1
|
Ji C, Ou Y, Yu W, Lv J, Zhang F, Li H, Gu Z, Li J, Zhong Z, Wang H. Thyroid-stimulating hormone-thyroid hormone signaling contributes to circadian regulation through repressing clock2/npas2 in zebrafish. J Genet Genomics 2024; 51:61-74. [PMID: 37328030 DOI: 10.1016/j.jgg.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Thyroid-stimulating hormone (TSH) is important for the thyroid gland, development, growth, and metabolism. Defects in TSH production or the thyrotrope cells within the pituitary gland cause congenital hypothyroidism (CH), resulting in growth retardation and neurocognitive impairment. While human TSH is known to display rhythmicity, the molecular mechanisms underlying the circadian regulation of TSH and the effects of TSH-thyroid hormone (TH) signaling on the circadian clock remain elusive. Here we show that TSH, thyroxine (T4), triiodothyronine (T3), and tshba display rhythmicity in both larval and adult zebrafish and tshba is regulated directly by the circadian clock via both E'-box and D-box. Zebrafish tshba-/- mutants manifest congenital hypothyroidism, with the characteristics of low levels of T4 and T3 and growth retardation. Loss or overexpression of tshba alters the rhythmicity of locomotor activities and expression of core circadian clock genes and hypothalamic-pituitary-thyroid (HPT) axis-related genes. Furthermore, TSH-TH signaling regulates clock2/npas2 via the thyroid response element (TRE) in its promoter, and transcriptome analysis reveals extensive functions of Tshba in zebrafish. Together, our results demonstrate that zebrafish tshba is a direct target of the circadian clock and in turn plays critical roles in circadian regulation along with other functions.
Collapse
Affiliation(s)
- Cheng Ji
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yue Ou
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wangjianfei Yu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiaxin Lv
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fanmiao Zhang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huashan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zeyun Gu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiayuan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu 215123, China; School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
2
|
Yokogi K, Goto Y, Otsuka M, Ojima F, Kobayashi T, Tsuchiba Y, Takeuchi Y, Namba M, Kohno M, Tetsuka M, Takeuchi S, Matsuyama M, Aizawa S. Neuromedin U-deficient rats do not lose body weight or food intake. Sci Rep 2022; 12:17472. [PMID: 36302800 PMCID: PMC9614009 DOI: 10.1038/s41598-022-21764-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023] Open
Abstract
Studies in genetically modified mice establish that essential roles of endogenous neuromedin U (NMU) are anorexigenic function and metabolic regulation, indicating that NMU is expected to be a potential target for anti-obesity agents. However, in central administration experiments in rats, inconsistent results have been obtained, and the essential role of NMU energy metabolism in rats remain unclear. This study aims to elucidate the role of endogenous NMU in rats. We generated NMU knockout (KO) rats that unexpectedly showed no difference in body weight, adiposity, circulating metabolic markers, body temperature, locomotor activity, and food consumption in both normal and high fat chow feeding. Furthermore, unlike reported in mice, expressions of Nmu and NMU receptor type 2 (Nmur2) mRNA were hardly detectable in the rat hypothalamic nuclei regulating feeding and energy metabolism, including the arcuate nucleus and paraventricular nucleus, while Nmu was expressed in pars tuberalis and Nmur2 was expressed in the ependymal cell layer of the third ventricle. These results indicate that the species-specific expression pattern of Nmu and Nmur2 may allow NMU to have distinct functions across species, and that endogenous NMU does not function as an anorexigenic hormone in rats.
