1
|
Kang SW, Christensen KD, Kidd Jr MT, Orlowski SK, Clark J. Effects of a variable light intensity lighting program on the welfare and performance of commercial broiler chickens. Front Physiol 2023; 14:1059055. [PMID: 36909223 PMCID: PMC9998933 DOI: 10.3389/fphys.2023.1059055,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/08/2023] [Indexed: 12/31/2023] Open
Abstract
Our previous variable-light intensity lighting program studies indicate the light intensity preference behavior of broilers for their daily activity including eating and resting. To evaluate the effects of variable-light intensity lighting program on performance and welfare of broilers, four commercial trials were conducted for looking at behaviors, mortality, leg-health, performance, and brain welfare indicator genes including tryptophan hydroxylase 2 and tyrosine hydroxylase (TH), glucocorticoid receptor (GR), brain-derived neurotropic factor (BDNF), and melanopsin (Opn4) gene expression. One-day-old broilers were housed in four commercial broiler houses. Each quadrant (section) of the house was placed with 4,800 chicks. A total of four lighting programs began on day 7 with 5 lux (lx), 20 lx, natural light (NL, 480 lx), and variable light (2-5/40 lx) using LED lights on a 16L:8D photoperiod. In the variable-light house, the number of dustbathing holes was significantly higher than that in natural-light houses and 5-lx and 20-lx houses. Daily physical activities, footpad condition, fear response to novel objects, body weight, feed conversion ratio, and the number of leg-problem induced culled birds were affected by the variable-light intensity lighting program. Expression of tryptophan hydroxylase 2 in the DRN and VTA of variable-light treated birds was lower than that of 5-lx- and 20-lx-treated birds on day 42 (p < 0.05). Higher expression of VTA-TH in 5-lx-treated birds than that in 20-lx-, NL-, and variable-light-treated birds suggests the high stress-susceptibility of 5-lx treated birds. Lower VTA-GR expression in 20-lx- and variable-light-treated birds indicates lower stress than that in NL- and 5-lx-treated birds (p < 0.05). The VTA-BDNF expression of NL-treated birds was 2.5 fold higher than that of 5-lx-, 20-lx-, and variable-light-treated birds (p < 0.05), and variable-light-treated birds showed the lowest level of BDNF expression (p < 0.05), suggesting the chronic social defeat stress in NL-treated birds. The result of VTA-Opn4 expression on day 42 suggests the possible role of VTA-Opn4 in broiler welfare through central light perception. Taken together, the variable-light intensity lighting program increased volunteer natural behaviors and physical activity, which may improve footpad condition and leg health of birds, consequently. Performance data including the increased daily weight gain and the lowered feed conversion ratio and results of brain welfare indicator gene expression showed the beneficial effect of the variable-light intensity lighting program on the performance and welfare of commercial broilers.
Collapse
Affiliation(s)
- Seong W. Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of AR, Fayetteville, AR, United States
| | | | - Michael T. Kidd Jr
- Department of Poultry Science, Center of Excellence for Poultry Science, University of AR, Fayetteville, AR, United States
| | - Sara K. Orlowski
- Department of Poultry Science, Center of Excellence for Poultry Science, University of AR, Fayetteville, AR, United States
| | - James Clark
- Tyson Foods, Inc, Springdale, AR, United States
| |
Collapse
|
2
|
Kang SW, Christensen KD, Kidd MT, Orlowski SK, Clark J. Effects of a variable light intensity lighting program on the welfare and performance of commercial broiler chickens. Front Physiol 2023; 14:1059055. [PMID: 36909223 PMCID: PMC9998933 DOI: 10.3389/fphys.2023.1059055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
Our previous variable-light intensity lighting program studies indicate the light intensity preference behavior of broilers for their daily activity including eating and resting. To evaluate the effects of variable-light intensity lighting program on performance and welfare of broilers, four commercial trials were conducted for looking at behaviors, mortality, leg-health, performance, and brain welfare indicator genes including tryptophan hydroxylase 2 and tyrosine hydroxylase (TH), glucocorticoid receptor (GR), brain-derived neurotropic factor (BDNF), and melanopsin (Opn4) gene expression. One-day-old broilers were housed in four commercial broiler houses. Each quadrant (section) of the house was placed with 4,800 chicks. A total of four lighting programs began on day 7 with 5 lux (lx), 20 lx, natural light (NL, 480 lx), and variable light (2-5/40 lx) using LED lights on a 16L:8D photoperiod. In the variable-light house, the number of dustbathing holes was significantly higher than that in natural-light houses and 5-lx and 20-lx houses. Daily physical activities, footpad condition, fear response to novel objects, body weight, feed conversion ratio, and the number of leg-problem