1
|
Du R, Liang T, Lu G. Modulation of empathic abilities by the interplay between estrogen receptors and arginine vasopressin. Neurosci Res 2024:S0168-0102(24)00110-X. [PMID: 39245211 DOI: 10.1016/j.neures.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/05/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
This review examines the complex interactions between estrogen receptors α and β (ERα and ERβ) and arginine vasopressin (AVP), delving into their significant roles in modulating empathy, a critical psychological component in human social dynamics. Empathy, integrating affective and cognitive elements, is anchored in neural regions like the amygdala and prefrontal cortex. ERα and ERβ, pivotal in estrogen regulation, influence neurotransmitter dynamics and neural network activities, crucial for empathic development. AVP, key in regulating water balance, blood pressure, and social behaviors, interplays with these receptors, profoundly impacting empathic responses. The study highlights that ERα predominantly enhances empathy, especially affective empathy, by stimulating AVP synthesis and release. In contrast, ERβ may diminish empathy in certain contexts by suppressing AVP expression and activity. The intricate interplay, homeostatic balance, and mutual conversion between ERα and ERβ in AVP regulation are identified as challenging yet crucial areas for future research. These findings provide essential insights into the neurobiological underpinnings of empathy, offering new avenues for therapeutic interventions in social cognitive disorders and emotional dysregulation.
Collapse
Affiliation(s)
- Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Ting Liang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Guofang Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Salgado-Mozo S, Thirouin ZS, Wyrosdic JC, García-Hernández U, Bourque CW. Na X Channel Is a Physiological [Na +] Detector in Oxytocin- and Vasopressin-Releasing Magnocellular Neurosecretory Cells of the Rat Supraoptic Nucleus. J Neurosci 2023; 43:8306-8316. [PMID: 37783507 PMCID: PMC10711705 DOI: 10.1523/jneurosci.1203-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
The Scn7A gene encodes NaX, an atypical noninactivating Na+ channel, whose expression in sensory circumventricular organs is essential to maintain homeostatic responses for body fluid balance. However, NaX has also been detected in homeostatic effector neurons, such as vasopressin (VP)-releasing magnocellular neurosecretory cells (MNCVP) that secrete VP (antidiuretic hormone) into the bloodstream in response to hypertonicity and hypernatremia. Yet, the physiological relevance of NaX expression in these effector cells remains unclear. Here, we show that rat MNCVP in males and females is depolarized and excited in proportion with isosmotic increases in [Na+]. These responses were caused by an inward current resulting from a cell-autonomous increase in Na+ conductance. The Na+-evoked current was unaffected by blockers of other Na+-permeable ion channels but was significantly reduced by shRNA-mediated knockdown of Scn7A expression. Furthermore, reducing the density of NaX channels selectively impaired the activation of MNCVP by systemic hypernatremia without affecting their responsiveness to hypertonicity in vivo These results identify NaX as a physiological Na+ sensor, whose expression in MNCVP contributes to the generation of homeostatic responses to hypernatremia.SIGNIFICANCE STATEMENT In this study, we provide the first direct evidence showing that the sodium-sensing channel encoded by the Scn7A gene (NaX) mediates cell-autonomous sodium detection by MNCs in the low millimolar range and that selectively reducing the expression of these channels in MNCs impairs their activation in response to a physiologically relevant sodium stimulus in vitro and in vivo These data reveal that NaX operates as a sodium sensor in these cells and that the endogenous sensory properties of osmoregulatory effector neurons contribute to their homeostatic activation in vivo.