Collapse
Affiliation(s)
- Kyoka Yokogi
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| | - Yuki Goto
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| | - Mai Otsuka
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| | - Fumiya Ojima
- grid.415086.e0000 0001 1014 2000Department of Natural Sciences and Biology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192 Japan
| | - Tomoe Kobayashi
- grid.415729.c0000 0004 0377 284XDivision of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| | - Yukina Tsuchiba
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| | - Yu Takeuchi
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| | - Masumi Namba
- grid.415729.c0000 0004 0377 284XDivision of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| | - Mayumi Kohno
- grid.415729.c0000 0004 0377 284XDivision of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| | - Minami Tetsuka
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| | - Sakae Takeuchi
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| | - Makoto Matsuyama
- grid.415729.c0000 0004 0377 284XDivision of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| | - Sayaka Aizawa
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| |
Collapse
|
3
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
4
|
Aizawa S, Gu T, Kaminoda A, Fujioka R, Ojima F, Sakata I, Sakai T, Ogoshi M, Takahashi S, Takeuchi S. Adenosine stimulates neuromedin U mRNA expression in the rat pars tuberalis. Mol Cell Endocrinol 2019; 496:110518. [PMID: 31344393 DOI: 10.1016/j.mce.2019.110518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/20/2019] [Accepted: 07/21/2019] [Indexed: 11/26/2022]
Abstract
Neuromedin U (NMU) shows circadian expression in the rat pars tuberalis (PT), and is known to be suppressed by melatonin. Here we examined the involvement of adenosine in the regulation of Nmu expression. We found that the rat PT expressed adenosine receptor A2b and that an adenosine receptor agonist, NECA, stimulated Nmu expression in brain slice cultures. In vitro promoter assays revealed that NECA stimulated Nmu promoter activity via a cAMP response element (CRE) in the presence of adenosine receptor A2b. NECA also increased the levels of phosphorylated CRE-binding protein. These findings suggest that adenosine stimulates Nmu expression by activating the cAMP signaling pathway through adenosine receptor A2b in the rat PT. This is the first report to demonstrate that Nmu expression in the PT is regulated by adenosine, which acts as an intravital central metabolic signal, in addition to melatonin, which acts as an external photoperiodic environmental signal.
Collapse
Affiliation(s)
- Sayaka Aizawa
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan.
| | - Tingting Gu
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Arisa Kaminoda
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Ryuya Fujioka
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Fumiya Ojima
- Department of Natural Sciences and Biology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Maho Ogoshi
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Sumio Takahashi
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Sakae Takeuchi
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| |
Collapse
|
5
|
Korf HW. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Gen Comp Endocrinol 2018; 258:236-243. [PMID: 28511899 DOI: 10.1016/j.ygcen.2017.05.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 11/28/2022]
Abstract
Seasonal (circannual) rhythms play an important role for the control of body functions (reproduction, metabolism, immune responses) in nearly all living organisms. Also humans are affected by the seasons with regard to immune responses and mental functions, the seasonal affective disorder being one of the most prominent examples. The hypophysial pars tuberalis (PT), an important interface between the hypophysial pars distalis and neuroendocrine centers in the brain, plays an essential role in the regulation of seasonal functions and may even be the seat of the circannual clock. Photoperiodic signals provide a major input to the PT. While the perception of these signals involves extraocular photoreceptors in non-mammalian species (birds, fish), mammals perceive photoperiodic signals exclusively in the retina. A multisynaptic pathway connects the retina with the pineal organ where photoperiodic signals are translated into the neurohormone melatonin that is rhythmically produced night by night and encodes the length of the night. Melatonin controls the functional activity of the mammalian PT by acting upon MT1 melatonin receptors. The PT sends its output signals via retrograde and anterograde pathways. The retrograde pathway targetting the hypothalamus employs TSH as messenger and controls a local hypothalamic T3 system. As discovered in Japanese quail, TSH triggers molecular cascades mediating thyroid hormone conversion in the ependymal cell layer of the infundibular recess of the third ventricle. The local accumulation of T3 in the mediobasal hypothalamus (MBH) appears to activate the gonadal axis by affecting the neuro-glial interaction between GnRH terminals and tanycytes in the median eminence. This retrograde pathway is conserved in photoperiodic mammals (sheep and hamsters), and even in non-photoperiodic laboratory mice provided that they are capable to synthesize melatonin. The anterograde pathway is implicated in the control of prolactin secretion, targets