induced culled birds were affected by the variable-light intensity lighting program. Expression of tryptophan hydroxylase 2 in the DRN and VTA of variable-light treated birds was lower than that of 5-lx- and 20-lx-treated birds on day 42 (p < 0.05). Higher expression of VTA-TH in 5-lx-treated birds than that in 20-lx-, NL-, and variable-light-treated birds suggests the high stress-susceptibility of 5-lx treated birds. Lower VTA-GR expression in 20-lx- and variable-light-treated birds indicates lower stress than that in NL- and 5-lx-treated birds (p < 0.05). The VTA-BDNF expression of NL-treated birds was 2.5 fold higher than that of 5-lx-, 20-lx-, and variable-light-treated birds (p < 0.05), and variable-light-treated birds showed the lowest level of BDNF expression (p < 0.05), suggesting the chronic social defeat stress in NL-treated birds. The result of VTA-Opn4 expression on day 42 suggests the possible role of VTA-Opn4 in broiler welfare through central light perception. Taken together, the variable-light intensity lighting program increased volunteer natural behaviors and physical activity, which may improve footpad condition and leg health of birds, consequently. Performance data including the increased daily weight gain and the lowered feed conversion ratio and results of brain welfare indicator gene expression showed the beneficial effect of the variable-light intensity lighting program on the performance and welfare of commercial broilers.
Collapse
Affiliation(s)
- Seong W Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of AR, Fayetteville, AR, United States
| | | | - Michael T Kidd
- Department of Poultry Science, Center of Excellence for Poultry Science, University of AR, Fayetteville, AR, United States
| | - Sara K Orlowski
- Department of Poultry Science, Center of Excellence for Poultry Science, University of AR, Fayetteville, AR, United States
| | - James Clark
- Tyson Foods, Inc, Springdale, AR, United States
| |
Collapse
|
3
|
Xu Y, Jiang D, Liu J, Fu Y, Song Y, Fan D, Huang X, Liufu S, Pan J, Ouyang H, Tian Y, Shen X, Huang Y. Photoperiodic Changes in Both Hypothalamus Neurotransmitters and Circulating Gonadal Steroids Metabolomic Profiles in Relation to Seasonal Reproduction in Male Quail. Front Physiol 2022; 13:824228. [PMID: 35399254 PMCID: PMC8993408 DOI: 10.3389/fphys.2022.824228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Both hypothalamic neurotransmitters and serum steroid hormones are impacted by photoperiod and have effects on physiology and seasonal reproductive. However, the relationship between circulating gonadal steroids and hypothalamic neurotransmitters underlying different photoperiod is still unclear. To further understand the crosstalk of neurotransmitters and steroids in seasonal reproduction, metabolic changes of 27 neurotransmitters concentrated in hypothalamus tissues and 42 steroids hormones in serum were assessed during two artificial photoperiodic programs. The results showed that photoperiod induce testicular atrophy and recrudescence. In L-to-S groups, significantly decreased levels of testosterone concentration were found in serum (P < 0.001) and increased 11-Dehydrocorticosterone (P < 0.05); Testosterone were almost undetectable at SD_14d. In addition, the hypothalamus exhibited significantly increased arginine and 4-aminobutyric acid (GABA) concentration and decreased serotonin and epinephrine content (P < 0.01 or P < 0.05). Accordingly, serum testosterone and androstenedione became detectable at LD_3d in the S-to-L group and were markedly increase at LD_7d. Furthermore, Serum androstenedione showed a significant increase with long light expose (P < 0.01). Additionally, the hypothalamus exhibited both significantly increased L.Tryptophan and phenylalanine concentration, as well as decreased L-glutamine and L-glutamine.acid content (P < 0.01 or P < 0.05). Serotonin metabolism showed significant differences between L-to-S group and S-to-L group. Furthermore, in the correlation analysis, serum testosterone had a positive correlation with 5-Hydroxyindole-3-acetic acid (5-HIAA), while Androstenedione was significantly negative with L.Tryptophan in L-to-S (P < 0.05). However, in S-to-L group, serum testosterone showed strong negative correlation with both serotonin and 5-HIAA (P < 0.05), but positive correlation with L.Tryptophan (P < 0.01), while Androstenedione was significantly negative correlation with both serotonin (P < 0.05) and L-Glutamine (P < 0.01). Photoperiod also had significant effects on the mRNA expression. We found significant differences in gene expression patterns of both serotonin signaling and steroid biosynthesis, while MAOB, NR5A1, and 3β-HSD showed an opposite tendency between two groups. Taken together, our results revealed that circulating gonadal steroids and hypothalamic neurotransmitters were significantly impact quail’s seasonal reproduction. Circulating gonadal steroids have different effects on neurotransmitter at different photoperiodism, which may coordinately influence the seasonal reproduction of quails.