Collapse
Affiliation(s)
- Sandra Salgado-Mozo
- Brain Repair and Integrative Neuroscience Program, Research Institute of McGill University Health Center, Montréal, Québec H3G1A4, Canada
- Department of Physiology, Biophysics and Neurosciences, Centre for Research and Advanced Studies, Instituto Politecnico Nacional, 07360 Mexico City, Mexico
| | - Zahra S Thirouin
- Brain Repair and Integrative Neuroscience Program, Research Institute of McGill University Health Center, Montréal, Québec H3G1A4, Canada
| | - Joshua C Wyrosdic
- Brain Repair and Integrative Neuroscience Program, Research Institute of McGill University Health Center, Montréal, Québec H3G1A4, Canada
| | - Ubaldo García-Hernández
- Department of Physiology, Biophysics and Neurosciences, Centre for Research and Advanced Studies, Instituto Politecnico Nacional, 07360 Mexico City, Mexico
| | - Charles W Bourque
- Brain Repair and Integrative Neuroscience Program, Research Institute of McGill University Health Center, Montréal, Québec H3G1A4, Canada
| |
Collapse
|
3
|
Forostyak O, Butenko O, Anderova M, Forostyak S, Sykova E, Verkhratsky A, Dayanithi G. Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells. Stem Cell Res 2016; 16:622-34. [PMID: 27062357 DOI: 10.1016/j.scr.2016.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/09/2023] Open
Abstract
Adherent, fibroblastic cells from different tissues are thought to contain subsets of tissue-specific stem/progenitor cells (often called mesenchymal stem cells). These cells display similar cell surface characteristics based on their fibroblastic nature, but also exhibit differences in molecular phenotype, growth rate, and their ability to differentiate into various cell phenotypes. The mechanisms underlying these differences remain poorly understood. We analyzed Ca(2+) signals and membrane properties in rat adipose-derived stromal cells (ADSCs) and bone marrow stromal cells (BMSCs) in basal conditions, and then following a switch into medium that contains factors known to modify their character. Modified ADSCs (mADSCs) expressed L-type Ca(2+) channels whereas both L- and P/Q- channels were operational in mBMSCs. Both mADSCs and mBMSCs possessed functional endoplasmic reticulum Ca(2+) stores, expressed ryanodine receptor-1 and -3, and exhibited spontaneous [Ca(2+)]i oscillations. The mBMSCs expressed P2X7 purinoceptors; the mADSCs expressed both P2X (but not P2X7) and P2Y (but not P2Y1) receptors. Both types of stromal cells exhibited [Ca(2+)]i responses to vasopressin (AVP) and expressed V1 type receptors. Functional oxytocin (OT) receptors were, in contrast, expressed only in modified ADSCs and BMSCs. AVP and OT-induced [Ca(2+)]i responses were dose-dependent and were blocked by their respective specific receptor antagonists. Electrophysiological data revealed that passive ion currents dominated the membrane conductance in ADSCs and BMSCs. Medium modification led to a significant shift in the reversal potential of passive currents from -40 to -50mV in cells in basal to -80mV in modified cells. Hence membrane conductance was mediated by non-selective channels in cells in basal conditions, whereas in modified medium conditions, it was associated with K(+)-selective channels. Our results indicate that modification of ADSCs and BMSCs by alteration in medium formulation is associated with significant changes in their Ca(2+) signaling and membrane properties.
Collapse
Affiliation(s)
- Oksana Forostyak
- Department of Molecular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic
| | - Olena Butenko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.
| | - Miroslava Anderova
- Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic; Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Serhiy Forostyak
- Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic; Department of Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Eva Sykova
- Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic; Department of Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Alexei Verkhratsky
- University of Manchester, School of Biological Sciences, D.4417 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Govindan Dayanithi
- Department of Molecular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; Institut National de la Santé et de la Recherche Médicale-U1198, Université Montpellier, Montpellier 34095, France; Ecole Pratique des Hautes Etudes-Sorbonne, Les Patios Saint-Jacques, 4-14 rue Ferrus, 75014 Paris, France.
