can be identified using immunohistochemical techniques with specific antibodies recognising AVP and neurophysin II, and by virtue of their electrophysiological properties. Recently, we generated transgenic rats expressing an AVP-enhanced green fluorescent protein (eGFP) fusion gene in AVP-containing MNCs. In this transgenic rat, eGFP mRNA was observed in the PVN and the SON, and eGFP fluorescence was seen in the PVN and the SON, and also in the posterior pituitary, indicating transport of transgene protein down MNC axons to storage in nerve terminals. The expression of the AVP-eGFP transgene and eGFP fluorescence in the PVN and the SON was markedly increased after dehydration and chronic salt-loading. On the other hand, AVP-containing parvocellular neurosecretory cells in the PVN that are involved in the activation of the hypothalamic-pituitary adrenal axis exhibit robust AVP-eGFP fluorescence after bilateral adrenalectomy and intraperitoneal administration of lipopolysaccharide. In the median eminence, the internal and external layer showed strong fluorescence for eGFP after osmotic stimuli and stressful conditions, respectively, again indicating appropriate transport of transgene traslation products. Brain slices and acutely-dissociated MNCs and axon terminals also exhibited strong fluorescence, as observed under fluorescence microscopy. The AVP-eGFP transgenic animals are thus unique and provide a useful tool to study AVP-secreting cells in vivo for electrophysiology, imaging analysis such as intracellular Ca(2+) imaging, organ culture and in vivo monitoring of dynamic change in AVP secretion.
Collapse
Affiliation(s)
- Y Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | |
Collapse
|
7
|
Fujio T, Fujihara H, Shibata M, Yamada S, Onaka T, Tanaka K, Morita H, Dayanithi G, Kawata M, Murphy D, Ueta Y. Exaggerated response of arginine vasopressin-enhanced green fluorescent protein fusion gene to salt loading without disturbance of body fluid homeostasis in rats. J Neuroendocrinol 2006; 18:776-85. [PMID: 16965296 DOI: 10.1111/j.1365-2826.2006.01476.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We examined the effects of chronic salt loading on the hypothalamic expressions of the enhanced green fluorescent protein (eGFP), arginine vasopressin (AVP) and oxytocin (OXT) genes in AVP-eGFP transgenic rats that expressed eGFP in the hypothalamic AVP-containing neurones. In these rats, salt loading for 5 days caused a marked increase of the eGFP fluorescence in the magnocellular divisions of the paraventricular nucleus (PVN), the supraoptic nucleus (SON) and the internal layer of the median eminence. Expression of the eGFP gene was increased seven- to eight-fold in the PVN and SON of salt-loaded rats in comparison with euhydrated rats. By contrast, none of these changes were observed in the suprachiasmatic nucleus. The expression of the AVP and OXT genes was increased 1.5- to two-fold in the PVN and SON of salt-loaded nontransgenic (control) and transgenic rats. There were no differences in the expression levels of the AVP and OXT genes in the PVN and SON between nontransgenic (control) and transgenic animals under normal conditions and after salt loading. In the posterior pituitary gland, the intensity of the eGFP fluorescence did not change after salt loading for 5 days, but increased after 10 days of salt loading. Upon salt loading, significant increases in the plasma AVP concentrations, plasma osmolality and plasma Na+ were observed. Furthermore, there were no significant differences in changes of water intake, food intake, urine volume, urine osmolality, urine Na+ concentrations, and the body weights in both models under normal or salt-loaded conditions. Our results show that the response of the AVP-eGFP fusion gene to chronic salt loading is exaggerated, and humoral responses such as AVP and OXT and the body fluid homeostasis are maintained in AVP-eGFP transgenic rats. The AVP-eGFP transgenic rat gives us a new opportunity to study the dynamics of the AVP system in vivo.
Collapse
Affiliation(s)
- T Fujio
- Department of Occupational Health, Matsushita Science Center of Industrial Hygiene, Kadoma, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tesson L, Cozzi J, Ménoret S, Rémy S, Usal C, Fraichard A, Anegon I. Transgenic modifications of the rat genome. Transgenic Res 2006; 14:531-46. [PMID: 16245144 DOI: 10.1007/s11248-005-5077-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 03/29/2005] [Indexed: 11/28/2022]
Abstract
The laboratory rat (R. norvegicus) is a very important experimental animal in several fields of biomedical research. This review describes the various techniques that have been used to generate transgenic rats: classical DNA microinjection and more recently described techniques such as lentiviral vector-mediated DNA transfer into early embryos, sperm-mediated transgenesis, embryo cloning by nuclear transfer and germline mutagenesis. It will also cover techniques associated to transgenesis such as sperm cryopreservation, embryo freezing and determination of zygosity. The availability of several technologies allowing genetic manipulation in the rat coupled to genomic data will allow biomedical research to fully benefit from the rat as an experimental animal.
Collapse
Affiliation(s)
- Laurent Tesson
- Institut de Transplantation et de Recherche en Transplantation (ITERT), F-44093, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Ueta Y, Fujihara H, Serino R, Dayanithi G, Ozawa H, Matsuda KI, Kawata M, Yamada J, Ueno S, Fukuda A, Murphy D. Transgenic expression of enhanced green fluorescent protein enables direct visualization for physiological studies of vasopressin neurons and isolated nerve terminals of the rat. Endocrinology 2005; 146:406-13. [PMID: 15375027 DOI: 10.1210/en.2004-0830] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have generated transgenic rats expressing an arginine vasopressin (AVP)-enhanced green fluorescent protein (eGFP) fusion gene. The expression of the eGFP gene and strong fluorescence were observed in the supraoptic nucleus (SON), the paraventricular nucleus (PVN), and the suprachiasmatic nucleus (SCN) in transgenic rats. The hypothalamo-neurohypophyseal tract, isolated SON neurons, and isolated axon terminals in the neurohypophysis also showed robust eGFP fluorescence. Water deprivation for 2 d increased the fluorescence of the eGFP in the SON and the PVN but not the SCN. The whole-cell patch-clamp technique was then used to record the electrical activities specifically identifying eGFP-expressing SON, PVN, and SCN AVP neurons in in vitro brain slice preparations. The AVP-eGFP transgenic rats are a unique new tool with which to study the physiological role of AVP-secreting neurons in the central nervous system and the dynamics of the regulation of AVP secretion in the living neurons and their axon terminals.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sharman G, Ghorbel M, Leroux M, Beaucourt S, Wong LF, Murphy D. Deciphering the mechanisms of homeostatic plasticity in the hypothalamo-neurohypophyseal system—genomic and gene transfer strategies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:151-82. [PMID: 14769434 DOI: 10.1016/j.pbiomolbio.2003.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hypothalamo-neurohypophyseal system (HNS) is the specialised brain neurosecretory apparatus responsible for the production of a peptide hormone, vasopressin, that maintains water balance by promoting water conservation at the level of the kidney. Dehydration evokes a massive increase in the regulated release of hormone from the HNS, and this is accompanied by a plethora of changes in morphology, electrical properties and biosynthetic and secretory activity, all of which are thought to facilitate hormone production and delivery, and hence the survival of the organism. We have adopted a functional genomic strategy to understand the activity dependent plasticity of the HNS in terms of the co-ordinated action of cellular and genetic networks. Firstly, using microarray gene-profiling technologies, we are elucidating which genes are expressed in the HNS, and how the pattern of expression changes following physiological challenge. The next step is to use transgenic rats to probe the functions of these genes in the context of the physiological integrity of the whole organism.
