1
|
Di Lascio S, Benfante R, Cardani S, Fornasari D. Research Advances on Therapeutic Approaches to Congenital Central Hypoventilation Syndrome (CCHS). Front Neurosci 2021; 14:615666. [PMID: 33510615 PMCID: PMC7835644 DOI: 10.3389/fnins.2020.615666] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital central hypoventilation syndrome (CCHS) is a genetic disorder of neurodevelopment, with an autosomal dominant transmission, caused by heterozygous mutations in the PHOX2B gene. CCHS is a rare disorder characterized by hypoventilation due to the failure of autonomic control of breathing. Until now no curative treatment has been found. PHOX2B is a transcription factor that plays a crucial role in the development (and maintenance) of the autonomic nervous system, and in particular the neuronal structures involved in respiratory reflexes. The underlying pathogenetic mechanism is still unclear, although studies in vivo and in CCHS patients indicate that some neuronal structures may be damaged. Moreover, in vitro experimental data suggest that transcriptional dysregulation and protein misfolding may be key pathogenic mechanisms. This review summarizes latest researches that improved the comprehension of the molecular pathogenetic mechanisms responsible for CCHS and discusses the search for therapeutic intervention in light of the current knowledge about PHOX2B function.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.,CNR-Institute of Neuroscience, Milan, Italy.,NeuroMi-Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy
| | - Silvia Cardani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.,CNR-Institute of Neuroscience, Milan, Italy
| |
Collapse
|
2
|
Cardani S, Di Lascio S, Belperio D, Di Biase E, Ceccherini I, Benfante R, Fornasari D. Desogestrel down-regulates PHOX2B and its target genes in progesterone responsive neuroblastoma cells. Exp Cell Res 2018; 370:671-679. [PMID: 30036539 DOI: 10.1016/j.yexcr.2018.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
The paired-like homeobox 2B gene (PHOX2B) encodes a key transcription factor that plays a role in the development of the autonomic nervous system and the neural structures involved in controlling breathing. In humans, PHOX2B over-expression plays a role in the pathogenesis of tumours arising from the sympathetic nervous system such as neuroblastomas, and heterozygous PHOX2B mutations cause Congenital Central Hypoventilation Syndrome (CCHS), a life-threatening neurocristopathy characterised by the defective autonomic control of breathing and involving altered CO2/H+ chemosensitivity. The recovery of CO2/H+ chemosensitivity and increased ventilation have been observed in two CCHS patients using the potent contraceptive progestin desogestrel. Given the central role of PHOX2B in the pathogenesis of CCHS, and the progesterone-mediated effects observed in the disease, we generated progesterone-responsive neuroblastoma cells, and evaluated the effects of 3-Ketodesogestrel (3-KDG), the biologically active metabolite of desogestrel, on the expression of PHOX2B and its target genes. Our findings demonstrate that, through progesterone nuclear receptor PR-B, 3-KDG down-regulates PHOX2B gene expression, by a post-transcriptional mechanism, and its target genes and open up the possibility that this mechanism may contribute to the positive effects observed in some CCHS patients.
Collapse
Affiliation(s)
- Silvia Cardani
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli 32, 2019 Milan, Italy
| | - Simona Di Lascio
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli 32, 2019 Milan, Italy
| | - Debora Belperio
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli 32, 2019 Milan, Italy
| | - Erika Di Biase
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli 32, 2019 Milan, Italy
| | - Isabella Ceccherini
- Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, Largo G. Gaslini 5, 16148 Genoa, Italy
| | - Roberta Benfante
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli 32, 2019 Milan, Italy; CNR -Neuroscience Institute, via Vanvitelli 32, 20129 Milan, Italy.
| | - Diego Fornasari
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli 32, 2019 Milan, Italy; CNR -Neuroscience Institute, via Vanvitelli 32, 20129 Milan, Italy.
