1
|
Zhang Y, Zhao J, Hu N, Wang J, Chen X, Wang K, Yin Y. Motilin and its receptor are expressed in the dorsal horn in a rat model of acute incisional pain: Intrathecal motilin injection alleviates pain behaviors. Front Neurosci 2023; 17:1104862. [PMID: 36816129 PMCID: PMC9932669 DOI: 10.3389/fnins.2023.1104862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Aims To observe the effects of intrathecal administration of motilin on pain behavior and expression of motilin (MTL)/motilin receptor (MTLR) in the spinal cord of a rat model of acute incisional pain. Methods An incisional pain model was established in rats using a unilateral plantar incision. The rats were also injected intrathecally with 1, 5, or 25 μg of motilin. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were determined. MTL/MTLR expression in the spinal cord was detected by western blotting and immunofluorescence. The expression of MTL in the spinal cord, stomach, duodenum, and plasma was determined by enzyme-linked immunosorbent assay (ELISA). Results Motilin/motilin receptor were detected in the spinal cord. Spinal cord MTL/MTLR expression peaks at 2 h after modeling (P < 0.05) and start to decrease at 24 h (P < 0.05) to almost reach baseline levels at 72 h. The changes in gastric, duodenal, plasma, and spinal cord motilin levels correlated with MWT and TWL (all R 2 > 0.82). The intrathecal injection of 1, 5, or 25 μg of motilin could increase the pain threshold of rats with incisional pain within 72 h in a dose-dependent manner. Conclusion This study showed for the first time that MTL/MTLR are expressed in rats' spinal dorsal horn. Acute pain increased MTL/MTLR expression in the spinal dorsal horn. Also, for the first time, this study showed that motilin intrathecal injection alleviates pain in rat models of acute incisional pain. These results suggest that MTL/MTLR could be a novel target for the management of acute pain.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Cancer Prevention and Therapy, Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jun Zhao
- Department of Anesthesiology, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Nan Hu
- Key Laboratory of Cancer Prevention and Therapy, Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jing Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xi Chen
- Key Laboratory of Cancer Prevention and Therapy, Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Kaiyuan Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Kaiyuan Wang,
| | - Yiqing Yin
- Key Laboratory of Cancer Prevention and Therapy, Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,*Correspondence: Yiqing Yin,
| |
Collapse
|
2
|
Gut Hormones as Potential Therapeutic Targets or Biomarkers of Response in Depression: The Case of Motilin. Life (Basel) 2021; 11:life11090892. [PMID: 34575041 PMCID: PMC8465535 DOI: 10.3390/life11090892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Recent research has identified the gut–brain axis as a key mechanistic pathway and potential therapeutic target in depression. In this paper, the potential role of gut hormones as potential treatments or predictors of response in depression is examined, with specific reference to the peptide hormone motilin. This possibility is explored through two methods: (1) a conceptual review of the possible links between motilin and depression, including evidence from animal and human research as well as clinical trials, based on a literature search of three scientific databases, and (2) an analysis of the relationship between a functional polymorphism (rs2281820) of the motilin (MLN) gene and cross-national variations in the prevalence of depression based on allele frequency data after correction for potential confounders. It was observed that (1) there are several plausible mechanisms, including interactions with diet, monoamine, and neuroendocrine pathways, to suggest that motilin may be relevant to the pathophysiology and treatment of depression, and (2) there was a significant correlation between rs2281820 allele frequencies and the prevalence of depression after correcting for multiple confounding factors. These results suggest that further evaluation of the utility of motilin and related gut peptides as markers of antidepressant response is required and that these molecular pathways represent potential future mechanisms for antidepressant drug development.