Collapse
Affiliation(s)
- Greig Sharman
- Molecular Neuroendocrinology Research Group, The Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | | | | | | | | | | |
Collapse
|
11
|
Wells SE, Flavell DM, Bisset GW, Houston PA, Christian H, Fairhall KM, Robinson ICAF. Transgenesis and neuroendocrine physiology: a transgenic rat model expressing growth hormone in vasopressin neurones. J Physiol 2003; 551:323-36. [PMID: 12813157 PMCID: PMC2343152 DOI: 10.1113/jphysiol.2002.037655] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Human growth hormone (hGH) and bovine neurophysin (bNP) DNA reporter fragments were inserted into the rat vasopressin (VP) and oxytocin (OT) genes in a 44 kb cosmid construct used to generate two lines of transgenic rats, termed JP17 and JP59. Both lines showed specific hGH expression in magnocellular VP cells in the hypothalamic paraventricular (PVN) and supraoptic nuclei (SON). hGH was also expressed in parvocellular neurones in suprachiasmatic nuclei (SCN), medial amygdala and habenular nuclei in JP17 rats; the rat OT-bNP (rOT-bNP) transgene was not expressed in either line. Immunohistochemistry and radioimmunoassay showed hGH protein in the hypothalamus from where it was transported in varicose fibres via the median eminence to the posterior pituitary gland. Immunogold electron microscopy showed hGH co-stored with VP-NP in the same granules. The VP-hGH transgene did not affect water balance, VP storage or release in vivo. Drinking 2 % saline for 72 h increased hypothalamic transgene hGH mRNA expression, and depleted posterior pituitary hGH and VP stores in parallel. In anaesthetised, water-loaded JP17 rats, hGH was released with VP in response to an acute hypovolumic stimulus (sodium nitrosopentacyano, 400 microg I.V.). JP17 rats had a reduced growth rate, lower anterior pituitary rGH contents, and a reduced amplitude of endogenous pulsatile rGH secretion assessed by automated blood microsampling in conscious rats, consistent with a short-loop feedback of the VP-hGH on the endogenous GH axis. This transgenic rat model enables us to study physiological regulation of hypothalamic transgene protein production, transport and secretion, as well as its effects on other neuroendocrine systems in vivo.
Collapse
Affiliation(s)
- Sara E Wells
- Division of Molecular Neuroendocrinology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Ghorbel MT, Sharman G, Leroux M, Barrett T, Donovan DM, Becker KG, Murphy D. Microarray analysis reveals interleukin-6 as a novel secretory product of the hypothalamo-neurohypophyseal system. J Biol Chem 2003; 278:19280-5. [PMID: 12639960 DOI: 10.1074/jbc.m209902200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Physiological activation of the hypothalamo-neurohypophyseal system (HNS) by dehydration results is a massive release of vasopressin (VP) from the posterior pituitary. This is accompanied by a functional remodeling of the HNS. In this study we used cDNA arrays in an attempt to identify genes that exhibit differential expression in the hypothalamus following dehydration. Our study revealed nine candidate genes, including interleukin-6 (IL-6) as a putative novel secretory product of HNS worthy of further analysis. In situ hybridization and immunocytochemistry confirmed that IL-6 is robustly expressed in the supraoptic (SON) and the paraventricular (PVN) nuclei of the hypothalamus. By double staining immunofluorescence we showed that IL-6 is largely co-localized with VP in the SON and PVN. In situ hybridization, immunocytochemistry, and Western blotting all revealed IL-6 up-regulation in the SON and PVN following dehydration, thus validating the array data. The same dehydration stimulus resulted in an increase in IL-6 immunoreactivity in the axons of the internal zone of the median eminence and a marked reduction in IL-6-like material in the posterior pituitary gland. We thus suggest that IL-6 takes the same secretory pathway as VP and is secreted from the posterior pituitary following a physiological stimulus.
Collapse
Affiliation(s)
- Mohamed T Ghorbel
- University Research Centre for Neuroendocrinology, University of Bristol, Bristol Royal Infirmary, Marlborough Street, Bristol BS2 8HW, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
13
|
Wong LF, Murphy D. Adenoviral-mediated over-expression of Brn2 in the rat paraventricular nucleus: no effect on vasopressin or corticotrophin releasing factor RNA levels. Mol Cell Endocrinol 2003; 200:165-75. [PMID: 12644309 DOI: 10.1016/s0303-7207(02)00355-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have used an over-expression strategy to test the hypothesis that the Class III POU transcription factor Brn2 is rate limiting in the control of the level of expression of the vasopressin (VP) gene in the paraventricular nucleus of the rat hypothalamus. Knockout studies in mice have suggested that Brn2 may contribute to the control of the level of VP gene expression in the adult hypothalamus. However, we show here that in heterologous cell lines, Brn2 transactivates neither the proximal promoter of the rat VP gene, nor a novel reporter construct consisting of the rat VP structural gene and 3 and 2 kbp of upstream and downstream flanking sequences. We hypothesised that this maybe due either to the lack of cis-acting elements within the confines of the reporter vectors used, or to the absence in heterologous cells, of factors required for Brn2 activity. As no cell lines exist that correspond to VP neurons, we devised an adenoviral vector delivery strategy that enabled efficient over-expression of Brn2 in the paraventricular nucleus of the intact rat. Localised over-expression of Brn2 had no effect on VP hnRNA levels. Neither did we detect corticotrophin releasing factor (CRF) mRNA up-regulation by Brn2 over-expression in vivo. This was unexpected as Brn2 transactivates the proximal CRF promoter in vitro. Whilst Brn2 is required for the development of the hypothalamic structures that express VP and CRF, these data suggest that this transcription factor is not required, or is not rate limiting, for expression in the adult.
Collapse
Affiliation(s)
- Liang-Fong Wong
- University Research Centre for Neuroendocrinology, Bristol Royal Infirmary, University of Bristol, Marlborough street, UK
| | | |
Collapse
|
14
|
Murphy D, Wells S. In vivo gene transfer studies on the regulation and function of the vasopressin and oxytocin genes. J Neuroendocrinol 2003; 15:109-25. [PMID: 12535153 DOI: 10.1046/j.1365-2826.2003.00964.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Novel genes can be introduced into the germline of rats and mice by microinjecting fertilized one-cell eggs with fragments of cloned DNA. A gene sequence can thus be studied within the physiological integrity of the resulting transgenic animals, without any prior knowledge of its regulation and function. These technologies have been used to elucidate the mechanisms by which the expression of the two genes in the locus that codes for the neuropeptides vasopressin and oxytocin is confined to, and regulated physiologically within, specific groups of neurones in the hypothalamus. A number of groups have described transgenes, derived from racine, murine and bovine sources, in both rat and mouse hosts, that mimic the appropriate expression of the endogenous vasopressin and genes in magnocellular neurones (MCNs) of the supraoptic and paraventricular nuclei. However, despite considerable effort, a full description of the cis-acting sequences mediating the regulation of the vasopressin-oxytocin locus remains elusive. Two general conclusions have nonetheless been reached. First, that the proximal promoters of both genes are unable to confer any cell-specific regulatory controls. Second, that sequences downstream of the promoter, within the structural gene and/or the intergenic region that separates the two genes, are crucial for appropriate expression. Despite these limitations, sufficient knowledge has been garnered to specifically direct the expression of reporter genes to vasopressin and oxytocin MCNs. Further, it has been shown that reporter proteins can be directed to the regulated secretory pathway, from where they are subject to appropriate physiological release. The use of MCN expression vectors will thus enable the study of the physiology of these neurones through the targeted expression of biologically active molecules. However, the germline transgenic approach has a number of limitations involving the interpretation of phenotypes, as well as the large cost, labour and time demands. High-throughput somatic gene transfer techniques, principally involving the stereotaxic injection of hypothalamic neuronal groups with replication-deficient adenoviral vectors, are now being developed that obviate these difficulties, and which enable the robust, long-lasting expression of biologically active proteins in vasopressin and oxytocin MCNs.