cells in the PD and supposedly employs small molecules as signal substances collectively denominated as "tuberalins". Several "tuberalin" candidates have been proposed, such as tachykinins, the secretory protein TAFA and endocannabinoids (EC). The PT-intrinsic EC system was first demonstrated in Syrian hamsters and shown to respond to photoperiodic changes. Subsequently, the EC system was also demonstrated in the PT of mice, rats and humans. To date, 2-arachidonoylglycerol (2-AG) appears as the most important endocannabinoid from the PT. Likely targets for the EC are folliculo-stellate cells that contain the CB1 receptor and appear to contact lactotroph cells. The CB1 receptor was also found on corticotroph cells which appear as a further target of the EC. Recently, the CB1 receptor was also localized to CRF-containing nerve fibers running in the outer zone of the median eminence. This finding suggests that the EC system of the PT contributes not only to the anterograde, but also to the retrograde pathway. Taken together, the results support the concept that the PT transmits its signals via a "cocktail" of messenger molecules which operate also in other brain areas and systems rather than through PT-specific "tuberalins". Furthermore, they may attribute a novel function to the PT, namely the modulation of the stress response and immune functions.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Dr. Senckenbergische Anatomie, Institut für Anatomie II, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Dunn IC, Wilson PW, Shi Y, Burt DW, Loudon ASI, Sharp PJ. Diurnal and photoperiodic changes in thyrotrophin-stimulating hormone β expression and associated regulation of deiodinase enzymes (DIO2, DIO3) in the female juvenile chicken hypothalamus. J Neuroendocrinol 2017; 29:e12554. [PMID: 29117457 PMCID: PMC5767736 DOI: 10.1111/jne.12554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
Increased thyrotrophin-stimulating hormone β (TSHβ) expression in the pars tuberalis is assumed to be an early step in the neuroendocrine mechanism transducing photoperiodic information. The present study aimed to determine the relationship between long-photoperiod (LP) and diurnal TSHβ gene expression in the juvenile chicken by comparing LP-photostimulated birds with groups kept on a short photoperiod (SP) for 1 or 12 days. TSHβ expression increased by 3- and 23-fold after 1 and 12 days of LP-photostimulation both during the day and at night. Under both SP and LP conditions, TSHβ expression was between 3- and 14-fold higher at night than in the day, suggesting that TSHβ expression cycles in a diurnal pattern irrespective of photoperiod. The ratio of DIO2/3 was decreased on LPs, consequent to changes in DIO3 expression, although there was no evidence of any diurnal effect on DIO2 or DIO3 expression. Plasma prolactin concentrations revealed both an effect of LPs and time-of-day. Thus, TSHβ expression changes in a dynamic fashion both diurnally and in response to photoperiod.
Collapse
Affiliation(s)
- I. C. Dunn
- Roslin Institute and Royal (Dick) School of Veterinary StudiesRoslinScotlandUK
| | - P. W. Wilson
- Roslin Institute and Royal (Dick) School of Veterinary StudiesRoslinScotlandUK
| | - Y. Shi
- Roslin Institute and Royal (Dick) School of Veterinary StudiesRoslinScotlandUK
- College of Animal Science and Veterinary MedicineHenan Agricultural UniversityZhengzhouChina
| | - D. W. Burt
- UQ Genomics InitiativeUniversity of QueenslandSaint LuciaQldAustralia
| | - A. S. I. Loudon
- Faculty of Life SciencesUniversity of ManchesterManchesterUK
| | - P. J. Sharp
- Roslin Institute and Royal (Dick) School of Veterinary StudiesRoslinScotlandUK
| |
Collapse
|
7
|
Aizawa S, Higaki Y, Dudaui A, Nagasaka M, Takahashi S, Sakata I, Sakai T. Identification of marker genes for pars tuberalis morphogenesis in chick embryo: expression of Cytokine-like 1 and Gap junction protein alpha 5 in pars tuberalis. Cell Tissue Res 2016; 366:721-731. [PMID: 27590887 DOI: 10.1007/s00441-016-2484-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
The adenohypophysis is formed from the oral ectoderm and consists of the pars distalis (PD), pars intermedia, and pars tuberalis (PT). The mechanisms of PD development have been extensively studied, and the cellular differentiation of the PD is well understood. However, the morphogenesis and differentiation of the PT are still unclear, and the genes expressed during PT development remain largely unknown. We have explored genes specifically expressed in the PT during embryonic development and analyzed their spatiotemporal expression patterns. Microarray analysis of laser-captured PT and PD tissues obtained from chick embryos on embryonic day 10 (E10.0) has shown high expression of Cytokine-like 1 (CYTL1) and Gap junction protein alpha 5 (GJA5) genes in the PT. Detailed analysis of these spatiotemporal expression patterns during chick embryo development by in situ hybridization has revealed that CYTL1 mRNA first appears in the lateral head ectoderm and ventral head ectoderm at E1.5. The expression of CYTL1 moves into Rathke's pouch at E2.5 and is then localized in the PT primordium where it is continuously expressed until E12.0. GJA5 mRNA is transiently detected in the PT primordium from E6.0 to E12.0, whereas its expression is not detected in the PD during development. Thus, these genes might be involved in the regulation mechanisms of PT development and could be useful markers for PT development.