| |
Collapse
|
3
|
Pennacchio GE, Neira FJ, Soaje M, Jahn GA, Valdez SR. Effect of hyperthyroidism on circulating prolactin and hypothalamic expression of tyrosine hydroxylase, prolactin signaling cascade members and estrogen and progesterone receptors during late pregnancy and lactation in the rat. Mol Cell Endocrinol 2017; 442:40-50. [PMID: 27919641 DOI: 10.1016/j.mce.2016.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 11/18/2022]
Abstract
Hyperthyroidism (HyperT) compromises pregnancy and lactation, hindering suckling-induced PRL release. We studied the effect of HyperT on hypothalamic mRNA (RT-qPCR) and protein (Western blot) expression of tyrosine hydroxylase (TH), PRL receptor (PRLR) and signaling pathway members, estrogen-α (ERα) and progesterone (PR) receptors on late pregnancy (days G19, 20 and 21) and early lactation (L2) in rats. HyperT advanced pre-partum PRL release, reduced circulating PRL on L2 and increased TH mRNA (G21 and L2), p-TH, PRLR mRNA, STAT5 protein (G19 and L2), PRLR protein (G21) and CIS protein (G19). PRs mRNAs and protein decreased on G19 but afterwards PRA mRNA (G20), PRB mRNA (G21) and PRA mRNA and protein (L2) increased. ERα protein increased on G19 and decreased on G20. Thus, the altered hypothalamic PRLR, STAT5, PR and ERα expression in hyperthyroid rats may induce elevated TH expression and activation, that consequently, elevate dopaminergic tone during lactation, blunting suckling-induced PRL release and litter growth.
Collapse
Affiliation(s)
- Gisela E Pennacchio
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Flavia J Neira
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET Mendoza, Argentina
| | - Marta Soaje
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET Mendoza, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Graciela A Jahn
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET Mendoza, Argentina
| | - Susana R Valdez
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
4
|
Willing J, Wagner CK. Progesterone Receptor Expression in the Developing Mesocortical Dopamine Pathway: Importance for Complex Cognitive Behavior in Adulthood. Neuroendocrinology 2015; 103:207-22. [PMID: 26065828 PMCID: PMC4675705 DOI: 10.1159/000434725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Numerous psychiatric and behavioral disorders such as autism, attention deficit disorder and schizophrenia may involve disruptions in the development of the mesocortical dopamine pathway, consisting of dopaminergic projections from the midbrain ventral tegmental area (VTA) to the medial prefrontal cortex (mPFC). Nuclear steroid hormone receptors are powerful transcription factors and can profoundly and permanently alter fundamental processes of neural development. Nuclear progesterone receptor (PR) is transiently expressed in both the VTA and the PFC of rodents during perinatal life, suggesting that PR may regulate the normal development of this important behavioral circuit. METHODS AND RESULTS Here, we demonstrate that virtually all PR-immunoreactive (PR-ir) cells in the VTA also express tyrosine hydroxylase immunoreactivity (TH-ir). In addition, retrograde tract tracing reveals that many PR-ir cells in the VTA project to the mPFC. Administration of a PR antagonist to rats during the neonatal period decreased TH-ir fiber density in the prelimbic mPFC of juveniles (postnatal day 25) and decreased levels of TH-ir in the VTA of adults. Neonatal treatment with a PR antagonist impaired adult performance on a passive inhibitory avoidance task and an attentional set-shifting task, measures of behavioral inhibition/impulsivity and cognitive flexibility, respectively. TH-ir levels in the VTA were reduced and cognitive flexibility was impaired in PR knockout mice as well. CONCLUSIONS These findings provide novel insights into a potential role for PR in the developmental etiology of behavioral disorders that involve impairments in complex cognitive behaviors and have implications for the use of synthetic progestins in humans during critical neurodevelopmental periods.
Collapse
Affiliation(s)
- Jari Willing
- Department of Psychology and Center for Neuroscience Research University at Albany, SUNY, Albany, NY
- Department of Psychology: Behavioral Neuroscience Division University of Illinois at Urbana Champaign, Champaign, IL
| | - Christine K Wagner
- Department of Psychology and Center for Neuroscience Research University at Albany, SUNY, Albany, NY
| |
Collapse
|
5
|
Jensik PJ, Arbogast LA. Regulation of cytokine-inducible SH2-containing protein (CIS) by ubiquitination and Elongin B/C interaction. Mol Cell Endocrinol 2015; 401:130-41. [PMID: 25448846 PMCID: PMC4373541 DOI: 10.1016/j.mce.2014.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
Cytokine-inducible SH2-containing protein (CIS) inhibits prolactin receptor (PRLR) signaling and acts as part of an E3 ubiquitin ligase complex through interactions with Elongin B/C proteins. This study aimed to identify CIS lysine ubiquitination sites and determine roles of ubiquitination and Elongin B/C interactions on CIS protein stability and PRLR signaling inhibition. Site-directed mutations revealed that CIS can be ubiquitinated on all six lysine residues. Elongin B/C interaction box mutation had no influence on CIS ubiquitination. CIS stability was increased by mutation of lysine residues and further enhanced by co-mutation of Elongin B/C interaction domain. CIS inhibition of STAT5B phosphorylation and casein promoter activation was dependent on CIS interactions with Elongin B/C, but not on CIS ubiquitination. These data indicate CIS protein stability is regulated through multiple mechanisms, including ubiquitination and interaction with Elongin B/C proteins, whereas CIS functional inhibition of PRLR signaling is dependent on the Elongin B/C interaction.