Collapse
Affiliation(s)
- D Murphy
- Molecular Neuroendocrinology Research Group, University of Bristol Research Centre for Neuroendocrinology, Bristol Royal Infirmary, Bristol, UK.
| | | |
Collapse
|
15
|
Davies J, Waller S, Zeng Q, Wells S, Murphy D. Further delineation of the sequences required for the expression and physiological regulation of the vasopressin gene in transgenic rat hypothalamic magnocellular neurones. J Neuroendocrinol 2003; 15:42-50. [PMID: 12535168 DOI: 10.1046/j.1365-2826.2003.00865.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have introduced transgenes into rats with a view to defining genomic regions that mediate the cell-specific and physiological regulation of the vasopressin gene. These transgenes consist of the rat vasopressin structural gene with a reporter inserted into exon III, flanked by different lengths of upstream and downstream sequences. 11-VCAT-3 is flanked by 11 kbp of upstream sequences and 3 kbp of downstream sequences. The previously described 5-VCAT-3 is flanked by 5 kbp of upstream and 3 kbp of downstream sequences. 3-VCAT-3 has 3 kbp of upstream and 3 kbp of downstream sequences, and 3-VCAT-0.2 is flanked by 3 kbp of upstream and 0.2 kbp of downstream sequences. All four transgenes elicit the same expression patterns; low basal expression is seen in the magnocellular supraoptic and paraventricular nuclei, and is negligible in the suprachiasmatic nucleus. Expression increases markedly in vasopressin magnocellular cells following dehydration. The sequences responsible for the cell-specific expression and physiological regulation of our transgenes thus reside within the confines of the smallest construct studied, 3-VCAT-0.2.
Collapse
Affiliation(s)
- J Davies
- Molecular Neuroendocrinology Research Group, University of Bristol Research Centre for Neuroendocrinology, Bristol Royal Infirmary, Bristol, UK
| | | | | | | | | |
Collapse
|
16
|
Wells S, Murphy D. Transgenic studies on the regulation of the anterior pituitary gland function by the hypothalamus. Front Neuroendocrinol 2003; 24:11-26. [PMID: 12609498 DOI: 10.1016/s0091-3022(02)00103-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The anterior pituitary gland is composed of five different cell types secreting hormones whose functions include the regulation of post-natal growth (growth hormone, GH), lactation (prolactin, PRL), reproduction (luteinising hormone, LH, and follicle stimulating hormone, FSH), metabolism (thyroid stimulating hormone, TSH), and stress (adrenocorticotrophic hormone, ACTH). The synthesis and secretion of the anterior pituitary hormones is under the control of neuropeptides released from the hypothalamus into a capillary portal plexus which flows through the external zone of the median eminence to the anterior lobe. This review describes the ways that gene transfer technologies have been applied to whole animals in order to study the regulation of anterior pituitary function by the hypothalamus. The extensive studies on these neuronal systems, within the context of the physiological integrity of the intact organism, not only exemplify the successful application of transgenic technologies to neuroendocrine systems, but also illustrate the problems that have been encountered, and the challenges that lie ahead.
Collapse
Affiliation(s)
- Sara Wells
- Molecular Neuroendocrinology Research Group, University Research Centre for Neuroendocrinology, University of Bristol, Bristol Royal Infirmary, UK
| | | |
Collapse
|
17
|
Gainer H, Yamashita M, Fields RL, House SB, Rusnak M. The magnocellular neuronal phenotype: cell-specific gene expression in the hypothalamo-neurohypophysial system. PROGRESS IN BRAIN RESEARCH 2002; 139:1-14. [PMID: 12436922 DOI: 10.1016/s0079-6123(02)39003-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The magnocellular oxytocin (OT) and vasopressin (VP) neurons of the hypothalamo-neurohypophysial system are exceptional cell biological models to study mechanisms of cell-specific gene expression and neurosecretion of neuropeptides in the central nervous system. Single cell differential gene expression experiments have further defined these phenotypes by identifying novel and distinct regulatory molecules in these neurons. Transgenic mouse studies have led to the intergenic region (IGR) hypothesis, which states that the DNA sequences between the OT- and VP-genes contain critical enhancer sites for their cell-specific expression. The recent cloning and sequencing of the human IGR, and its comparison with the mouse IGR sequence has identified conserved sequences as putative, cell-specific enhancer sites which are now being evaluated by biolistic transfections of organotypic hypothalamic cultures. With these data, it is possible to target the gene expression of specific molecules to magnocellular neurons both in vivo and in vitro, in order to perturb and/or visualize neurosecretory and other processes.
Collapse
Affiliation(s)
- H Gainer
- Section on Molecular Neuroscience, Laboratory of Neurochemistry, NINDS, National Institutes of Health, Building 36, Room 4D04, Bethesda, MD 20892-4130, USA.
| | | | | | | | | |
Collapse
|
18
|
Zhang BJ, Kusano K, Zerfas P, Iacangelo A, Young WS, Gainer H. Targeting of green fluorescent protein to secretory granules in oxytocin magnocellular neurons and its secretion from neurohypophysial nerve terminals in transgenic mice. Endocrinology 2002; 143:1036-46. [PMID: 11861530 DOI: 10.1210/endo.143.3.8700] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oxytocin (OT) is a hypothalamic nonapeptide that is synthesized as part of a larger precursor protein that also contains an approximately 10-kDa protein called neurophysin at its C-terminus. This precursor protein is trafficked through the regulated secretory pathway into secretory granules and then axonally transported to and secreted from nerve terminals in the neural lobe of the pituitary. In this paper, we show that the AI-03 transgene that contains enhanced green fluorescent protein (EGFP) fused to the end of the neurophysin at the C-terminus of the OT pre-prohormone, is expressed selectively in OT-magnocellular neurons and is trafficked to secretory granules in transgenic mice. The EGFP-containing secretory granules are then transported to OT-neurosecretory terminals in the neurohypophysis, where the EGFP fluorescence undergoes depolarization-induced calcium-dependent secretion. The endogenous fluorescence in the neural lobes is sufficiently intense to image secretory events in individual OT nerve terminals (neurosecretosomes) isolated from the posterior pituitaries in these transgenic mice.
