1
|
Tyrosine Hydroxylase Neurons Regulate Growth Hormone Secretion via Short-Loop Negative Feedback. J Neurosci 2020; 40:4309-4322. [PMID: 32317389 DOI: 10.1523/jneurosci.2531-19.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Classical studies suggest that growth hormone (GH) secretion is controlled by negative-feedback loops mediated by GH-releasing hormone (GHRH)- or somatostatin-expressing neurons. Catecholamines are known to alter GH secretion and neurons expressing TH are located in several brain areas containing GH-responsive cells. However, whether TH-expressing neurons are required to regulate GH secretion via negative-feedback mechanisms is unknown. In the present study, we showed that between 50% and 90% of TH-expressing neurons in the periventricular, paraventricular, and arcuate hypothalamic nuclei and locus ceruleus of mice exhibited STAT5 phosphorylation (pSTAT5) after an acute GH injection. Ablation of GH receptor (GHR) from TH cells or in the entire brain markedly increased GH pulse secretion and body growth in both male and female mice. In contrast, GHR ablation in cells that express the dopamine transporter (DAT) or dopamine β-hydroxylase (DBH; marker of noradrenergic/adrenergic cells) did not affect body growth. Nevertheless, less than 50% of TH-expressing neurons in the hypothalamus were found to express DAT. Ablation of GHR in TH cells increased the hypothalamic expression of Ghrh mRNA, although very few GHRH neurons were found to coexpress TH- and GH-induced pSTAT5. In summary, TH neurons that do not express DAT or DBH are required for the autoregulation of GH secretion via a negative-feedback loop. Our findings revealed a critical and previously unidentified group of catecholaminergic interneurons that are apt to sense changes in GH levels and regulate the somatotropic axis in mice.SIGNIFICANCE STATEMENT Textbooks indicate until now that the pulsatile pattern of growth hormone (GH) secretion is primarily controlled by GH-releasing hormone and somatostatin neurons. The regulation of GH secretion relies on the ability of these cells to sense changes in circulating GH levels to adjust pituitary GH secretion within a narrow physiological range. However, our study identifies a specific population of tyrosine hydroxylase-expressing neurons that is critical to autoregulate GH secretion via a negative-feedback loop. The lack of this mechanism in transgenic mice results in aberrant GH secretion and body growth. Since GH plays a key role in cell proliferation, body growth, and metabolism, our findings provide a major advance to understand how the brain regulates the somatotropic axis.
Collapse
|
2
|
Abstract
The endocrine hypothalamus constitutes those cells which project to the median eminence and secrete neurohormones into the hypophysial portal blood to act on cells of the anterior pituitary gland. The entire endocrine system is controlled by these peptides. In turn, the hypothalamic neuroendocrine cells are regulated by feedback signals from the endocrine glands and other circulating factors. The neuroendocrine cells are found in specific regions of the hypothalamus and are regulated by afferents from higher brain centers. Integrated function is clearly complex and the networks between and amongst the neuroendocrine cells allows fine control to achieve homeostasis. The entry of hormones and other factors into the brain, either via the cerebrospinal fluid or through fenestrated capillaries (in the basal hypothalamus) is important because it influences the extent to which feedback regulation may be imposed. Recent evidence of the passage of factors from the pars tuberalis and the median eminence casts a new layer in our understanding of neuroendocrine regulation. The function of neuroendocrine cells and the means by which pulsatile secretion is achieved is best understood for the close relationship between gonadotropin releasing hormone and luteinizing hormone, which is reviewed in detail. The secretion of other neurohormones is less rigid, so the relationship between hypothalamic secretion and the relevant pituitary hormones is more complex.
Collapse
Affiliation(s)
- I J Clarke
- Monash University, Department of Physiology, Clayton, Australia
| |
Collapse
|
3
|
Kot M, Sadakierska-Chudy A, Haduch A, Rysz M, Bromek E, Gołembiowska K, Daniel WA. The role of the dorsal noradrenergic pathway of the brain (locus coeruleus) in the regulation of liver cytochrome P450 activity. Eur J Pharmacol 2015; 751:34-41. [PMID: 25637782 DOI: 10.1016/j.ejphar.2015.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 01/08/2015] [Accepted: 01/14/2015] [Indexed: 01/16/2023]
Abstract
Our previous study conducted after intracerebroventricular DSP-4 injection showed an important stimulating role of a brain noradrenergic system in the neuroendocrine regulation of liver cytochrome P450 (CYP) expression. The aim of the present research was to study involvement of the dorsal noradrenergic pathway of the brain (originating from the locus coeruleus) in the expression of liver cytochrome P450. The experiment was carried out on male Wistar rats. Local injection of 6-hydroxydopamine to the locus coeruleus selectively decreased noradrenaline level in the brain (e.g. in the hypothalamus). The serum concentration of the growth hormone rose, while that of the thyroid hormones or corticosterone remained unchanged. A comparative study into cytochrome P450 isoform activity revealed significant increases in the activity of liver CYP2C11 and CYP3A after administration of 6-hydroxydopamine. The observed increase in the activity of CYP2C11 positively correlated with that in CYP protein level, while the enhanced activity of CYP3A was not accompanied with a simultaneous change in the enzyme protein. A 5-day-injection of noradrenaline into the lateral ventricles produced opposite effects on the CYP isoforms. It is concluded that damage to or activation of the dorsal noradrenergic innervation of the periventricular nucleus of the hypothalamus containing somatostatin (a growth hormone release-inhibiting factor) may be responsible for the changes observed in the activity of isoforms CYP2C11 and CYP3A that are regulated by the growth hormone. The obtained results indicate that the dorsal noradrenergic pathway plays an inhibitory (but not a crucial) role in the neuroendocrine regulation of cytochrome P450.