Collapse
Affiliation(s)
- Yanglong Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Danli Jiang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Jiaxin Liu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yuting Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yan Song
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Di Fan
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Xuefei Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Sui Liufu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Jianqiu Pan
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Hongjia Ouyang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Xu Shen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| |
Collapse
|
4
|
Kang SW. Central Nervous System Associated With Light Perception and Physiological Responses of Birds. Front Physiol 2021; 12:723454. [PMID: 34744764 PMCID: PMC8566752 DOI: 10.3389/fphys.2021.723454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental light that animal receives (i.e., photoperiod and light intensity) has recently been shown that it affects avian central nervous system for the physiological responses to the environment by up or downregulation of dopamine and serotonin activities, and this, in turn, affects the reproductive function and stress-related behavior of birds. In this study, the author speculated on the intriguing possibility that one of the proposed avian deep-brain photoreceptors (DBPs), i.e., melanopsin (Opn4), may play roles in the dual sensory-neurosecretory cells in the hypothalamus, midbrain, and brain stem for the behavior and physiological responses of birds by light. Specifically, the author has shown that the direct light perception of premammillary nucleus dopamine-melatonin (PMM DA-Mel) neurons is associated with the reproductive activation in birds. Although further research is required to establish the functional role of Opn4 in the ventral tegmental area (VTA), dorsal raphe nucleus, and caudal raphe nucleus in the light perception and physiological responses of birds, it is an exciting prospect because the previous results in birds support this hypothesis that Opn4 in the midbrain DA and serotonin neurons may play significant roles on the light-induced welfare of birds.
Collapse
Affiliation(s)
- Seong W. Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
5
|
Kang SW, Christensen KD, Aldridge D, Kuenzel WJ. Effects of light intensity and dual light intensity choice on plasma corticosterone, central serotonergic and dopaminergic activities in birds, Gallus gallus. Gen Comp Endocrinol 2020; 285:113289. [PMID: 31557469 DOI: 10.1016/j.ygcen.2019.113289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/21/2019] [Accepted: 09/22/2019] [Indexed: 01/01/2023]
Abstract
Light intensity plays an important role in the regulation of growth, behavior, reproduction, and welfare of avian species. Light intensity preference behavior has been suggested to be involved in welfare of birds. This study aims to investigate the effects of different light intensity and dual light intensity choice (DLIC) lighting program on plasma corticosterone (CORT), and tryptophan hydroxylase 2 (TPH2, the rate-limiting enzyme of serotonin biosynthesis) and tyrosine hydroxylase (TH, the rate-limiting enzyme of dopamine biosynthesis) gene expression in the brainstem of male chickens. Day old broilers were housed in two commercial houses, and placed in 24 pens. All the treatment groups were provided with 23 h light (L) /1 h dark (D) and 30 lx (lx) light intensity during the first week and then 18L:6D (10 lx) from day 7 to 14. Blood and brain were sampled at 14 days of age (10 lx) before the onset of light treatments. On day 15, four treatments (2, 10, 20, and 100 lx), and DLIC treatment (2/20 lx) were initiated. Samples were collected on days 15, 16, 17, 30 and 41. TPH2 expression in the dorsal raphe nucleus (DRN) and caudal raphe nucleus (CRN) of brainstem, and TPH2 and TH expression in ventral tegmental areas (VTN) of the midbrain were determined by qPCR. Results showed that bright light and DLIC lighting program temporarily attenuated plasma CORT, suggesting the short-term stress attenuating effect of bright light and DLIC lighting program. Differential TPH2 expression in the DRN and CRN observed in the DLIC birds indicate a significant effect of DLIC lighting program on the serotonergic activity in the avian brainstem. At the 41 days of age, the significant downregulation of TPH2 and TH expression occurred in the VTA of DLIC treated birds compared to the other group of birds. Taken together, temporal and spatial regulation of TPH2 and TH expression by DLIC lighting program indicate that compensatory regulation of serotonergic and dopaminergic activities might be involved in the light intensity preference behavior of birds, suggesting a possible beneficial effect of the DLIC lighting program on broiler welfare.