Collapse
|
6
|
Complex molecular regulation of tyrosine hydroxylase. J Neural Transm (Vienna) 2014; 121:1451-81. [PMID: 24866693 DOI: 10.1007/s00702-014-1238-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/04/2014] [Indexed: 12/16/2022]
Abstract
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is strictly controlled by several interrelated regulatory mechanisms. Enzyme synthesis is controlled by epigenetic factors, transcription factors, and mRNA levels. Enzyme activity is regulated by end-product feedback inhibition. Phosphorylation of the enzyme is catalyzed by several protein kinases and dephosphorylation is mediated by two protein phosphatases that establish a sensitive process for regulating enzyme activity on a minute-to-minute basis. Interactions between tyrosine hydroxylase and other proteins introduce additional layers to the already tightly controlled production of catecholamines. Tyrosine hydroxylase degradation by the ubiquitin-proteasome coupled pathway represents yet another mechanism of regulation. Here, we revisit the myriad mechanisms that regulate tyrosine hydroxylase expression and activity and highlight their physiological importance in the control of catecholamine biosynthesis.
Collapse
|
7
|
Brown RM, Davis MG, Hayashi K, MacLean JA. Regulated expression of Rhox8 in the mouse ovary: evidence for the role of progesterone and RHOX5 in granulosa cells. Biol Reprod 2013; 88:126. [PMID: 23536368 DOI: 10.1095/biolreprod.112.103267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The gonadotropin surge is the essential trigger to stimulate ovulation and luteinization of ovarian follicles. While the hormone signals from the brain that initiate ovulation are known, the specific targets which regulate this process are not well known. In this study, we assessed the suitability of the Rhox homeobox gene cluster to serve as the master regulators of folliculogenesis. In superovulated (equine chorionic gonadotropin [eCG]/human chorionic gonadotropin [hCG]) mice, the Rhox genes exhibited four distinct windows of peak expression, suggesting that these genes may regulate specific events during the ovulatory cycle. Like many members of the cluster, Rhox8 mRNA and protein were induced by follicle stimulating hormone [FSH]/eCG in granulosa cells. However, Rhox8 displayed unique peak expression at 8 h post-hCG administration, implying it might be the lone member of the cluster regulated by progesterone. Subsequent promoter analysis in granulosa cells revealed relevant homeobox binding and progesterone response elements within Rhox8's 5'-flanking region. In superovulated mice, progesterone receptor (PGR) is recruited to the Rhox8 promoter, as assessed by chromatin immunoprecipitation. In Rhox5-null mice, Rhox8 mRNA was reduced at 2 h and 4 h post-hCG administration but recovered once the follicles passed the antral stage of development. Conversely, in progesterone receptor knockout mice, Rhox8 exhibited normal stimulation by eCG but failed to reach its peak mRNA level at 8 h post-hCG found in wild-type mice. This suggests a model in which Rhox8 transcription is dependent upon RHOX5 during early folliculogenesis and upon progesterone during the periovulatory window when RHOX5 normally wanes. In support of this model, transfection of RHOX5 and PGR expression plasmids stimulated, whereas dominant negative and mutant constructs inhibited, Rhox8 promoter activity.