Collapse
Affiliation(s)
- B-J Zhang
- Laboratory of Neurochemistry, National Institute of Neurological Diseases and Stroke, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The intergenic region (IGR) separating the genes for vasopressin (VP) and oxytocin (OT) has been shown to be critical for the cell-specific expression of these peptide genes in hypothalamic neurons. To date, the most relevant information about the putative cis-elements in the IGR that might determine cell-specific gene expression has come from studies in transgenic models. As a first step toward increasing the efficiency of the IGR sequence deletion studies in transgenic animals, a comparative genomics approach comparing the IGR sequence in humans versus mice was used to identify conserved sequences that might be candidate regulatory elements. The nucleotide sequence of the IGR between the human VP and OT genes was determined and compared to the mouse IGR, and 26 conserved sequences in three distinct clusters were found. These conserved sequences and motifs may be important for the cell-specific expression of the VP and OT genes. However, before further significant progress can be made, a "high-throughput" method for the analysis of deletion constructs in relevant cell types in vitro is needed. It is proposed here that organotypic culture models combined with the use of particle-mediated gene transfer methods may provide an effective, general strategy for the study of cell-specific expression in the central nervous system.
Collapse
Affiliation(s)
- H Gainer
- Laboratory of Neurochemistry, National Institutes of Health, NINDS, Bethesda, Maryland 20892-4130, USA
| | | | | |
Collapse
|
20
|
Jeong SW, Castel M, Zhang BJ, Fields RL, Paras P, Arnheiter H, Chin H, Gainer H. Cell-specific expression and subcellular localization of neurophysin-CAT-fusion proteins expressed from oxytocin and vasopressin gene promoter-driven constructs in transgenic mice. Exp Neurol 2001; 171:255-71. [PMID: 11573978 DOI: 10.1006/exnr.2001.7785] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cell-specific expression of both the oxytocin (OT) and vasopressin (VP) genes in magnocellular neurons (MCNs) of the hypothalamus has been proposed to be under the control of cis-elements in an intergenic region downstream of the VP gene. We examined this hypothesis using transgenic mice containing mouse genomic DNA-derived constructs linked to chloramphenicol acetyltransferase (CAT) reporters. VP gene expression was studied using constructs containing 3.8 kbp of the 5' flanking region and all the exons and introns in the mouse VP gene, which was fused at the end of exon 3 to a CAT reporter. The two VP-transgene constructs differed by the lengths of their VP gene 3' flanking regions (2.1 versus 3.6 kbp). A similar construct for the oxytocin CAT transgene was used which contained the full-length (3.6 kbp) downstream intergenic region between the mouse genes. All three transgenic constructs produced cell-specific expression of the CAT-reporter in the magnocellular neurons as determined by CAT-immunoreactivity. Oxytocin transgene expression was restricted to OT cells in two founders, and the two VP transgenes to VP cells in five founders. Electron microscopic immunocytochemistry showed that the CAT fusion proteins produced from the OT- and VP-transgenes were efficiently trafficked through the regulated secretory pathways in their respective magnocellular neurons, packaged into large dense core vesicles, and transported to nerve terminals in the posterior pituitary.
Collapse
Affiliation(s)
- S W Jeong
- Laboratory of Neurochemistry, NINDS, Bethesda, Maryland 20892-4130, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 2001; 81:1197-267. [PMID: 11427695 DOI: 10.1152/physrev.2001.81.3.1197] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothalamo-neurohypophysial system (HNS) is the major peptidergic neurosecretory system through which the brain controls peripheral physiology. The hormones vasopressin and oxytocin released from the HNS at the neurohypophysis serve homeostatic functions of water balance and reproduction. From a physiological viewpoint, the core question on the HNS has always been, "How is the rate of hormone production controlled?" Despite a clear description of the physiology, anatomy, cell biology, and biochemistry of the HNS gained over the last 100 years, this question has remained largely unanswered. However, recently, significant progress has been made through studies of gene identity and gene expression in the magnocellular neurons (MCNs) that constitute the HNS. These are keys to mechanisms and events that exist in the HNS. This review is an inventory of what we know about genes expressed in the HNS, about the regulation of their expression in response to physiological stimuli, and about their function. Genes relevant to the central question include receptors and signal transduction components that receive and process the message that the organism is in demand of a neurohypophysial hormone. The key players in gene regulatory events, the transcription factors, deserve special attention. They do not only control rates of hormone production at the level of the gene, but also determine the molecular make-up of the cell essential for appropriate development and physiological functioning. Finally, the HNS neurons are equipped with a machinery to produce and secrete hormones in a regulated manner. With the availability of several gene transfer approaches applicable to the HNS, it is anticipated that new insights will be obtained on how the HNS is able to respond to the physiological demands for its hormones.
Collapse
Affiliation(s)
- J P Burbach
- Rudolf Magnus Institute for Neurosciences, Section of Molecular Neuroscience, Department of Medical Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Si-Hoe SL, Carter D, Murphy D. Species- and tissue-specific physiological regulation of vasopressin mRNA poly(A) tail length. Physiol Genomics 2001; 5:1-9. [PMID: 11161001 DOI: 10.1152/physiolgenomics.2001.5.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transgenic experiments can be used to test the extent to which genes from different species can be swapped around, but still retain function, and be appropriately regulated. A vector has been developed that directs the expression of foreign genes to specific groups of vasopressin (VP) hypothalamic neurons in transgenic rats. Using this vector, we have expressed the bovine VP (bVP) RNA in the rat brain. In contrast to the situation in a mouse host, but like its endogenous rat counterpart, the mRNA encoded by the bVP transgene is subject to posttranscriptional physiological regulation in the hypothalamus; its poly(A) tail dramatically lengthens as a consequence of 3 days of dehydration. Transgene expression is also seen in the adrenal cortex, but here, despite a marked increase in transgene RNA levels with dehydration, there is no change in poly(A) tail length. These data suggest that the mouse hypothalamus and the rat adrenal gland do not have the transcript recognition or enzymatic machinery required for the physiologically responsive poly(A) tail length modulation seen in the rat brain.
Collapse
Affiliation(s)
- S L Si-Hoe
- Molecular Neuroendocrinology Research Group, University Research Centre for Neuroendocrinology, University of Bristol, Bristol Royal Infirmary, Bristol BS2 8HW, United Kingdom
| | | | | |
Collapse
|
23
|
Si-Hoe SL, Wells S, Murphy D. Production of transgenic rodents by the microinjection of cloned DNA into fertilized one-cell eggs. Mol Biotechnol 2001; 17:151-82. [PMID: 11395864 DOI: 10.1385/mb:17:2:151] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transgenic technologies that enable rapid movement between genotype and phenotype through specific loss-of-function, overexpression, or misexpression phenotypes will be crucial in the elucidation of gene sequences emerging from genome projects. This article describes detailed procedures for the generation of transgenic mice and rats by the injection of cloned DNA into the pronuclei of fertilized one-cell eggs.