Collapse
Affiliation(s)
- Marta Kot
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | | | - Anna Haduch
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Marta Rysz
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Ewa Bromek
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Krystyna Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Wladyslawa A Daniel
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
4
|
Li XF, Hu MH, Li SY, Geach C, Hikima A, Rose S, Greenwood MP, Greenwood M, Murphy D, Poston L, Lightman SL, O'Byrne KT. Overexpression of corticotropin releasing factor in the central nucleus of the amygdala advances puberty and disrupts reproductive cycles in female rats. Endocrinology 2014; 155:3934-44. [PMID: 25051447 DOI: 10.1210/en.2014-1339] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prolonged exposure to environmental stress activates the hypothalamic-pituitary-adrenal (HPA) axis and generally disrupts the hypothalamic-pituitary-gonadal axis. Because CRF expression in the central nucleus of the amygdala (CeA) is a key modulator in adaptation to chronic stress, and central administration of CRF inhibits the hypothalamic GnRH pulse generator, we tested the hypothesis that overexpression of CRF in the CeA of female rats alters anxiety behavior, dysregulates the HPA axis response to stress, changes pubertal timing, and disrupts reproduction. We used a lentiviral vector to increase CRF expression site specifically in the CeA of preweaning (postnatal day 12) female rats. Overexpression of CRF in the CeA increased anxiety-like behavior in peripubertal rats shown by a reduction in time spent in the open arms of the elevated plus maze and a decrease in social interaction. Paradoxically, puberty onset was advanced but followed by irregular estrous cyclicity and an absence of spontaneous preovulatory LH surges associated with proestrous vaginal cytology in rats overexpressing CRF. Despite the absence of change in basal corticosterone secretion or induced by stress (lipopolysaccharide or restraint), overexpression of CRF in the CeA significantly decreased lipopolysaccharide, but not restraint, stress-induced suppression of pulsatile LH secretion in postpubertal ovariectomized rats, indicating a differential stress responsivity of the GnRH pulse generator to immunological stress and a potential adaptation of the HPA axis to chronic activation of amygdaloid CRF. These data suggest that the expression profile of this key limbic brain CRF system might contribute to the complex neural mechanisms underlying the increasing incidence of early onset of puberty on the one hand and infertility on the other attributed to chronic stress in modern human society.
Collapse
Affiliation(s)
- X F Li
- Division of Women's Health (X.F.L., M.H.H., S.Y.L., C.G., L.P., K.T.O.) and Neurodegenerative Disease Research Group (A.H., S.R.), School of Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (M.P.G., M.G., D.M., S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bromek E, Wójcikowski J, Daniel WA. Involvement of the paraventricular (PVN) and arcuate (ARC) nuclei of the hypothalamus in the central noradrenergic regulation of liver cytochrome P450. Biochem Pharmacol 2013; 86:1614-20. [DOI: 10.1016/j.bcp.2013.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 02/08/2023]
|
6
|
Sadakierska-Chudy A, Haduch A, Rysz M, Gołembiowska K, Daniel WA. The role of brain noradrenergic system in the regulation of liver cytochrome P450 expression. Biochem Pharmacol 2013; 86:800-7. [DOI: 10.1016/j.bcp.2013.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 12/19/2022]
|
7
|
The effect of intracerebroventricular infusions of ghrelin or short fasting on the gene expression and immunoreactivity of neuropeptide Y in the hypothalamic neurons in prepubertal female lambs: A morphofunctional study. J Chem Neuroanat 2012; 46:45-50. [DOI: 10.1016/j.jchemneu.2012.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 01/02/2023]
|
8
|
Delhanty PJD, van der Lely AJ. Ghrelin and glucose homeostasis. Peptides 2011; 32:2309-18. [PMID: 21396419 DOI: 10.1016/j.peptides.2011.03.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/01/2011] [Accepted: 03/01/2011] [Indexed: 12/25/2022]
Abstract
Ghrelin plays an important physiological role in modulating GH secretion, insulin secretion and glucose metabolism. Ghrelin has direct effects on pancreatic islet function. Also, ghrelin is part of a mechanism that integrates the physiological response to fasting. However, pharmacologic studies indicate the important obesogenic/diabetogenic properties of ghrelin. This is very likely of physiological relevance, deriving from a requirement to protect against seasonal periods of food scarcity by building energy reserves, predominantly in the form of fat. Available data indicate the potential of ghrelin blockade as a means to prevent its diabetogenic effects. Several studies indicate a negative correlation between ghrelin levels and the incidence of type 2 diabetes and insulin resistance. However, it is unclear if low ghrelin levels are a risk factor or a compensatory response. Direct antagonism of the receptor does not always have the desired effects, however, since it can cause increased body weight gain. Pharmacological suppression of the ghrelin/des-acyl ghrelin ratio by treatment with des-acyl ghrelin may also be a viable alternative approach which appears to improve insulin sensitivity. A promising recently developed approach appears to be through the blockade of GOAT activity, although the longer term effects of this treatment remain to be investigated.