Collapse
|
3
|
Wang Q, Zhang X, Leng H, Luan X, Guo F, Sun X, Gao S, Liu X, Qin H, Xu L. Zona incerta projection neurons and GABAergic and GLP-1 mechanisms in the nucleus accumbens are involved in the control of gastric function and food intake. Neuropeptides 2020; 80:102018. [PMID: 32000986 DOI: 10.1016/j.npep.2020.102018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Our aim was to explore the effect of γ-aminobutyric acid (GABA) signaling in the nucleus accumbens (NAc) on promoting gastric function and food intake through glucagon-like peptide 1 (GLP-1)-sensitive gastric distension (GD) neurons under the regulatory control of the zona incerta (ZI). METHODS GABA neuronal projections were traced using retrograde tracing following fluorescence immunohistochemistry. An extracellular electrophysiological recording method was used to observe the firing of neurons in the NAc. HPLC was used to quantify the GABA and glutamate levels in the NAc after electrical stimulation of the ZI. Gastric functions including gastric motility and secretion, as well as food intake, were measured after the administration of different concentrations of GABA in the NAc or electrical stimulation of the ZI. RESULTS Some of the GABA-positive neurons arising from the ZI projected to the NAc. Some GABA-A receptor (GABA-AR)-immunoreactive neurons in the NAc were also positive for GLP-1 receptor (GLP-1R) immunoreactivity. The firing of most GLP-1-sensitive GD neurons was decreased by GABA infusion in the NAc. Intra-NAc GABA administration also promoted gastric function and food intake. The responses induced by GABA were partially blocked by the GABA-AR antagonist bicuculline (BIC) and weakened by the GLP-1R antagonist exendin 9-39 (Ex9). Electrical stimulation of the ZI changed the firing patterns of most GLP-1-sensitive GD neurons in the NAc and promoted gastric function and food intake. Furthermore, these excitatory effects induced by electrical stimulation of the ZI were weakened by preadministration of BIC in the NAc. CONCLUSION Retrograde tracing and immunohistochemical staining showed a GABAergic pathway from the ZI to the NAc. GABAergic and GLP-1 mechanisms in the NAc are involved in the control of gastric function and food intake. In addition, the interaction (direct or indirect) between the ZI and these NAc mechanisms is involved in the control of gastric function and food intake.
Collapse
Affiliation(s)
- Qian Wang
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaoqian Zhang
- Doctoral School of Biomedical Sciences, KU Leuven, B-300 Leuven, Belgium; Family Medicine Department, Qingdao United Family Hospital, Qingdao, Shandong 266001, China
| | - Hui Leng
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiao Luan
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Feifei Guo
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiangrong Sun
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Shengli Gao
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Xuehuan Liu
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Hao Qin
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Luo Xu
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|
4
|
Harada Y, Koseki J, Sekine H, Fujitsuka N, Kobayashi H. Role of Bitter Taste Receptors in Regulating Gastric Accommodation in Guinea Pigs. J Pharmacol Exp Ther 2019; 369:466-472. [PMID: 30967403 DOI: 10.1124/jpet.118.256008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/04/2019] [Indexed: 01/07/2023] Open
Abstract
Taste stimulants play important roles in triggering digestion and absorption of nutrients and in toxin detection, under the control of the gut-brain axis. Bitter compounds regulate gut hormone secretion and gastrointestinal motility through bitter taste receptors (TAS2Rs) located in the taste buds on the tongue and in the enteroendocrine cells. Gastric accommodation (GA) is an important physiologic function. However, the role of TAS2R agonists in regulating GA remains unclear. To clarify whether GA is influenced by bitter stimulants, we examined the effect of TAS2R agonist denatonium benzoate (DB), administered intraorally and intragastrically, by measuring the consequent intrabag pressure in the proximal stomach of guinea pigs. Effects of the Kampo medicine rikkunshito (RKT) and its bitter components liquiritigenin and naringenin on GA were also examined. Intraoral DB (0.2 nmol/ml) administration enhanced GA. Intragastric DB administration (0.1 and 1 nmol/kg) promoted GA, whereas higher DB doses (30 μmol/kg) inhibited it. Similar changes in GA were observed with intragastric (1000 mg/kg) and intraoral (200 mg/ml) RKT administration. Liquiritigenin and naringenin also promoted GA. These findings suggest that GA is affected by the stimulation of TAS2Rs in the oral cavity or gut in guinea pigs.
Collapse
Affiliation(s)
- Yumi Harada
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan (Y.H., J.K., H.S., N.F.) and Center for Advanced Kampo Medicine and Clinical Research, Juntendo Graduate School of Medicine, Tokyo, Japan (H.K.)
| | - Junichi Koseki
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan (Y.H., J.K., H.S., N.F.) and Center for Advanced Kampo Medicine and Clinical Research, Juntendo Graduate School of Medicine, Tokyo, Japan (H.K.)
| | - Hitomi Sekine
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan (Y.H., J.K., H.S., N.F.) and Center for Advanced Kampo Medicine and Clinical Research, Juntendo Graduate School of Medicine, Tokyo, Japan (H.K.)