| |
Collapse
|
4
|
Vujovic N, Gooley JJ, Jhou TC, Saper CB. Projections from the subparaventricular zone define four channels of output from the circadian timing system. J Comp Neurol 2015; 523:2714-37. [PMID: 26010698 DOI: 10.1002/cne.23812] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 01/22/2023]
Abstract
The subparaventricular zone of the hypothalamus (SPZ) is the main efferent target of neural projections from the suprachiasmatic nucleus (SCN) and an important relay for the circadian timing system. Although the SPZ is fairly homogeneous cytoarchitecturally and neurochemically, it has been divided into distinct functional and connectional subdivisions. The dorsal subdivision of the SPZ (dSPZ) plays an important role in relaying signals from the SCN controlling body temperature rhythms, while the ventral subdivision (vSPZ) is critical for rhythms of sleep and locomotor activity (Lu et al. [] J Neurosci 21:4864-4874). On the other hand, the medial part of the SPZ receives input mainly from the dorsomedial SCN, whereas the lateral SPZ receives input from the ventrolateral SCN and the retinohypothalamic tract (Leak and Moore [] J Comp Neurol 433:312-334). We therefore investigated whether there are corresponding differences in efferent outputs from these four quadrants of the SPZ (dorsolateral, ventrolateral, dorsomedial, and ventromedial) by a combination of anterograde and retrograde tracing. We found that, while all four subdivisions of the SPZ share a similar backbone of major projection pathways to the septal region, thalamus, hypothalamus, and brainstem, each segment of the SPZ has a specific set of targets where its projections dominate. Furthermore, we observed intra-SPZ projections of varying densities between the four subdivisions. Taken together, this pattern of organization suggests that the circadian timing system may have several parallel neural outflow pathways that provide a road map for understanding how they subserve different functions.
Collapse
Affiliation(s)
- Nina Vujovic
- Department of Neurology, Program in Neuroscience, and Division of Sleep Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, 02215
| | - Joshua J Gooley
- Department of Neurology, Program in Neuroscience, and Division of Sleep Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, 02215
| | - Thomas C Jhou
- Department of Neurology, Program in Neuroscience, and Division of Sleep Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, 02215
| | - Clifford B Saper
- Department of Neurology, Program in Neuroscience, and Division of Sleep Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, 02215
| |
Collapse
|
5
|
Fujihara H, Sasaki K, Mishiro-Sato E, Ohbuchi T, Dayanithi G, Yamasaki M, Ueta Y, Minamino N. Molecular characterization and biological function of neuroendocrine regulatory peptide-3 in the rat. Endocrinology 2012; 153:1377-86. [PMID: 22253422 DOI: 10.1210/en.2011-1539] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuroendocrine regulatory peptide (NERP)-3, derived from the neurosecretory protein VGF (non-aconymic), is a new biologically active peptide identified through peptidomic analysis of the peptides secreted by an endocrine cell line. Using a specific antibody recognizing the C-terminal region of NERP-3, immunoreactive (ir)-NERP-3 was identified in acid extracts of rat brain and gut as a 30-residue NERP-3 with N-terminal pyroglutamylation. Assessed by radioimmunoassay, ir-NERP-3 was more abundant in the brain, including the posterior pituitary (PP), than in the gut. Immunohistochemistry demonstrated that ir-NERP-3 was significantly increased in the suprachiasmatic nucleus, the magnocellular division of the paraventricular nucleus, and the external layer of the median eminence, but not in the supraoptic nucleus, after dehydration. The immunoreactivity was, however, markedly decreased in all of these locations after chronic salt loading. Intracerebroventricular administration of NERP-3 in conscious rats induced Fos expression in a subset of arginine vasopressin (AVP)-containing neurons in the supraoptic nucleus and the magnocellular division of the paraventricular nucleus. On in vitro isolated rat PP preparations, NERP-3 caused a significant AVP release in a dose-related manner, suggesting that NERP-3 in the PP could be an autocrine activator of AVP release. Taken together, the present results suggest that NERP-3 in the hypothalamo-neurohypophyseal system may be involved in the regulation of body fluid balance.