Collapse
Affiliation(s)
- Sayaka Aizawa
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan.
| | - Yuriko Higaki
- Area of Reguatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Amrita Dudaui
- Area of Reguatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Mai Nagasaka
- Area of Reguatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Sumio Takahashi
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Ichiro Sakata
- Area of Reguatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Takafumi Sakai
- Area of Reguatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| |
Collapse
|
8
|
Fröhlich E, Wahl R. MECHANISMS IN ENDOCRINOLOGY: Impact of isolated TSH levels in and out of normal range on different tissues. Eur J Endocrinol 2016; 174:R29-41. [PMID: 26392471 DOI: 10.1530/eje-15-0713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022]
Abstract
Routine treatment of thyroid cancer (TC) includes long-term suppression of TSH. The necessity of this treatment in low- and intermediate-risk patients as well as the extent of TSH suppression is currently under discussion. A literature search was performed to illustrate the role of TSH in extrathyroidal cells and to identify potential reasons for different effects of exogenously suppressed and endogenously low TSH levels. Although adverse effects of subnormal and supranormal TSH blood levels on heart and brain have not been consistently found, studies show a clear negative effect of suppressed TSH levels on bone mineral density. Experimental data also support an important role of TSH in the immune system. The ability of levothyroxine (l-T4) to regulate TSH levels and triiodothyronine levels in a physiological manner is limited. Reduction of circadian changes in TSH levels, decrease of thyroid hormone-binding proteins, prevention of potential compensatory increases of TSH levels (e.g., in old age), and unresponsiveness of TSH-producing cells to TRH on l-T4 treatment might cause adverse effects of suppressed TSH levels. In view of the adverse effects of aggressive TSH suppression, achieving the suggested levels of TSH between 0.9 and 1 mU/l in the treatment of low-to-intermediate risk TC patients appears justified.
Collapse
Affiliation(s)
| | - Richard Wahl
- Center for Medical ResearchMedical University of Graz, Stiftingtalstraße 24, Graz, AustriaInternal Medicine (Department of EndocrinologyMetabolism, Nephrology and Clinical Chemistry), University of Tuebingen, Otfried-Muellerstrasse 10, Tuebingen, Germany
| |
Collapse
|
9
|
Chronobiological hypothalamic-pituitary-thyroid axis status and antidepressant outcome in major depression. Psychoneuroendocrinology 2015; 59:71-80. [PMID: 26036452 DOI: 10.1016/j.psyneuen.2015.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/18/2015] [Accepted: 05/11/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND We previously demonstrated that the difference between 2300h and 0800h TSH response to protirelin (TRH) tests on the same day (ΔΔTSH test) is an improved measure in detecting hypothalamic-pituitary-thyroid (HPT) axis dysregulation in depression. This chronobiological index (1) is reduced in about three quarters of major depressed inpatients, and (2) is normalized after successful antidepressant treatment. In the present study, we examined whether early changes in HPT axis activity during the first 2 weeks of antidepressant treatment could be associated with subsequent outcome. METHODS The ΔΔTSH test was performed in 50 drug-free DSM-IV euthyroid major depressed inpatients and 50 hospitalized controls. After 2 weeks of antidepressant treatment the ΔΔTSH test was repeated in all inpatients. Antidepressant response was evaluated after 6 weeks of treatment. RESULTS At baseline, ΔΔTSH values were significantly lower in patients compared to controls and 38 patients (76%) showed reduced ΔΔTSH values (i.e., <2.5mU/L). After 2 weeks of antidepressant treatment, 20 patients showed ΔΔTSH normalization (among them 18 were subsequent remitters), while 18 patients did not normalize their ΔΔTSH (among them 15 were non-remitters) (p<0.00001). Among the 12 patients who had normal ΔΔTSH values at baseline, 8 out 9 who had still normal values after 2 weeks of treatment were remitters, while the 3 with worsening HPT axis function (i.e., reduced ΔΔTSH value after 2 weeks of treatment) were non-remitters (p<0.02). A logistic regression analysis revealed that ΔΔTSH levels after 2 weeks of treatment could predict the probability of remission (odds ratio [OR]=2.11, 95% confidence interval [CI]=1.31-3.41). CONCLUSIONS Our results suggest that after 2 weeks of antidepressant treatment: (1) chronobiological restoration of the HPT axis activity precedes clinical remission, and (2) alteration of the HPT axis is associated with treatment resistance.