Collapse
Affiliation(s)
- Seong W Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | - Douglas Aldridge
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Wayne J Kuenzel
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
6
|
Kuenzel WJ, Kang SW, Zhou ZJ. Exploring avian deep-brain photoreceptors and their role in activating the neuroendocrine regulation of gonadal development. Poult Sci 2015. [PMID: 25828571 DOI: 10.3382/ps.2014-04370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the eyes of mammals, specialized photoreceptors called intrinsically photosensitive retinal ganglion cells (ipRGC) have been identified that sense photoperiodic or daylight exposure, providing them over time with seasonal information. Detectors of photoperiods are critical in vertebrates, particularly for timing the onset of reproduction each year. In birds, the eyes do not appear to monitor photoperiodic information; rather, neurons within at least 4 different brain structures have been proposed to function in this capacity. Specialized neurons, called deep brain photoreceptors (DBP), have been found in the septum and 3 hypothalamic areas. Within each of the 4 brain loci, one or more of 3 unique photopigments, including melanopsin, neuropsin, and vertebrate ancient opsin, have been identified. An experiment was designed to characterize electrophysiological responses of neurons proposed to be avian DBP following light stimulation. A second study used immature chicks raised under short-day photoperiods and transferred to long day lengths. Gene expression of photopigments was then determined in 3 septal-hypothalamic regions. Preliminary electrophysiological data obtained from patch-clamping neurons in brain slices have shown that bipolar neurons in the lateral septal organ responded to photostimulation comparable with mammalian ipRGC, particularly by showing depolarization and a delayed, slow response to directed light stimulation. Utilizing real-time reverse-transcription PCR, it was found that all 3 photopigments showed significantly increased gene expression in the septal-hypothalamic regions in chicks on the third day after being transferred to long-day photoperiods. Each dissected region contained structures previously proposed to have DBP. The highly significant increased gene expression for all 3 photopigments on the third, long-day photoperiod in brain regions proposed to contain 4 structures with DBP suggests that all 3 types of DBP (melanopsin, neuropsin, and vertebrate ancient opsin) in more than one neural site in the septal-hypothalamic area are involved in reproductive function. The neural response to light of at least 2 of the proposed DBP in the septal/hypothalamic region resembles the primitive, functional, sensory ipRGC well characterized in mammals.
Collapse
Affiliation(s)
- Wayne J Kuenzel
- Department of Poultry Science, University of Arkansas, Fayetteville 72701
| | - Seong W Kang
- Department of Poultry Science, University of Arkansas, Fayetteville 72701
| | - Z Jimmy Zhou
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
7
|
Kuenzel WJ, Kang SW, Zhou ZJ. Exploring avian deep-brain photoreceptors and their role in activating the neuroendocrine regulation of gonadal development. Poult Sci 2015; 94:786-98. [DOI: 10.3382/ps.2014-4370] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
8
|
Li F, Xu L, Gai X, Zhou Z, Wang L, Zhang H, Gai Y, Song L, Yu J, Liang C. The involvement of PDGF/VEGF related factor in regulation of immune and neuroendocrine in Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1240-1248. [PMID: 23933264 DOI: 10.1016/j.fsi.2013.07.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/28/2013] [Accepted: 07/28/2013] [Indexed: 06/02/2023]
Abstract