Collapse
Affiliation(s)
- Hiroaki Fujihara
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ueta Y, Dayanithi G, Fujihara H. Hypothalamic vasopressin response to stress and various physiological stimuli: visualization in transgenic animal models. Horm Behav 2011; 59:221-6. [PMID: 21185297 DOI: 10.1016/j.yhbeh.2010.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/18/2010] [Accepted: 12/17/2010] [Indexed: 11/27/2022]
Abstract
Arginine vasopressin (AVP) is involved in the homeostatic responses numerous life-threatening conditions, for example, the promotion of water conservation during periods of dehydration, and the activation of the hypothalamo-pituitary adrenal axis by emotional stress. Recently, we generated new transgenic animals that faithfully express an AVP-enhanced green fluorescent protein (eGFP) fusion gene in the paraventricular nucleus (PVN), the supraoptic nucleus (SON) and the suprachiasmatic nucleus (SCN) of the hypothalamus. In these transgenic rats, marked increases in eGFP fluorescence and fusion gene expression were observed in the magnocellular division of the PVN and the SON, but not the SCN, after osmotic challenges, such as dehydration and salt loading, and both acute and chronic nociceptive stimuli. In the parvocellular division of the PVN, eGFP expression was increased after acute and chronic pain, bilateral adrenalectomy, endotoxin shock and restraint stress. In the extra-hypothalamic areas of the brain, eGFP expression was induced in the locus coeruleus after the intracerebroventricular administration of colchicine. Next, we generated another transgenic rat that expresses a fusion gene comprised of c-fos promoter-enhancer sequences driving the expression of monomeric red fluorescent protein 1 (mRFP1). In these transgenic rats, abundant nuclear fluorescence of mRFP1 was observed in the PVN, the SON and other osmosensitive areas after acute osmotic stimulation. Finally, we generated a double transgenic rat that expresses both the AVP-eGFP and c-fos-mRFP1 fusion genes. In this double transgenic rat, we have observed nuclear mRFP1 fluorescence in eGFP-positive neurons after acute osmotic stimulation. These unique transgenic rats provide an exciting new tool to examine neuroendocrine responses to physiological and stressful stimuli in both in vivo and in vitro preparations.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | |
Collapse
|
7
|
Maruyama T, Ohbuchi T, Fujihara H, Shibata M, Mori K, Murphy D, Dayanithi G, Ueta Y. Diurnal changes of arginine vasopressin-enhanced green fluorescent protein fusion transgene expression in the rat suprachiasmatic nucleus. Peptides 2010; 31:2089-93. [PMID: 20727931 DOI: 10.1016/j.peptides.2010.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
We have recently developed a new transgenic rat line expressing an arginine vasopressin (AVP)-enhanced green fluorescent protein (eGFP) fusion gene. The AVP-eGFP transgene is expressed in the paraventricular (PVN) and supraoptic (SON) nuclei and the suprachiasmatic nucleus (SCN) of the hypothalamus. Transgene expression in the PVN and SON showed an exaggerated response to salt loading and nociceptive stimulation. However, the expression of the AVP-eGFP transgene in the SCN did not change under these stressful conditions. Here, we examined daily profiles of the expression of the AVP-eGFP transgene in the SCN in comparison with the endogenous AVP and Period (Per1 and Per2) genes. While all of these genes elicited diurnal patterns of expression in the SCN, the rate of rhythmic change of transgene expression was significantly greater than that of the endogenous AVP gene. We also examined the effect of a light stimulus on the expression of the AVP-eGFP, AVP, Per1 and Per2 genes in the SCN of transgenic rats. Ninety minutes after a light stimulus, AVP-eGFP mRNA and AVP hnRNA levels in the SCN were significantly decreased, while Per2 mRNA levels were significantly increased. In addition, we observed the eGFP fluorescence in the SCN and recorded the electrophysiological properties of a dissociated SCN eGFP-positive neuron. The AVP-eGFP transgenic rat is a useful animal model to study the diurnal change and dynamics of the AVP system, and enables the facile identification of SCN AVP neurons both in vivo and in vitro.