Collapse
Affiliation(s)
- Raquel M Brown
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | | | | | | |
Collapse
|
8
|
Casas S, Giuliani F, Cremaschi F, Yunes R, Cabrera R. Neuromodulatory effect of progesterone on the dopaminergic, glutamatergic, and GABAergic activities in a male rat model of Parkinson's disease. Neurol Res 2013; 35:719-25. [PMID: 23561326 DOI: 10.1179/1743132812y.0000000142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Progesterone has been reported to have a neuroprotective role in depression-like rats in a hemiparkinsonian model of the disease. In this work, we investigate if this hormone affects the three principal neurochemicals striatal systems (dopaminergic, glutamatergic, and GABAergic) that are involved in the physiopathology of the disease in a hemiparkinsonim male rat model at 8 weeks post-chemical injury. METHODS For this purpose, we design three experimental groups: (1) sham group; (2) hemiparkinsonian group; and (3) hemiparkinsonian group subcutaneously injected with progesterone at 7 days post-chemical injury. Animals were tested in an automated rotational device at 8 weeks post-chemical injury. After behavioral test, K(+)-evoked [(3)H]-dopamine, [(3)H]-glutamate, and [(3)H]-gamma aminobutyric acid release from striatum slices were analyzed by superfusion experiments. RESULTS The hemiparkinsonian group showed distinctive alterations that are produced by neurodegeneration of left nigrostriatal dopaminergic pathway by 6-hydroxydopamine hydrobromide (6-OHDA). On the other hand, the administration of progesterone 7 days after the injection of the neurotoxin was able to (1) improve the K(+)-evoked [(3)H]-dopamine release from the damaged striata (left); (2) avoid significant increase in the K(+)-evoked [(3)H]-glutamate release from the left striata; and (3) progesterone does not modify the K(+)-evoked [(3)H]-gamma aminobutyric acid release from the left striata. DISCUSSION These results suggest that progesterone does have neuroprotective and neuromodulatory effects on striatal neurotransmission systems in the hemiparkinsonian male rats. The possible mechanisms would involve genomic and non-genomic actions of this neuroactive steroid which would modulate the activity of dopaminergic, glutamatergic, and GABAergic pathways.
Collapse
|
9
|
Bethea CL, Reddy AP. Effect of ovarian steroids on gene expression related to synapse assembly in serotonin neurons of macaques. J Neurosci Res 2012; 90:1324-34. [PMID: 22411564 DOI: 10.1002/jnr.23004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/24/2011] [Accepted: 11/17/2011] [Indexed: 12/24/2022]
Abstract
Dendritic spines are the elementary structural units of neural plasticity. In a model of hormone replacement therapy (HT), we sought to determine the effect of estradiol (E) and progesterone (P) on gene expression related to synapse assembly in a laser-captured preparation enriched for serotonin neurons from rhesus macaques. Microarray analysis was conducted (n = 2 animals/treatment), and the results were confirmed for pivotal genes with qRT-PCR on additional laser-captured material (n = 3 animals/treatment). Ovariectomized rhesus macaques were treated with placebo, E, or E + P via Silastic implants for 1 month. The midbrain was obtained, sectioned, and immunostained for tryptophan hydroxylase (TPH). TPH-positive neurons were laser captured using an arcturus laser dissection microscope (Pixel II). RNA from laser-captured serotonin neurons was hybridized to Rhesus Affymetrix GeneChips for screening purposes. There was a twofold or greater change in the expression of 63 probe sets in the cell adhesion molecule (CAM) category, and 31 probe sets in the synapse assembly category were similarly altered in E- and E + P-treated animals. qRT-PCR assays showed that E treatment induced a significant increase in ephrin receptor A4 (EPHA4) and in integrin A8 (ITGA8) but not in ephrin receptor B4 (EPHB4) or integrin B8 (ITGB8) expression. E also increased expression of cadherin 11 (CDH11), neuroligin 3 (NLGN3), neurexin 3 (NRXN3), syndecan 2 (SCD2), and neural cell adhesion molecule (NCAM) compared with placebo. Supplemental P treatment suppressed E-induced gene expression. In summary, ovarian steroids target gene expression of adhesion molecules in serotonin neurons that are important for synapse assembly.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | |
Collapse
|
10
|
Su C, Rybalchenko N, Schreihofer DA, Singh M, Abbassi B, Cunningham RL. Cell Models for the Study of Sex Steroid Hormone Neurobiology. ACTA ACUST UNITED AC 2012; S2. [PMID: 22860237 DOI: 10.4172/2157-7536.s2-003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To date many aspects of neurons and glia biology remain elusive, due in part to the cellular and molecular complexity of the brain. In recent decades, cell models from different brain areas have been established and proven invaluable toward understanding this complexity. In the field of steroid hormone neurobiology, an important question is: what is the profile of steroid hormone receptor expression in these specific cell lines? Currently, a clear summary of such receptor profiling is lacking. For this reason, we summarized in this review the expression of estrogen, progesterone, and androgen receptors in several widely used cell lines (glial and neuronal) derived from the forebrain and midbrain, based on our own data and that from the literature. Such information will aid in the selection of specific cell lines used to test hypotheses related to the biology of estrogens, progestins, and/or androgens.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 USA
| | | | | | | | | | | |
Collapse
|