Members of the platelet-derived growth factor/vascular endothelial growth factor (PDGF/VEGF) family have been implicated in cell proliferation, cell differentiation, and cell migration, vascular development, angiogenesis and neural development. In the present study, a novel PDGF/VEGF related factor gene was cloned and identified in Chinese mitten crab Eriocheir sinensis (designated as EsPVF1). The full-length cDNA of EsPVF1 was of 1173 bp, consisting a 5' untranslated region (UTR) of 54 bp, a 3' UTR of 1131 bp with a poly (A) tail, and an open reading frame (ORF) of 588 bp encoding 196 amino acid residues. A signal peptide of 20 amino acid residues, a PDGF/VEGF homology growth factor domain of 81 amino acids, and a typical cysteine knot motif (CXCXC) were identified in the deduced amino acid sequence of EsPVF1. By fluorescent quantitative real-time PCR, the EsPVF1 mRNA was detected ubiquitously in the select tissues of hemocytes, gonad, heart, muscle, hepatopancreas and gill, with the high abundance in hemocytes and gonad. The mRNA expression level of EsPVF1 was up-regulated and reached the highest at 24 h after Vibrio anguillarum challenge, while it was induced at 3 h, 6 h, 12 h, 24 h and 48 h compared with the untreated group after Pichia pastoris GS115 challenge. Tissue injury also induced the mRNA expression of EsPVF1 in hemocytes of crabs, and the expression level increased obviously at 8 h. The cDNA fragment encoding mature peptide of EsPVF1 was recombined and expressed in Escherichia coli BL21 (DE3) pLysS. Biogenic amine in hemolymph pre-incubated with recombinant protein of EsPVF1 (rEsPVF1) was detected by fluorimetric method. Norepinephrine and dopamine in hemolymph incubated with rEsPVF1 were higher than that in the blank group. Therefore, EsPVF1 could significantly provoke the release of norepinephrine and dopamine. The results collectively indicated that EsPVF1 was involved in regulation of the immune response and neuroendocrine system in crabs.
Collapse
Affiliation(s)
- Fengmei Li
- Qingdao University of Science and Technology, Qingdao 266042, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kosonsiriluk S, Mauro LJ, Chaiworakul V, Chaiseha Y, El Halawani ME. Photoreceptive oscillators within neurons of the premammillary nucleus (PMM) and seasonal reproduction in temperate zone birds. Gen Comp Endocrinol 2013; 190:149-55. [PMID: 23453962 DOI: 10.1016/j.ygcen.2013.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/31/2013] [Accepted: 02/09/2013] [Indexed: 11/21/2022]
Abstract
The pathway for light transmission regulating the reproductive neuroendocrine system in temperate zone birds remains elusive. Based on the evidence provided from our studies with female turkeys, it is suggested that the circadian clock regulating reproductive seasonality is located in putatively photosensitive dopamine-melatonin (DA-MEL) neurons residing in the premammillary nucleus (PMM) of the caudal hypothalamus. Melanopsin is expressed by these neurons; a known photopigment which mediates light information pertaining to the entrainment of the clock. Exposure to a gonad stimulatory photoperiod enhances the activity of the DAergic system within DA-MEL neurons. DAergic activity encoding the light information is transmitted to the pars tuberalis, where thyroid-stimulating hormone, beta (TSHβ) cells reside, and induces the release of TSH. TSH stimulates tanycytes lining the base of the third ventricle and activates type 2 deiodinase in the ependymal which enhances triiodothyronine (T3) synthesis. T3 facilitates the release of gonadotropin-releasing hormone-I which stimulates luteinizing hormone/follicle stimulating hormone release and gonad recrudescence. These data taken together with the findings that clock genes are rhythmically expressed in the PMM where DA-MEL neurons are localized imply that endogenous oscillators containing photoreceptors within DA-MEL neurons are important in regulating the DA and MEL rhythms that drive the circadian cycle controlling seasonal reproduction.