Collapse
Affiliation(s)
- Takashi Maruyama
- Occupational Health Training Center, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Viero C, Shibuya I, Kitamura N, Verkhratsky A, Fujihara H, Katoh A, Ueta Y, Zingg HH, Chvatal A, Sykova E, Dayanithi G. REVIEW: Oxytocin: Crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther 2010; 16:e138-56. [PMID: 20626426 PMCID: PMC2972642 DOI: 10.1111/j.1755-5949.2010.00185.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Is oxytocin the hormone of happiness? Probably not. However, this small nine amino acid peptide is involved in a wide variety of physiological and pathological functions such as sexual activity, penile erection, ejaculation, pregnancy, uterus contraction, milk ejection, maternal behavior, osteoporosis, diabetes, cancer, social bonding, and stress, which makes oxytocin and its receptor potential candidates as targets for drug therapy. In this review, we address the issues of drug design and specificity and focus our discussion on recent findings on oxytocin and its heterotrimeric G protein‐coupled receptor OTR. In this regard, we will highlight the following topics: (i) the role of oxytocin in behavior and affectivity, (ii) the relationship between oxytocin and stress with emphasis on the hypothalamo–pituitary–adrenal axis, (iii) the involvement of oxytocin in pain regulation and nociception, (iv) the specific action mechanisms of oxytocin on intracellular Ca2+ in the hypothalamo neurohypophysial system (HNS) cell bodies, (v) newly generated transgenic rats tagged by a visible fluorescent protein to study the physiology of vasopressin and oxytocin, and (vi) the action of the neurohypophysial hormone outside the central nervous system, including the myometrium, heart and peripheral nervous system. As a short nine amino acid peptide, closely related to its partner peptide vasopressin, oxytocin appears to be ideal for the design of agonists and antagonists of its receptor. In addition, not only the hormone itself and its binding to OTR, but also its synthesis, storage and release can be endogenously and exogenously regulated to counteract pathophysiological states. Understanding the fundamental physiopharmacology of the effects of oxytocin is an important and necessary approach for developing a potential pharmacotherapy.
Collapse
Affiliation(s)
- Cedric Viero
- Department of Cardiology, Wales Heart Research Institute, Cardiff University, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Scott V, Brown CH. State-dependent plasticity in vasopressin neurones: dehydration-induced changes in activity patterning. J Neuroendocrinol 2010; 22:343-54. [PMID: 20088912 DOI: 10.1111/j.1365-2826.2010.01961.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Moderate dehydration impairs concentration and co-ordination, whereas severe dehydration can cause seizures, brain damage or death. To slow the progression of dehydration until body fluids can be replenished by drinking, the increased body fluid osmolality associated with dehydration increases vasopressin (antidiuretic hormone) secretion from the posterior pituitary gland. Increased vasopressin secretion reduces water loss in the urine by promoting water reabsorption in the collecting ducts of the kidney. Vasopressin secretion is largely determined by action potential discharge in vasopressin neurones, and depends on both the rate and pattern of discharge. Vasopressin neurone activity depends on intrinsic and extrinsic mechanisms. We review recent advances in our understanding of the physiological regulation of vasopressin neurone activity patterning and the mechanisms by which this is altered to cope with the increased secretory demands of dehydration.