Collapse
Affiliation(s)
- P J D Delhanty
- Department of Internal Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands.
| | | |
Collapse
|
9
|
Iqbal J, Kurose Y, Canny B, Clarke IJ. Effects of central infusion of ghrelin on food intake and plasma levels of growth hormone, luteinizing hormone, prolactin, and cortisol secretion in sheep. Endocrinology 2006; 147:510-9. [PMID: 16210361 DOI: 10.1210/en.2005-1048] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ghrelin is an endogenous ligand for the GH secretagogue/ghrelin receptor (GHS-R) and stimulates feeding behavior and GH levels in rodents and humans. A preprandial increase in plasma ghrelin levels is seen in sheep on programmed feeding, followed by a postprandial rise in plasma GH levels, but effects on food intake and endocrine function are not defined in this ruminant species. We administered ghrelin to female sheep in various modes and measured effects on voluntary food intake (VFI) and plasma levels of GH, LH, prolactin, and cortisol. Whether administered intracerebroventricularly or iv, ghrelin consistently failed to stimulate VFI. On the other hand, ghrelin invariably increased plasma GH levels and alpha,beta-diaminopropanoic acid-octanoyl3 human ghrelin was more potent than ovine ghrelin. Bolus injection of ghrelin into the third cerebral ventricle reduced plasma LH levels but did not affect levels of prolactin or cortisol. These findings suggested that the preprandial rise in plasma ghrelin that is seen in sheep on programmed feeding does not influence VFI but is likely to be important in the postprandial rise in GH levels. Thus, ghrelin does not appear to be a significant regulator of ingestive behavior in this species of ruminant but acts centrally to indirectly regulate GH and LH secretion.
Collapse
Affiliation(s)
- Javed Iqbal
- Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
10
|
Iqbal J, Manley TR, Ciofi P, Clarke IJ. Reduction in adiposity affects the extent of afferent projections to growth hormone-releasing hormone and somatostatin neurons and the degree of colocalization of neuropeptides in growth hormone-releasing hormone and somatostatin cells of the ovine hypothalamus. Endocrinology 2005; 146:4776-85. [PMID: 16081637 DOI: 10.1210/en.2005-0622] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Various neuropeptides and neurotransmitters affect GH secretion by acting on GHRH and somatostatin (SRIF) cells. GH secretion is also affected by alteration in adiposity, which could be via modulation of GHRH and SRIF cells. We quantified colocalization of neuropeptides in GHRH and SRIF cells and afferent projections to these cells in lean (food restricted) and normally fed sheep (n=4/group). The number of GHRH-immunoreactive (IR) cells in the arcuate nucleus was higher in lean animals, but the number of SRIF-IR cells in the periventricular nucleus was similar in the two groups. A subpopulation of GHRH-IR cells colocalized neuropeptide Y in lean animals, but this was not seen in normally fed animals. GHRH/galanin (GAL) colocalization was higher in lean animals with no difference in numbers of GHRH/tyrosine hydroxylase or GHRH/GAL-like peptide cells. SRIF/enkephalin colocalization was lower in lean animals. The percentage of GHRH neurons receiving SRIF input was similar in lean and normally fed animals, but more GHRH cells received input from enkephalin afferents in normally fed animals. The percentage of SRIF cells receiving GHRH, neuropeptide Y, GAL, and orexin afferents was higher in lean animals. These findings provide an anatomical evidence of central mechanism(s) by which appetite-regulating peptides and dopamine could regulate GH secretion. Increased input to SRIF cells in lean animals may be inhibitory and permissive of increased GH. The appearance of NPY in GHRH cells of lean animals may be a mechanism for regulation of increasing GH secretion with reduced adiposity.
Collapse
Affiliation(s)
- Javed Iqbal
- Prince Henry's Institute of Medical Research, Victoria, Australia
| | | | | | | |
Collapse
|