Collapse
|
10
|
Bowers J, Terrien J, Clerget-Froidevaux MS, Gothié JD, Rozing MP, Westendorp RGJ, van Heemst D, Demeneix BA. Thyroid hormone signaling and homeostasis during aging. Endocr Rev 2013; 34:556-89. [PMID: 23696256 DOI: 10.1210/er.2012-1056] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Studies in humans and in animal models show negative correlations between thyroid hormone (TH) levels and longevity. TH signaling is implicated in maintaining and integrating metabolic homeostasis at multiple levels, notably centrally in the hypothalamus but also in peripheral tissues. The question is thus raised of how TH signaling is modulated during aging in different tissues. Classically, TH actions on mitochondria and heat production are obvious candidates to link negative effects of TH to aging. Mitochondrial effects of excess TH include reactive oxygen species and DNA damage, 2 factors often considered as aging accelerators. Inversely, caloric restriction, which can retard aging from nematodes to primates, causes a rapid reduction of circulating TH, reducing metabolism in birds and mammals. However, many other factors could link TH to aging, and it is these potentially subtler and less explored areas that are highlighted here. For example, effects of TH on membrane composition, inflammatory responses, stem cell renewal and synchronization of physiological responses to light could each contribute to TH regulation of maintenance of homeostasis during aging. We propose the hypothesis that constraints on TH signaling at certain life stages, notably during maturity, are advantageous for optimal aging.
Collapse
Affiliation(s)
- J Bowers
- Muséum national d'Histoire Naturelle, Laboratoire de Physiologie Générale et Comparée, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7221, 75231 Paris cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Aizawa S, Sakata I, Nagasaka M, Higaki Y, Sakai T. Negative regulation of neuromedin U mRNA expression in the rat pars tuberalis by melatonin. PLoS One 2013; 8:e67118. [PMID: 23843987 PMCID: PMC3699551 DOI: 10.1371/journal.pone.0067118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/15/2013] [Indexed: 11/19/2022] Open
Abstract
The pars tuberalis (PT) is part of the anterior pituitary gland surrounding the median eminence as a thin cell layer. The characteristics of PT differ from those of the pars distalis (PD), such as cell composition and gene expression, suggesting that the PT has a unique physiological function compared to the PD. Because the PT highly expresses melatonin receptor type 1, it is considered a mediator of seasonal and/or circadian signals of melatonin. Expression of neuromedin U (NMU) that is known to regulate energy balance has been previously reported in the rat PT; however, the regulatory mechanism of NMU mRNA expression and secretion in the PT are still obscure. In this study, we examined both the diurnal change of NMU mRNA expression in the rat PT and the effects of melatonin on NMU in vivo. In situ hybridization and quantitative PCR analysis of laser microdissected PT samples revealed that NMU mRNA expression in the PT has diurnal variation that is high during the light phase and low during the dark phase. Furthermore, melatonin administration significantly suppressed NMU mRNA expression in the PT in vivo. On the other hand, 48 h fasting did not have an effect on PT-NMU mRNA expression, and the diurnal change of NMU mRNA expression was maintained. We also found the highest expression of neuromedin U receptor type 2 (NMUR2) mRNA in the third ventricle ependymal cell layer, followed by the arcuate nucleus and the spinal cord. These results suggest that NMU mRNA expression in the PT is downregulated by melatonin during the dark phase and shows diurnal change. Considering that NMU mRNA in the PT showed the highest expression level in the brain, PT-NMU may act on NMUR2 in the brain, especially in the third ventricle ependymal cell layer, with a circadian rhythm.