Collapse
Affiliation(s)
- S L Si-Hoe
- Molecular Neuroendocrinology Research Group, Univ. Res. Centre for Neuroendocrinology, Univ. Bristol, Bristol Royal Infirmary, Marlborough Street, Bristol, BS2 8HW, UK
| | | | | |
Collapse
|
24
|
Transgenic Models for Studies of Oxytocin and Vasopressin. TRANSGENIC MODELS IN ENDOCRINOLOGY 2001. [DOI: 10.1007/978-1-4615-1633-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Shapiro RA, Xu C, Dorsa DM. Differential transcriptional regulation of rat vasopressin gene expression by estrogen receptor alpha and beta. Endocrinology 2000; 141:4056-64. [PMID: 11089536 DOI: 10.1210/endo.141.11.7796] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuronal expression of vasopressin messenger RNA (mRNA) and peptide has been shown to be estrogen dependent. A 5.5-kb genomic DNA fragment, 5' of the AVP coding region, was used in luciferase reporter assays to measure transcriptional activation by either estrogen receptor alpha or beta in response to various treatments. ER alpha and ER beta displayed differential regulation of the AVP promoter. SK-N-SH cells transfected with ER alpha exhibited increased luciferase activity in response to estrogen, and the selective estrogen receptor modulators (SERMs), Tamoxifen, and ICI 182,780. Cells transfected with ER beta exhibited a high constitutive activity, which is unchanged by exposure to SERMs but can be inhibited by estrogen. Deletion of 1.5 kb from the 5' end or mutation of a single estrogen response element (ERE)-like sequence resulted in loss of estrogen-dependent induction by ER alpha and increased the ability of estrogen to inhibit the high constitutive activity of ER beta. The distal ERE-containing 1.5-kb fragment, when coupled to luciferase, is able to support both ER alpha and ER beta mediated activation of transcription by estrogen. These results suggest that a single ERE in the distal 1.5-kb portion of the 5.5-kb fragment contains the primary positive estrogen responsive sequences for ER alpha and ER beta. The data also suggest that sequences proximal to this element serve to inhibit transcription mediated by ER beta.
Collapse
Affiliation(s)
- R A Shapiro
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle 98195, USA.
| | | | | |
Collapse
|
26
|
Si-Hoe SL, De Bree FM, Nijenhuis M, Davies JE, Howell LM, Tinley H, Waller SJ, Zeng Q, Zalm R, Sonnemans M, Van Leeuwen FW, Burbach JP, Murphy D. Endoplasmic reticulum derangement in hypothalamic neurons of rats expressing a familial neurohypophyseal diabetes insipidus mutant vasopressin transgene. FASEB J 2000; 14:1680-4. [PMID: 10973916 DOI: 10.1096/fj.99-0892fje] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S L Si-Hoe
- Molecular Neuroendocrinology Research Group, Department of Medicine, University of Bristol, Bristol Royal Infirmary, Bristol BS2 8HW, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Morgan H, Smith M, Burke Z, Carter D. The transactivation-competent carboxyl-terminal domain of AF-9 is expressed within a sexually dimorphic transcript in rat pituitary. FASEB J 2000; 14:1109-16. [PMID: 10834932 DOI: 10.1096/fasebj.14.9.1109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have investigated the biological role of the cellular counterpart of the leukemogenic AF-9 gene by cloning the rat AF-9 (rAF-9) cDNA and defining the regulation of an anterior pituitary-specific rAF-9 transcript that is expressed in a sexually dimorphic manner. Expression of this transcript is down-regulated after puberty in females and can be subsequently up-regulated in adults by ovariectomy. Hormone replacement studies have provided direct evidence that rAF-9 mRNA expression is suppressed by estrogen. Mapping the 1.9 kb anterior pituitary transcript has shown that it corresponds in size to the rAF-9 cDNA clone, which contains an open reading frame (ORF) that is truncated compared with the human AF-9 ORF, but encodes a previously defined transcriptional activation domain. Thus, the cellular AF-9 gene is alternatively expressed in a manner that reflects the presence of translocated, functionally active (oncogenic) AF-9 sequences in leukemias. Using a novel antisera raised against a rAF-9 peptide, we have also demonstrated tissue- and sex-specific expression of a nuclear 41 kDa anterior pituitary protein and have localized this protein to a major population of growth hormone synthesizing cells. By localizing the expression and defining the physiological regulation of rAF-9, our studies have provided novel insights into the AF-9 gene that will facilitate an understanding of both oncogenic and endocrine roles.
Collapse
Affiliation(s)
- H Morgan
- School of Biosciences, Cardiff University, Cardiff CF1 3US. U.K
| | | | | | | |
Collapse
|
28
|
Abstract
The establishment of novel animal models using gene targeting and transgenic technology has opened a new area of neuropharmacological research. For the first time, it became possible to alter the expression of a gene in a specific cell type of an intact animal by either overexpression, inhibition or ablation. This review describes the technology and lists the relevant tools, such as reporter genes, suicide genes, immortalizing genes, and promoters, necessary for the targeted expression of these and other genes in specific cells of the central nervous system. In addition, the problem is discussed that the mouse is the species in which this technology is by far the most developed, while the rat has been used as the model species for neuropharmacology during the last century.
Collapse
Affiliation(s)
- M Bader
- Max-Delbrück-Center for Molecular Medicine, Transgenics in Berlin-Buch GmbH, Berlin, Germany
| |
Collapse
|
29
|
Murphy D, Xu J, Waller S. Transgenic studies in rats and mice on the osmotic regulation of vasopressin gene expression. Exp Physiol 2000; 85 Spec No:211S-222S. [PMID: 10795925 DOI: 10.1111/j.1469-445x.2000.tb00026.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the past 10-15 years, profoundly important transgenic techniques have been developed that enable new genes to be introduced into whole mammalian organisms. This review describes the ways in which transgenic animals, both rats and mice, have been used to study the mechanisms by which the expression of the vasopressin gene is confined to specific neurones in the hypothalamus, and how the pattern of that expression is altered following an osmotic challenge to the organism.
Collapse
Affiliation(s)
- D Murphy
- Department of Medicine, Bristol Royal Infirmary, University of Bristol, UK.
| | | | | |
Collapse
|
30
|
Young WS, Iacangelo A, Luo XZ, King C, Duncan K, Ginns EI. Transgenic expression of green fluorescent protein in mouse oxytocin neurones. J Neuroendocrinol 1999; 11:935-9. [PMID: 10583728 DOI: 10.1046/j.1365-2826.1999.00410.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Routine targeting of neurones for expression of exogenous genes would facilitate our ability to manipulate their internal milieu or functions, providing insight into physiology of neurones. The magnocellular neurones of the paraventricular and supraoptic nuclei of the hypothalamus have been the objects of limited success by this approach. Here we report on the placement of the enhanced green fluorescent protein (eGFP) coding sequence at various locations within an oxytocin transgene. Placement within the first exon yielded little to no expression, whereas placement in the third exon (as an in-frame fusion with the carboxyl terminus of the oxytocin preprohormone) resulted in cell-specific expression of eGFP in oxytocin neurones. Furthermore, placement of the eGFP sequence downstream of a picornavirus internal ribosomal entry site (IRES), also in the third exon, allowed expression of the eGFP as a separate protein. Other coding sequences should now be amenable to expression within oxytocin neurones to study their physiology.