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan (Y.H., J.K., H.S., N.F.) and Center for Advanced Kampo Medicine and Clinical Research, Juntendo Graduate School of Medicine, Tokyo, Japan (H.K.)
| | - Hiroyuki Kobayashi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan (Y.H., J.K., H.S., N.F.) and Center for Advanced Kampo Medicine and Clinical Research, Juntendo Graduate School of Medicine, Tokyo, Japan (H.K.)
| |
Collapse
|
5
|
Luan X, Sun X, Guo F, Zhang D, Wang C, Ma L, Xu L. Lateral hypothalamic Orexin-A-ergic projections to the arcuate nucleus modulate gastric functionin vivo. J Neurochem 2017; 143:697-707. [DOI: 10.1111/jnc.14233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Xiao Luan
- Department of Pathophysiology; Medical College of Qingdao University; Qingdao China
| | - Xiangrong Sun
- Department of Pathophysiology; Medical College of Qingdao University; Qingdao China
| | - Feifei Guo
- Department of Pathophysiology; Medical College of Qingdao University; Qingdao China
| | - Di Zhang
- Department of Pathophysiology; Medical College of Qingdao University; Qingdao China
| | - Cheng Wang
- Department of Pathophysiology; Medical College of Qingdao University; Qingdao China
| | - Li Ma
- Departmemt of Clinical Nutrition; Affiliated Hospital; Qingdao University; Qingdao China
| | - Luo Xu
- Department of Pathophysiology; Medical College of Qingdao University; Qingdao China
| |
Collapse
|
6
|
Xu L, Wang H, Gong Y, Pang M, Sun X, Guo F, Gao S. Nesfatin-1 regulates the lateral hypothalamic area melanin-concentrating hormone-responsive gastric distension-sensitive neurons and gastric function via arcuate nucleus innervation. Metabolism 2017; 67:14-25. [PMID: 28081774 DOI: 10.1016/j.metabol.2016.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/18/2016] [Accepted: 10/23/2016] [Indexed: 12/15/2022]
Abstract
Nesfatin-1, a recently discovered neuropeptide involved in satiety. Recent studies have revealed that central nesfatin-1 inhibits gastric emptying and gastric acid secretion, though the mechanisms involved in these processes are not known. We aim to explore the effects of nesfatin-1 on a population of gastric distension (GD)-sensitive neurons in the lateral hypothalamus (LHA), gastric motility, and gastric secretion and the role for an arcuate nucleus (Arc)-LHA neural pathway in these processes. Single unit extracellular discharge recordings were made in of LHA. Further, gastric motility and gastric secretion in rats were monitored. Retrograde tracing and fluorescent immunohistochemical staining were used to explore nesfatin-1 neuron projection. The results revealed that administration of nesfatin-1 to the LHA or electric stimulation of the Arc could alter the neuronal activity of melanin-concentrating hormone (MCH)-responsive, GD-responsive neurons in LHA, which could be blocked by pretreatment with MCH receptor-1 antagonist PMC-3881-PI or weakened by pretreatment of a nesfatin-1 antibody in LHA. Administration of nesfatin-1 into LHA could inhibit gastric motility and gastric secretion, and these effects could be enhanced by administration of PMC-3881-PI. Electrical stimulation of Arc promoted the gastric motility and gastric secretion. Nesfatin-1 antibody or PMC-3881-PI pretreatment to LHA had no effect on Arc stimulation-induced gastric motility, but these pretreatments did alter Arc stimulation-induced effects on gastric secretion. Our findings suggest that nesfatin-1 signaling in LHA participates in the regulation of efferent information from the gastrointestinal tract and gastric secretion which also involve MCH signaling. Further, they show that a nesfatin-1-positive Arc to LHA pathway is critical for these effects.
Collapse
Affiliation(s)
- Luo Xu
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, Shandong, China.
| | - Hongbo Wang
- Department of Gastroenterology, Jimo People's Hospital, Qingdao, Shandong, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Mingjie Pang
- Department of Otolaryngology, Qingdao Municipal Hospital (Group), Qingdao, Shandong, China
| | - Xiangrong Sun
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Feifei Guo
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - Shengli Gao
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Wang H, Liu WJ, Shen GM, Zhang MT, Huang S, He Y. Neural mechanism of gastric motility regulation by electroacupuncture at RN12 and BL21: A paraventricular hypothalamic nucleus-dorsal vagal complex-vagus nerve-gastric channel pathway. World J Gastroenterol 2015; 21:13480-13489. [PMID: 26730159 PMCID: PMC4690177 DOI: 10.3748/wjg.v21.i48.13480] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/06/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the neural mechanism by which electroacupuncture (EA) at RN12 (Zhongwan) and BL21 (Weishu) regulates gastric motility.