Collapse
Affiliation(s)
- Sayaka Aizawa
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| | - Mai Nagasaka
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| | - Yuriko Higaki
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| |
Collapse
|
12
|
Inoue M, Aizawa S, Higaki Y, Kawashima A, Koike K, Takagi H, Sakai T, Sakata I. Detailed morphogenetic analysis of the embryonic chicken pars tuberalis as glycoprotein alpha subunit positive region. J Mol Histol 2012; 44:401-9. [DOI: 10.1007/s10735-012-9479-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022]
|
13
|
Yamazaki M, Aizawa S, Tanaka T, Sakai T, Sakata I. Ghrelin increases intracellular Ca2+ concentration in the various hormone-producing cell types of the rat pituitary gland. Neurosci Lett 2012; 526:29-32. [DOI: 10.1016/j.neulet.2012.07.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 12/26/2022]
|
14
|
Detailed analysis of the δ-crystallin mRNA-expressing region in early development of the chick pituitary gland. J Mol Histol 2012; 43:273-80. [DOI: 10.1007/s10735-012-9407-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/19/2012] [Indexed: 02/06/2023]
|
15
|
Aizawa S, Sakai T, Sakata I. Glutamine and glutamic acid enhance thyroid-stimulating hormone β subunit mRNA expression in the rat pars tuberalis. J Endocrinol 2012; 212:383-94. [PMID: 22219301 DOI: 10.1530/joe-11-0388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thyroid-stimulating hormone (TSH)-producing cells of the pars tuberalis (PT) display distinct characteristics that differ from those of the pars distalis (PD). The mRNA expression of TSHβ and αGSU in PT has a circadian rhythm and is inhibited by melatonin via melatonin receptor type 1; however, the detailed regulatory mechanism for TSHβ expression in the PT remains unclear. To identify the factors that affect PT, a microarray analysis was performed on laser-captured PT tissue to screen for genes coding for receptors that are abundantly expressed in the PT. In the PT, we found high expression of the KA2, which is an ionotropic glutamic acid receptor (iGluR). In addition, the amino acid transporter A2 (ATA2), also known as the glutamine transporter, and glutaminase (GLS), as well as GLS2, were highly expressed in the PT compared to the PD. We examined the effects of glutamine and glutamic acid on TSHβ expression and αGSU expression in PT slice cultures. l-Glutamine and l-glutamic acid significantly stimulated TSHβ expression in PT slices after 2- and 4-h treatments, and the effect of l-glutamic acid was stronger than that of l-glutamine. In contrast, treatment with glutamine and glutamic acid did not affect αGSU expression in the PT or the expression of TSHβ or αGSU in the PD. These results strongly suggest that glutamine is taken up by PT cells through ATA2 and that glutamic acid locally converted from glutamine by Gls induces TSHβ expression via the KA2 in an autocrine and/or paracrine manner in the PT.
Collapse
Affiliation(s)
- Sayaka Aizawa
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama 338-8570, Japan
| | | | | |
Collapse
|
16
|
Tonsfeldt KJ, Chappell PE. Clocks on top: the role of the circadian clock in the hypothalamic and pituitary regulation of endocrine physiology. Mol Cell Endocrinol 2012; 349:3-12. [PMID: 21787834 PMCID: PMC3242828 DOI: 10.1016/j.mce.2011.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 07/01/2011] [Accepted: 07/01/2011] [Indexed: 01/24/2023]
Abstract
Recent strides in circadian biology over the last several decades have allowed researchers new insight into how molecular circadian clocks influence the broader physiology of mammals. Elucidation of transcriptional feedback loops at the heart of endogenous circadian clocks has allowed for a deeper analysis of how timed cellular programs exert effects on multiple endocrine axes. While the full understanding of endogenous clocks is currently incomplete, recent work has re-evaluated prior findings with a new understanding of the involvement of these cellular oscillators, and how they may play a role in constructing rhythmic hormone synthesis, secretion, reception, and metabolism. This review addresses current research into how multiple circadian clocks in the hypothalamus and pituitary receive photic information from oscillators within the hypothalamic suprachiasmatic nucleus (SCN), and how resultant hypophysiotropic and pituitary hormone release is then temporally gated to produce an optimal result at the cognate target tissue. Special emphasis is placed not only on neural communication among the SCN and other hypothalamic nuclei, but also how endogenous clocks within the endocrine hypothalamus and pituitary may modulate local hormone synthesis and secretion in response to SCN cues. Through evaluation of a larger body of research into the impact of circadian biology on endocrinology, we can develop a greater appreciation into the importance of timing in endocrine systems, and how understanding of these endogenous rhythms can aid in constructing appropriate therapeutic treatments for a variety of endocrinopathies.