Collapse
Affiliation(s)
- W S Young
- Section on Neural Gene Expression, National Institute of Mental Health, Bethesda, MD 20892-4068, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Murphy D, Waller S, Fairhall K, Carter DA, Robinson CA. Regulation of the synthesis and secretion of vasopressin. PROGRESS IN BRAIN RESEARCH 1999; 119:137-43. [PMID: 10074786 DOI: 10.1016/s0079-6123(08)61567-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have developed a transgenic system that, for the first time, facilitates the monitoring of the regulatory dynamics of a central peptidergic system from transcription of a neuropeptide gene to the storage and release of the mature secretory product. Here we describe novel studies on the regulation of this system by physiological stimuli. The rat hypothalamic vasopressin (VP) mRNA responds in two ways to the functional demand imposed by an osmotic challenge. Firstly, the abundance of the VP RNA increases, and secondly, the size of the VP transcript increases as a consequence of a lengthening of the poly(A) tail. We have previously shown that chronic ingestion of 6-n-propyl-2-thiouracil (PTU), while not affecting plasma osmolality or VP mRNA size, results in a significant increase in the abundance of the hypothalamic VP mRNA. We now show that chronic PTU ingestion results in a dramatic increase in the abundance of the mRNA encoded by a modified rat vasopressin transgene that is expressed in rat vasopressinergic magnocellular neurons. This is accompanied by a significant depletion in neural lobe stores of a VP. However, this increase in transgene expression is accompanied by an increase in the proportion of transgene encoded products reaching the neural lobe--the pituitary content of a unique peptide encoded by the modified transgene does not change. These observations are further evidence in support of models of neurohypophyseal homeostasis that suggest that pituitary VP peptide levels passively reflect changes in hormone release and synthesis and that the availability of mRNA is the primary determinant of pituitary VP content in the basal state.
Collapse
Affiliation(s)
- D Murphy
- Neuropeptide Laboratory, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore.
| | | | | | | | | |
Collapse
|
32
|
Ingram CD, Ciobanu R, Coculescu IL, Tanasescu R, Coculescu M, Mihai R. Vasopressin neurotransmission and the control of circadian rhythms in the suprachiasmatic nucleus. PROGRESS IN BRAIN RESEARCH 1999; 119:351-64. [PMID: 10074799 DOI: 10.1016/s0079-6123(08)61580-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vasopressin (VP) is one of the principal transmitters in the suprachiasmatic nucleus (SCN). Approximately 20% of neurones in the dorsomedial division of the SCN synthesize the peptide and a high proportion of SCN neurones (> 40%) are excited by VP acting through the V1 receptor. This suggests that VP may act as a feedback regulator of electrical activity within the nucleus. Such an intrinsic excitatory signal can be demonstrated by perifusion with a V1 antagonist which reduces spontaneous neural activity. As the synthesis and release of VP occurs in a circadian manner, this leads to a variable feedback excitation which may contribute to the circadian pattern of activity of the neural clock. This role in amplifying rhythmicity is supported by observations that animals deficient in VP show a reduced circadian amplitude of behavioural rhythms (e.g. locomotor and cortical electroencephalographic rhythms). VP expression declines during ageing and although aged animals show no change in the proportion of SCN neurones excited by VP, the rhythm of spontaneous electrical activity shows a progressive decline, consistent with the reduced endogenous excitatory feedback. However, the homozygous Brattleboro rat which lacks any VP expression still maintains rhythms of electrical activity, indicating that VP is not the sole factor generating circadian activity. The generation of this rhythmicity may depend upon the interaction of VP with other transmitter systems, such as the inhibitory transmitters somatostatin and GABA which show a circadian variation in efficacy. In addition to its role in feedback amplification of the endogenous rhythm of electrical activity, VP also functions as part of the efferent signal to the rest of the CNS where it potentially regulates a number of behavioural and physiological rhythms, including the circadian activity of the hypothalamo-pituitary-adrenal axis. Thus, the combined amplification and signalling functions makes VP an important component of the neuronal clock function in mammals.
Collapse
Affiliation(s)
- C D Ingram
- Department of Anatomy, University of Bristol, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Gainer H. Cell-specific gene expression in oxytocin and vasopressin magnocellular neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 449:15-27. [PMID: 10026782 DOI: 10.1007/978-1-4615-4871-3_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The oxytocin (OT) and vasopressin (VP) expressing magnocellular neurons in the hypothalamic-neurohypophysial system (HNS) have been the most studied of all the neuroendocrine cell-types. Despite this, our understanding of the mechanisms that underly the cell-specific expression of the peptide genes in these neurons has remained obscure. Part of the reason for this may be related to the close apposition of the OT and VP genes in the chromosomal locus, the genes being separated by as little as 3.5 kb in the mouse, and their interactions which are critical for cell-specific expression of the genes. Recent studies using intact rat OT and VP constructs in transgenic mice, and rat and mouse VP genes with CAT inserts in exon III as reporters in transgenic rats and mice, respectively, have suggested the presence of cell-specific enhancer elements in the 3' downstream (intergenic region, IGR) region of the VP gene. Evidence in favor of this view is presented from transgenic mouse studies on the expression of mouse OT- and VP-CAT gene constructs. Oxytocin and vasopressin phenotypes in the magnocellular neuronal population have traditionally been assessed by either immunocytochemical or in situ hybridization histochemical methods leading to the view that these genes are never coexpressed. However, more sensitive methods show that most OT cells also express some VP mRNA, and most VP cells contain some OT mRNA. A third phenotype containing equivalent levels of both OT and VP mRNA can also be found under some conditions, thereby complicating our analysis of cell-specificity. A continuing problem hindering studies of the regulation of OT and VP gene expression in neurons, is the absence of an appropriate cell line to examine these issues. We have found that stationary slice-explant cultures allow for excellent preservation of highly differentiated magnocellular neurons in long-term culture, and that these cultures can be used for physiological and pharmacological studies and analysis of gene expression.
Collapse
Affiliation(s)
- H Gainer
- Laboratory of Neurochemistry, National Institutes of Health, NINDS, Bethesda, Maryland 20892, USA
| |
Collapse
|
34
|
Zeng Q, Subramaniam VN, Wong SH, Tang BL, Parton RG, Rea S, James DE, Hong W. A novel synaptobrevin/VAMP homologous protein (VAMP5) is increased during in vitro myogenesis and present in the plasma membrane. Mol Biol Cell 1998; 9:2423-37. [PMID: 9725904 PMCID: PMC25509 DOI: 10.1091/mbc.9.9.2423] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
cDNA clones encoding a novel protein (VAMP5) homologous to synaptobrevins/VAMPs are detected during database searches. The predicted 102-amino acid VAMP5 harbors a 23-residue hydrophobic region near the carboxyl terminus and exhibits an overall amino acid identity of 33% with synaptobrevin/VAMP1 and 2 and cellubrevin. Northern blot analysis reveals that the mRNA for VAMP5 is preferentially expressed in the skeletal muscle and heart, whereas significantly lower levels are detected in several other tissues but not in the brain. During in vitro differentiation (myogenesis) of C2C12 myoblasts into myotubes, the mRNA level for VAMP5 is increased approximately 8- to 10-fold. Immunoblot analysis using antibodies specific for VAMP5 shows that the protein levels are also elevated approximately 6-fold during in vitro myogenesis of C2C12 cells. Indirect immunofluorescence microscopy and immunoelectron microscopy reveal that VAMP5 is associated with the plasma membrane as well as intracellular perinuclear and peripheral vesicular structures of myotubes. Epitope-tagged versions of VAMP5 are similarly targeted to the plasma membrane.