Collapse
Affiliation(s)
- V Scott
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | |
Collapse
|
10
|
Katoh A, Fujihara H, Ohbuchi T, Onaka T, Young WS, Dayanithi G, Yamasaki Y, Kawata M, Suzuki H, Otsubo H, Suzuki H, Murphy D, Ueta Y. Specific expression of an oxytocin-enhanced cyan fluorescent protein fusion transgene in the rat hypothalamus and posterior pituitary. J Endocrinol 2010; 204:275-85. [PMID: 20026620 PMCID: PMC2922867 DOI: 10.1677/joe-09-0289] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have generated rats bearing an oxytocin (OXT)-enhanced cyan fluorescent protein (eCFP) fusion transgene designed from a murine construct previously shown to be faithfully expressed in transgenic mice. In situ hybridisation histochemistry revealed that the Oxt-eCfp fusion gene was expressed in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) in these rats. The fluorescence emanating from eCFP was observed only in the SON, the PVN, the internal layer of the median eminence and the posterior pituitary (PP). In in vitro preparations, freshly dissociated cells from the SON and axon terminals showed clear eCFP fluorescence. Immunohistochemistry for OXT and arginine vasopressin (AVP) revealed that the eCFP fluorescence co-localises with OXT immunofluorescence, but not with AVP immunofluorescence in the SON and the PVN. Although the expression levels of the Oxt-eCfp fusion gene in the SON and the PVN showed a wide range of variations in transgenic rats, eCFP fluorescence was markedly increased in the SON and the PVN, but decreased in the PP after chronic salt loading. The expression of the Oxt gene was significantly increased in the SON and the PVN after chronic salt loading in both non-transgenic and transgenic rats. Compared with wild-type animals, euhydrated and salt-loaded male and female transgenic rats showed no significant differences in plasma osmolality, sodium concentration and OXT and AVP levels, suggesting that the fusion gene expression did not disturb any physiological processes. These results suggest that our new transgenic rats are a valuable new tool to identify OXT-producing neurones and their terminals.
Collapse
Affiliation(s)
- Akiko Katoh
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
- Department of Otorhynolaryngology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hiroaki Fujihara
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Toyoaki Ohbuchi
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
- Department of Otorhynolaryngology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Tatsushi Onaka
- Department of Physiology, Jichi Medical School, Tochigi 329-0498, Japan
| | - W. Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-4483, USA
| | - Govindan Dayanithi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Science of the Czech Republic, EU Research Centre of Excellence, Prague, Czech Republic
| | - Yuka Yamasaki
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hitoshi Suzuki
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hiroki Otsubo
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hideaki Suzuki
- Department of Otorhynolaryngology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - David Murphy
- Molecular Neuroendocrinology Research Group, The Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Dorothy Hodgkin Building, Bristol BS1 3NY, UK
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| |
Collapse
|
11
|
Fujihara H, Ueta Y, Suzuki H, Katoh A, Ohbuchi T, Otsubo H, Dayanithi G, Murphy D. Robust up-regulation of nuclear red fluorescent-tagged fos marks neuronal activation in green fluorescent vasopressin neurons after osmotic stimulation in a double-transgenic rat. Endocrinology 2009; 150:5633-8. [PMID: 19850746 DOI: 10.1210/en.2009-0796] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The up-regulation in the expression of mRNA or protein encoded by the c-fos gene is widely used as a marker of neuronal activation elicited by various stimuli. To facilitate the detection of activated neurons, we generated transgenic rats expressing a fusion gene consisting of c-fos coding sequences in frame with monomeric red fluorescent protein 1 (mRFP1) under the control of c-fos gene regulatory sequences (c-fos-mRFP1 rats). In c-fos-mRFP1 transgenic rats, 90 min after hypertonic saline ip administration, nuclear mRFP1 fluorescence was observed abundantly in brain regions known to be osmosensitive, namely the median preoptic nucleus, organum vasculosum lamina terminalis, supraoptic nucleus, paraventricular nucleus, and subfornical organ. Immunohistochemistry for Fos protein confirmed that the distribution of Fos-like immunoreactivity in nontransgenic rats was similar to those of mRFP1 fluorescence after ip administration of hypertonic saline in the transgenic rats. Several double-transgenic rats were obtained from matings between transgenic rats expressing an arginine vasopressin-enhanced green fluorescent protein fusion gene (AVP-eGFP rats) and c-fos-mRFP1 rats. In these double-transgenic rats, almost all eGFP neurons in the supraoptic nucleus and PVN expressed nuclear mRFP1 fluorescence 90 min after hypertonic saline administration. The c-fos-mRFP1 rats are a powerful tool that enables the facile identification of activated neurons in the nervous system. Furthermore, when combined with transgenes expressing another fluorophore under the control of cell-specific regulatory sequences, activation of specific neuronal cell types in response to physiological cues can be readily detected.
Collapse
Affiliation(s)
- Hiroaki Fujihara
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|