Collapse
Affiliation(s)
- Karen J Tonsfeldt
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | | |
Collapse
|
17
|
Hanon EA, Routledge K, Dardente H, Masson-Pévet M, Morgan PJ, Hazlerigg DG. Effect of photoperiod on the thyroid-stimulating hormone neuroendocrine system in the European hamster (Cricetus cricetus). J Neuroendocrinol 2010; 22:51-5. [PMID: 19912472 DOI: 10.1111/j.1365-2826.2009.01937.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent studies have characterised a retrograde mechanism whereby the pineal hormone melatonin acts in the pars tuberalis (PT) of the pituitary gland to control thyroid hormone action in the hypothalamus, leading to changes in seasonal reproductive function. This involves the release of thyroid-stimulating hormone (TSH) from PT that activates type II deiodinase (DIO2) gene expression in hypothalamic ependymal cells, locally generating biologically active T3, and thus triggering a neuroendocrine cascade. In the present study, we investigated whether a similar regulatory mechanism operates in the European hamster. This species utilises both melatonin signalling and a circannual timer to time the seasonal reproductive cycle. We found that expression of betaTSH RNA in the PT was markedly increased under long compared to short photoperiod, whereas TSH receptor expression was localised in the ependymal cells lining the third ventricle, and in the PT, where its expression varied with time and photoperiod. In the ependymal cells at the base of the third ventricle, DIO2 and type III deiodinase (DIO3) expression was reciprocally regulated, with DIO2 activated under long and repressed under short photoperiod, and the reverse case for DIO3. These data are consistent with recent observations in sheep, and suggest that the PT TSH third ventricle-ependymal cell relay plays a conserved role in initiating the photoperiodic response in both long- and short-day breeding mammals.
Collapse
Affiliation(s)
- E A Hanon
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | |
Collapse
|
18
|
Unfried C, Ansari N, Yasuo S, Korf HW, von Gall C. Impact of melatonin and molecular clockwork components on the expression of thyrotropin beta-chain (Tshb) and the Tsh receptor in the mouse pars tuberalis. Endocrinology 2009; 150:4653-62. [PMID: 19589858 DOI: 10.1210/en.2009-0609] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photoperiodic regulation of reproduction in birds and mammals involves thyrotropin beta-chain (TSHb), which is secreted from the pars tuberalis (PT) and controls the expression of deiodinase type 2 and 3 in the ependymal cell layer of the infundibular recess (EC) via TSH receptors (TSHRs). To analyze the impact of melatonin and the molecular clockwork on the expression of Tshb and Tshr, we investigated melatonin-proficient C3H wild-type (WT), melatonin receptor 1-deficient (MT1-/-) or clockprotein PERIOD1-deficient (mPER1-/-) mice. Expression of Tshb and TSHb immunoreactivity in PT were low during day and high during the night in WT, high during the day and low during the night in mPER1-deficient, and equally high during the day and night in MT1-deficient mice. Melatonin injections into WT acutely suppressed Tshb expression. Transcription assays showed that the 5' upstream region of the Tshb gene could be controlled by clockproteins. Tshr levels in PT were low during the day and high during the night in WT and mPER1-deficient mice and equally low in MT1-deficient mice. Tshr expression in the EC did not show a day/night variation. Melatonin injections into WT acutely induced Tshr expression in PT but not in EC. TSH stimulation of hypothalamic slice cultures of WT induced phosphorylated cAMP response element-binding protein in PT and EC and deiodinase type 2 in the EC. Our data suggest that Tshb expression in PT is controlled by melatonin and the molecular clockwork and that melatonin activates Tshr expression in PT but not in EC. They also confirm the functional importance of TSHR in the PT and EC.
Collapse
Affiliation(s)
- Claudia Unfried
- Emmy Noether-Nachwuchsgruppe, Institut für Anatomie II, Goethe-Universität, D-60590 Frankfurt/M, Germany
| | | | | | | | | |
Collapse
|