Collapse
Affiliation(s)
- Q Zeng
- Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Murphy D, Si-Hoe SL, Brenner S, Venkatesh B. Something fishy in the rat brain: molecular genetics of the hypothalamo-neurohypophysial system. Bioessays 1998; 20:741-9. [PMID: 9819563 DOI: 10.1002/(sici)1521-1878(199809)20:9<741::aid-bies7>3.0.co;2-j] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The brain peptides vasopressin and oxytocin play crucial roles in the regulation of salt and water balance. The genes encoding these neurohormones are regulated by cell-specific and physiological cues, but the molecular mechanisms remain obscure. New strategies, involving the introduction of rat transgenes into rats, are being used to address these issues, but the complexity of the rat genome has hampered progress. By contrast, the pufferfish, Fugu rubripes, has a "junk-free" genome. The oxytocin homologue from Fugu, isotocin, has been introduced into rats and is expressed in oxytocin neurons, where it is upregulated by physiological perturbations that upregulate the oxytocin gene. The Fugu and rat lineages separated 400 million years ago, yet the mechanisms that regulate the isotocin and oxytocin genes have been conserved. Fugu genome analysis and transgenesis in the physiologically tractable rat host are a powerful combination that will enable the identification of fundamental components of the neural systems that control homeostasis.
Collapse
Affiliation(s)
- D Murphy
- Department of Medicine, University of Bristol, Bristol Royal Infirmary, UK
| | | | | | | |
Collapse
|
36
|
Abstract
The single-copy genes encoding the vasopressin and oxytocin prepropeptides are closely linked in mouse genome, being separated by an intergenic region of only 3 kbp. These genes are expressed in anatomically defined hypothalamic neurons--in the adult rodent, vasopressin is synthesised in the paraventricular nucleus and the supraoptic nucleus, and in the dorsomedial region of the suprachiasmatic nucleus, whilst oxytocin is expressed in the supraoptic nucleus and paraventricular nucleus, but not in the suprachiasmatic nucleus. The molecular mechanisms that mediate the cell-specific and developmental expression patterns of the two transcription units within the vasopressin-oxytocin locus remain to be elucidated. As a first step in this process, we have used in situ hybridisation to study the expression of the RNAs encoded by the linked vasopressin and oxytocin genes during the development of the mouse hypothalamus. We have revealed a hierarchy of gene activation events, with vasopressin first being observed in presumptive supraoptic nucleus at day 13.5, and in the paraventricular at day 14.5. Oxytocin is seen first in the paraventricular at day 15.5; expression in the supraoptic nucleus is clearly seen at day 18.5. As early as day 15.5, the vasopressin and oxytocin RNAs are expressed in different groups of neurons.
Collapse
Affiliation(s)
- X Jing
- Neuropeptide Laboratory, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | | | | |
Collapse
|
37
|
Waller SJ, Ratty A, Burbach JP, Murphy D. Transgenic and transcriptional studies on neurosecretory cell gene expression. Cell Mol Neurobiol 1998; 18:149-71. [PMID: 9535288 DOI: 10.1023/a:1022512819023] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. Studies of the regulation of neurosecretory cell gene expression suffer from the lack of suitable cell lines. Two approaches have been used to overcome this deficit: transfection of neuropeptide genes into heterologous cell lines and generation of transgenic animals. 2. Studies with heterologous cell lines have revealed the potential involvement of nuclear hormone receptors, POU proteins, and fos/jun/ATF family members in the regulation of the vasopressin and oxytocin genes. Although limited in their scope, these studies have contributed greatly to the dissection of basic properties of elements in the vasopressin and oxytocin gene promoters. 3. Transgenic mice, and more recently rats, have been used to elucidate genomic regions governing cell specificity and physiological regulation of neurosecretory gene expression. The genes encoding the neuropeptides vasopressin and oxytocin have been used in many transgenic studies, due to the well-defined expression patterns and physiology of the endogenous neuropeptides. Cell-specific and physiologically regulated expression of these transgenes has been achieved, demonstrating the action of putative repressor elements and regulation of the expression of one gene by sequences present in the other gene. 4. Appropriate expression and translation of transgenes have resulted in the production of several useful systems. Expression of oncogene sequences in gonadotropin-releasing hormone neurons has allowed the development of cell lines from the resulting tumors, overproduction of corticotropin-releasing factor has produced animal models of anxiety and obesity, and directed ectopic expression of growth hormone has generated a potentially useful rat model of dwarfism. These and other animal models of human disease will provide important avenues for the development of therapeutic strategies.
Collapse
Affiliation(s)
- S J Waller
- Neuropeptide Laboratory, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
38
|
Venkatesh B, Si-Hoe SL, Murphy D, Brenner S. Transgenic rats reveal functional conservation of regulatory controls between the Fugu isotocin and rat oxytocin genes. Proc Natl Acad Sci U S A 1997; 94:12462-6. [PMID: 9356472 PMCID: PMC25001 DOI: 10.1073/pnas.94.23.12462] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have asked whether comparative genome analysis and rat transgenesis can be used to identify functional regulatory domains in the gene locus encoding the hypothalamic neuropeptides oxytocin (OT) and vasopressin. Isotocin (IT) and vasotocin (VT) are the teleost homologues of these genes. A contiguous stretch of 46 kb spanning the Fugu IT-VT locus has been sequenced, and nine putative genes were found. Unlike the OT and vasopressin genes, which are closely linked in the mammalian genome in a tail-to-tail orientation, Fugu IT and VT genes are linked head to tail and are separated by five genes. When a cosmid containing the Fugu IT-VT locus was introduced into the rat genome, we found that the Fugu IT gene was specifically expressed in rat hypothalamic oxytocinergic neurons and mimicked the response of the endogenous OT gene to an osmotic stimulus. These data show that cis-acting elements and trans-acting factors mediating the cell-specific and physiological regulation of the OT and IT genes are conserved between mammals and fish. The combination of Fugu genome analysis and transgenesis in a mammal is a powerful tool for identifying and analyzing conserved vertebrate regulatory elements.
Collapse
Affiliation(s)
- B Venkatesh
- Molecular Genetics Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, 15, Lower Kent Ridge Road, Singapore 119076, USA.
| | | | | | | |
Collapse
|
39
|
Charreau B, Tesson L, Soulillou JP, Pourcel C, Anegon I. Transgenesis in rats: technical aspects and models. Transgenic Res 1996; 5:223-34. [PMID: 8755162 DOI: 10.1007/bf01972876] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The production of transgenic rats by DNA-microinjection into fertilized ova has now become an established procedure, although fewer than 20 lines have been described during the last 5 years. Overall, transgenic rats remain more difficult to produce than transgenic mice, but satisfactory yields have been obtained by several laboratories. A review of the methods used to generate transgenic rats shows considerable variation between different laboratories, particularly in choice of strain, superovulation protocols and the use of embryo culture before reimplantation. In some instances, the production of transgenic rats has provided data that are new and relevant, compared to data obtained in mice bearing the same transgene. Models have been developed for human diseases such as hypertension and autoimmunity, and applications have been found in the study of carcinogenesis and in pharmacological research. Transgenic rat technology also opens up interesting perspectives for transplantation research, in which microsurgery is an essential procedure. Intensive research is in progress in several laboratories to produce rat embryonic stem (ES) cell lines, but existing lines have not participated in germ line formation a prerequisite for their use in gene knock out experiments.