Collapse
|
10
|
Leclerc B, Kang SW, Mauro LJ, Kosonsiriluk S, Chaiseha Y, El Halawani ME. Photoperiodic modulation of clock gene expression in the avian premammillary nucleus. J Neuroendocrinol 2010; 22:119-28. [PMID: 20002961 DOI: 10.1111/j.1365-2826.2009.01942.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The premammillary nucleus (PMM) has been shown to contain a daily endogenous dual-oscillation in dopamine (DA)/melatonin (MEL) as well as c-fos mRNA expression that is associated with the daily photo-inducible phase of gonad growth in turkeys. In the present study, the expression of clock genes (Bmal1, Clock, Cry1, Cry2, Per2 and Per3) in the PMM was determined under short (8 : 16 h light/dark cycle) and long (16 : 8 h light/dark cycle) photoperiods relative to changes associated with the diurnal rhythm of DA and MEL. Constant darkness (0 : 24 h light/dark cycle) was used to assess the endogenous response of clock genes. In addition, light pulses were given at zeitgeber time (ZT) 8, 14 and 20 to ascertain whether clock gene expression is modulated by light pulse stimulation and therefore has a daily phase-related response. In the PMM, the temporal clock gene expression profiles were similar under short and long photoperiods, except that Per3 gene was phase-delayed by approximately 16 h under long photoperiod. In addition, Cry1 and Per3 genes were light-induced at ZT 14, the photosensitive phase for gonad recrudescence, whereas the Clock gene was repressed. Gene expression in established circadian pacemakers, the visual suprachiasmatic nucleus (vSCN) and the pineal, was also determined. Clock genes in the pineal gland were rhythmic under both photoperiods, and were not altered after light pulses at ZT 14, which suggests that pineal clock genes may not be associated with the photosensitive phase and reproductive activities. In the vSCN, clock gene expression was phase-shifted depending on the photoperiod, with apexes at night under short day length and during the day under long day length. Furthermore, light pulses at ZT 14 induced the Per2 gene, whereas it repressed the Bmal1 gene. Taken together, the changes in clock gene expression observed within the PMM were unique compared to the pineal and vSCN, and were induced by long photoperiod and light during the daily photosensitive phase; stimuli that are also documented to promote reproductive activity. These results show that Cry1 and Per3 are involved in the photic response associated with the PMM neuronal activation and are coincident with an essential circadian mechanism (photosensitive phase) controlling the reproductive neuroendocrine system.
Collapse
Affiliation(s)
- B Leclerc
- Department of Animal Science, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
11
|
Chaiseha Y, Kang SW, Leclerc B, Kosonsiriluk S, Sartsoongnoen N, El Halawani ME. Serotonin receptor subtypes influence prolactin secretion in the turkey. Gen Comp Endocrinol 2010; 165:170-5. [PMID: 19540238 DOI: 10.1016/j.ygcen.2009.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 06/11/2009] [Accepted: 06/15/2009] [Indexed: 11/19/2022]
Abstract
Serotonin (5-HT) stimulation of prolactin (PRL) secretion is mediated through the dopaminergic (DAergic) system, with 5-HT ligands having no direct effect on pituitary PRL release. Infusion of 5-HT into the third ventricle (ICV) or electrical stimulation (ES) of the medial preoptic area (POM) or the ventromedial nucleus (VMN) induces an increase in circulating PRL in the turkey. These increases in PRL do not occur when a selective antagonist blocks the D(1) dopamine (DA) receptors in the infundibular area (INF). In this study, the ICV infusion of (R)(-)-DOI hydrochloride (DOI), a selective 5-HT(2A) eceptor agonist, caused PRL to increase. Pretreatment with Ketanserin tartrate salt (KETAN), a selective 5-HT(2A) receptor antagonist, blocked DOI-induced PRL secretion, attesting to the specificity of the response. DOI-induced PRL secretion was prevented when the D(1) DA receptors in the INF were blocked by the D(1) DA receptor antagonist, R(+)-SCH-23390 hydrochloride microinjection, suggesting that the DAergic activation of the vasoactive intestinal peptide (VIP)/PRL system is mediated by a stimulatory 5-HT(2A) receptor subtype. The DOI-induced PRL increase did not occur when (+/-)-8-OH-DPAT (DPAT) was concurrently infused. DPAT is a 5-T(1A) receptor agonist which appears to mediate the inhibitory influence of 5-HT on PRL secretion. When DPAT was microinjected directly into the VMN, it blocked the PRL release affected by ES in the POM. These data suggested that when 5-HT(2A) receptors are activated, they influence the release of DA to the INF. When 5-HT(1A) receptors are stimulated, they somehow inhibit the PRL-releasing actions of 5-HT(2A) receptors. This inhibition could take place centrally, or it could occur postsynaptically at the pituitary level. It is known that D(2) DA receptors in the pituitary antagonize PRL-releasing effect of VIP. A release of DA to the pituitary, initiated by 5-HT(1A) receptors, could effectively inhibit PRL secretion.
Collapse
Affiliation(s)
- Yupaporn Chaiseha
- School of Biology, Institute of Science, Suranaree University of Technology, Thailand
| | | | | | | | | | | |
Collapse
|