METHODS: One hundred and forty-four adult Sprague Dawley rats were studied in four separate experiments. Intragastric pressure was measured using custom-made rubber balloons, and extracellular neuron firing activity, which is sensitive to gastric distention in the dorsal vagal complex (DVC), was recorded by an electrophysiological technique. The expression levels of c-fos, motilin (MTL) and gastrin (GAS) in the paraventricular hypothalamic nucleus (PVN) were assayed by immunohistochemistry, and the expression levels of motilin receptor (MTL-R) and gastrin receptor (GAS-R) in both the PVN and the gastric antrum were assayed by western blotting.
RESULTS: EA at RN12 + BL21 (gastric Shu and Mu points), BL21 (gastric Back-Shu point), RN12 (gastric Front-Mu point), resulted in increased neuron-activating frequency in the DVC (2.08 ± 0.050, 1.17 ± 0.023, 1.55 ± 0.079 vs 0.75 ± 0.046, P < 0.001) compared with a model group. The expression of c-fos (36.24 ± 1.67, 29.41 ± 2.55, 31.79 ± 3.00 vs 5.73 ± 2.18, P < 0.001), MTL (22.48 ± 2.66, 20.76 ± 2.41, 19.17 ± 1.71 vs 11.68 ± 2.52, P < 0.001), GAS (24.99 ± 2.95, 21.69 ± 3.24, 23.03 ± 3.09 vs 12.53 ± 2.15, P < 0.001), MTL-R (1.39 ± 0.05, 1.22 ± 0.05, 1.17 ± 0.12 vs 0.84 ± 0.06, P < 0.001), and GAS-R (1.07 ± 0.07, 0.91 ± 0.06, 0.78 ± 0.05 vs 0.45 ± 0.04, P < 0.001) increased in the PVN after EA compared with the model group. The expression of MTL-R (1.46 ± 0.14, 1.26 ± 0.11, 0.99 ± 0.07 vs 0.65 ± 0.03, P < 0.001), and GAS-R (1.63 ± 0.11, 1.26 ± 0.16, 1.13 ± 0.02 vs 0.80 ± 0.11, P < 0.001) increased in the gastric antrum after EA compared with the model group. Damaging the PVN resulted in reduced intragastric pressure (13.67 ± 3.72 vs 4.27 ± 1.48, P < 0.001). These data demonstrate that the signals induced by EA stimulation of acupoints RN12 and BL21 are detectable in the DVC and the PVN, and increase the levels of gastrointestinal hormones and their receptors in the PVN and gastric antrum to regulate gastric motility.
CONCLUSION: EA at RN12 and BL21 regulates gastric motility, which may be achieved through the PVN-DVC-vagus-gastric neural pathway.