Collapse
Affiliation(s)
- B Charreau
- INSERM U437, Institut de Transplantation et Recherche en Transplantation, Nantes, France
| | | | | | | | | |
Collapse
|
40
|
Luckman SM, Cox HJ. Expression of inducible cAMP early repressor (ICER) in hypothalamic magnocellular neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 34:231-8. [PMID: 8750826 DOI: 10.1016/0169-328x(95)00167-q] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cyclic AMP-responsive genes are regulated both positively and negatively by a number of constitutively expressed nuclear proteins. These proteins bind to cAMP-responsive DNA elements in their target genes and they are activated by protein kinase A-mediated phosphorylation. The cAMP response element modulator gene encodes for several constitutively expressed products. However, a second intronic promoter within the gene is inducible and produces another negatively acting transcription factor, inducible cAMP early repressor (ICER). ICER shows a diurnal pattern of expression in the pineal gland, but to date it has not been noted elsewhere in the brain. Here we show expression of ICER mRNA in hypothalamic magnocellular neurons following osmotic stimulation over a time course consistent with a modulatory effect on the expression of other immediate-early genes, such as c-fos. However, since ICER was not present in magnocellular neurons during parturition, its presence is not a prerequisite for the transient expression of c-fos.
Collapse
Affiliation(s)
- S M Luckman
- Department of Neurobiology, Babraham Institute, Cambridge, UK. luckmans/bbsrc
| | | |
Collapse
|
41
|
Ho MY, Carter DA, Ang HL, Murphy D. Bovine oxytocin transgenes in mice. Hypothalamic expression, physiological regulation, and interactions with the vasopressin gene. J Biol Chem 1995; 270:27199-205. [PMID: 7592977 DOI: 10.1074/jbc.270.45.27199] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To gain insights into the molecular mechanisms that restrict the expression of the oxytocin gene to anatomically defined groups of neurons in the hypothalamus, we generated transgenic mice bearing bovine oxytocin genomic fragments. Appropriate neuron-specific and physiological regulation was observed in mice bearing transgene bOT3.5, which consists of the oxytocin structural gene flanked by 0.6 kilobase pair (kbp) of upstream and 1.9 kbp of downstream sequences. bOT3.5 is expressed in oxytocin magnocellular neurons in the mouse supraoptic nucleus and paraventricular nucleus, but transgene RNAs are excluded from vasopressin neurons. Replacement of the drinking diet of the transgenic mice with 2% (w/v) NaCl for 7 days significantly increased the abundance of bovine oxytocin transcripts in the supraoptic nucleus, but not in the paraventricular nucleus, in parallel with the endogenous mouse oxytocin RNA. Surprisingly, mimicry of the endogenous oxytocin gene expression pattern was lost with larger transgenes. Addition of 0.7 kbp of contiguous downstream sequences (transgene bOT) or linkage to the bovine vasopressin gene (transgene VP-B/bOT3.5) repressed hypothalamic expression. No mice were derived bearing transgene bOT6.4, which consists of the oxytocin structural gene flanked by 3 kbp of upstream and 2.6 kbp of downstream sequences, suggesting that the presence of this DNA is detrimental to normal embryonic development. These data suggest that while bOT3.5 contains sufficient cis-acting sequences to mediate expression to particular subsets of hypothalamic neurons, the overall regulation of the oxytocin gene is governed by multiple interacting enhancers and repressors.
Collapse
Affiliation(s)
- M Y Ho
- Neuropeptide Laboratory, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
42
|
Jessop DS, Murphy D, Larsen PJ. Thymic vasopressin (AVP) transgene expression in rats: a model for the study of thymic AVP hyper-expression in T cell differentiation. J Neuroimmunol 1995; 62:85-90. [PMID: 7499496 DOI: 10.1016/0165-5728(95)00107-d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The peptide arginine vasopressin (AVP) is present within tissues of the immune system and has been implicated in T cell differentiation. We have investigated the expression and production of AVP in the thymus of rats which carry a rat AVP transgene. A 100% increase in thymic AVP immunoreactivity (ir) was detected in transgenic (TG) animals compared to age-matched wild-type (WT) controls. When tissues from TG and WT thymuses were subjected to reversed-phase high-performance liquid chromatography, ir-AVP eluted as a single peak which co-eluted with the standard. Immunocytochemical staining identified the presence of AVP in large epithelial cells within the thymic cortex in both WT and TG animals. The AVP precursor product neurophysin was also detected in epithelial cells in WT and TG thymuses. In situ hybridisation histochemistry using a probe specific for transgenic AVP mRNA revealed that the AVP transgene was expressed in TG thymic cells with a similar morphology and distribution to those which expressed endogenous AVP peptide in WT animals. These results demonstrate that the cellular location and immunoreactive form of AVP expressed in TG animals are similar to that found in WT controls. Thus the TG rat appears to be a model of true physiological, rather than ectopic, over-expression of AVP in the thymus. The hyper-expression of AVP in the thymic epithelial cells of TG animals provides a model in which can be studied the influence of AVP on T cell development and differentiation within the thymus.
Collapse
Affiliation(s)
- D S Jessop
- Department of Medicine, University of Bristol, UK
| | | | | |
Collapse
|
43
|
Waschek JA. Transgenic targeting of neuroendocrine peptide genes in the hypothalamic-pituitary axis. Mol Neurobiol 1995; 10:205-17. [PMID: 7576308 DOI: 10.1007/bf02740676] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A large number of neuroendocrine peptide genes have been tested for their ability to target expression to the hypothalamus and pituitary in transgenic mice. This has resulted in a number of powerful applications, for example, ablation or immortalization of specific cell types, and analysis of transcription regulatory sequences. The greatest amount of success in targeting cells of the neuroendocrine axis has been in the pituitary and has utilized regulatory sequences of genes that are normally expressed in pituitary. Greater difficulties have been encountered in directing expression to specific neurons in the hypothalamus. A primary goal of this review is to consider collectively the data obtained by a number of laboratories in order to draw conclusions about the general sequence requirements for achieving cell-specific expression. The data suggest that the mechanisms controlling cell-specific expression of neuropeptide genes in the hypothalamus are complex and involve multiple regulatory elements that may reside within the gene or many kilobases away from the promoter. These elements act positively and negatively in different cells to enhance or restrict expression, and may include sequences that shield a transgene from regulatory influences of other genes near the point of chromosomal insertion.
Collapse
Affiliation(s)
- J A Waschek
- Department of Psychiatry, University of California, Los Angeles 90024-1759, USA
| |
Collapse
|