Collapse
|
8
|
Wang Y, Chen F, Shi H, Jiang J, Li H, Qin B, Li Y. Extrinsic ghrelin in the paraventricular nucleus increases small intestinal motility in rats by activating central growth hormone secretagogue and enteric cholinergic receptors. Peptides 2015; 74:43-9. [PMID: 26431788 DOI: 10.1016/j.peptides.2015.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND/OBJECTIVES Ghrelin is a brain-gut peptide that regulates gastrointestinal (GI) motility. We hypothesized that the excitatory effect of ghrelin on the paraventricular nucleus (PVN) increases GI motility by activating the central growth hormone secretagogue receptor (GHSR) and central neuropeptide Y (NPY) signaling pathways, leading to increased enteric cholinergic activity. METHODS Thirty-six male Sprague Dawley rats were maintained on duodenal catheterization and PVN cannulation. Small intestinal transit (SIT) was observed and rats were divided as follows: experimental animals received ghrelin injections in the PVN (0.03, 0.08, or 0.24 nM); 1 nM GHSR antagonist D-Lys3-GHRP6 alone; 1nM D-Lys3-GHRP6 before ghrelin injection in the PVN, respectively. Electrophysiologic parameters of the interdigestive myoelectric complex (IMC) were examined by administration of 0.24 nM ghrelin in the PVN after small intestinal electrode implantation and PVN cannulation. GI cholinergic pathway activation was analyzed after intravenous atropine administration. The involvement of central NPY signaling was evaluated by injecting an anti-NPY immunoglobulin (IgG) in the PVN. Neuronal expression of c-Fos in the brain and GI tract was examined using immunohistochemistry. RESULTS Injection of ghrelin in the PVN dose-dependently accelerated SIT, and this excitatory effect was competitively inhibited by a GHSR antagonist. The excitatory effect of ghrelin on IMC activity was diminished by GHSR antagonism and NPY neutralization, as well as by blockade of peripheral muscarinic acetylcholine receptors. Extrinsic ghrelin significantly upregulated c-Fos expression in the PVN and other central nuclei, as well as in the enteric nervous plexuses of the stomach, duodenum, and proximal colon. The ghrelin-induced upregulation of central and enteric c-Fos expression was also dependent on central GHSR activation. CONCLUSIONS Ghrelin positively regulates GI motility by exciting both central and enteric neurons, including those of the PVN, by activating GHSR and NPY pathways, and peripheral muscarinic acetylcholine receptors.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Xi'an 710004, China; Shannxi Provincial Clinical Research Center of Gastrointestinal Diseases, Xi'an 710004, China.
| | - Fenrong Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Xi'an 710004, China; Shannxi Provincial Clinical Research Center of Gastrointestinal Diseases, Xi'an 710004, China
| | - Haitao Shi
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Xi'an 710004, China; Shannxi Provincial Clinical Research Center of Gastrointestinal Diseases, Xi'an 710004, China
| | - Jiong Jiang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Xi'an 710004, China; Shannxi Provincial Clinical Research Center of Gastrointestinal Diseases, Xi'an 710004, China
| | - Hong Li
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Xi'an 710004, China; Shannxi Provincial Clinical Research Center of Gastrointestinal Diseases, Xi'an 710004, China
| | - Bin Qin
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Xi'an 710004, China; Shannxi Provincial Clinical Research Center of Gastrointestinal Diseases, Xi'an 710004, China
| | - Yong Li
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Shannxi Provincial Key Laboratory of Gastrointestinal Motility Disorders, Xi'an 710004, China; Shannxi Provincial Clinical Research Center of Gastrointestinal Diseases, Xi'an 710004, China
| |
Collapse
|
9
|
Guo FF, Xu L, Gao SL, Sun XR, Li ZL, Gong YL. The effects of nesfatin-1 in the paraventricular nucleus on gastric motility and its potential regulation by the lateral hypothalamic area in rats. J Neurochem 2014; 132:266-75. [PMID: 25328037 DOI: 10.1111/jnc.12973] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/19/2014] [Accepted: 10/10/2014] [Indexed: 12/11/2022]
Abstract
The current study investigated the effects of nesfatin-1 in the hypothalamic paraventricular nucleus (PVN) on gastric motility and the regulation of the lateral hypothalamic area (LHA). Using single unit recordings in the PVN, we show that nesfatin-1 inhibited the majority of the gastric distention (GD)-excitatory neurons and excited more than half of the GD-inhibitory (GD-I) neurons in the PVN, which were weakened by oxytocin receptor antagonist H4928. Gastric motility experiments showed that administration of nesfatin-1 in the PVN decreased gastric motility, which was also partly prevented by H4928. The nesfatin-1 concentration producing a half-maximal response (EC50) in the PVN was lower than the value in the dorsomedial hypothalamic nucleus, while nesfatin-1 in the reuniens thalamic nucleus had no effect on gastric motility. Retrograde tracing and immunofluorescent staining showed that nucleobindin-2/nesfatin-1 and fluorogold double-labeled neurons were observed in the LHA. Electrical LHA stimulation changed the firing rate of GD-responsive neurons in the PVN. Pre-administration of an anti- nucleobindin-2/nesfatin-1 antibody in the PVN strengthened gastric motility and decreased the discharging of the GD-I neurons induced by electrical stimulation of the LHA. These results demonstrate that nesfatin-1 in the PVN could serve as an inhibitory factor to inhibit gastric motility, which might be regulated by the LHA.
Collapse
Affiliation(s)
- Fei-fei Guo
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | | | | | | | | | | |
Collapse
|