1
|
Aikins AO, Little JT, Rybalchenko N, Cunningham JT. Norepinephrine innervation of the supraoptic nucleus contributes to increased copeptin and dilutional hyponatremia in male rats. Am J Physiol Regul Integr Comp Physiol 2022; 323:R797-R809. [PMID: 36189988 PMCID: PMC9639772 DOI: 10.1152/ajpregu.00086.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
Dilutional hyponatremia associated with liver cirrhosis is due to inappropriate release of arginine vasopressin (AVP). Elevated plasma AVP causes water retention resulting in a decrease in plasma osmolality. Cirrhosis, in this study caused by ligation of the common bile duct (BDL), leads to a decrease in central vascular blood volume and hypotension, stimuli for nonosmotic AVP release. The A1/A2 neurons stimulate the release of AVP from the supraoptic nucleus (SON) in response to nonosmotic stimuli. We hypothesize that the A1/A2 noradrenergic neurons support chronic release of AVP in cirrhosis leading to dilutional hyponatremia. Adult, male rats were anesthetized with 2-3% isoflurane (mixed with 95% O2/5% CO2) and injected in the SON with anti-dopamine β-hydroxylase (DBH) saporin (DSAP) or vehicle followed by either BDL or sham surgery. Plasma copeptin, osmolality, and hematocrit were measured. Brains were processed for ΔFosB, dopamine β-hydroxylase (DBH), and AVP immunohistochemistry. DSAP injection: 1) significantly reduced the number of DBH immunoreactive A1/A2 neurons (A1, P < 0.0001; A2, P = 0.0014), 2) significantly reduced the number of A1/A2 neurons immunoreactive to both DBH and ΔFosB positive neurons (A1, P = 0.0015; A2, P < 0.0001), 3) reduced the number of SON neurons immunoreactive to both AVP and ΔFosB (P < 0.0001), 4) prevented the increase in plasma copeptin observed in vehicle-injected BDL rats (P = 0.0011), and 5) normalized plasma osmolality and hematocrit (plasma osmolality, P = 0.0475; hematocrit, P = 0.0051) as compared with vehicle injection. Our data suggest that A1/A2 neurons contribute to increased plasma copeptin and hypoosmolality in male BDL rats.
Collapse
Affiliation(s)
- Ato O Aikins
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Joel T Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Nataliya Rybalchenko
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| |
Collapse
|
2
|
Custer EE, Knott TK, Ortiz-Miranda S, Lemos JR. Effects of calcium and sodium on ATP-induced vasopressin release from rat isolated neurohypophysial terminals. J Neuroendocrinol 2018; 30:e12605. [PMID: 29729039 PMCID: PMC6215752 DOI: 10.1111/jne.12605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/26/2018] [Indexed: 11/28/2022]
Abstract
ATP-receptors (P2X2, P2X3, P2X4 & P2X7) are found in neurohypophysial terminals (NHT). These purinergic receptor subtypes are known to be cation selective. Here we confirm that both sodium (Na+ ) and calcium (Ca2+ ) are permeable through these NHT purinergic receptors, but to varying degrees (91% vs. 9%, respectively). Furthermore, extracellular calcium inhibits the ATP-current magnitude. Thus, the objective of this study was to determine the effects of extracellular Na+ vs. Ca2+ on ATP-induced vasopressin (AVP) release from populations of rat isolated NHT. ATP (200 μM) perfused exogenously for 2 minutes in Normal Locke's buffer caused an initial transient increase in AVP release followed by a sustained increase in AVP release which lasted for the duration of the ATP exposure. Replacing extracellular NaCl with NMDG-Cl had no apparent effect on the ATP-induced transient increase in AVP release but abolished the sustained AVP release induced by ATP. Furthermore, removal of extracellular calcium resulted in no ATP-induced transient increase in AVP release, but had no effect on the delayed, sustained increase in AVP release. The ATP-induced calcium-dependent transient increase in AVP release was >95% inhibited by 10 μM of the P2X purinergic receptor antagonist PPADS, a dose sufficient to block P2X2 and P2X3 receptors but not P2X4 or P2X7 receptors. Interestingly, the ATP-induced calcium-independent, sodium-dependent sustained increase in AVP release was not affected by 10 μM PPADS. The ATP-induced calcium-dependent transient increase in AVP release was not affected by the P2X7 receptor antagonist BBG (100 nM). However, the ATP-induced sodium-dependent sustained AVP release was inhibited by 50%. Therefore, these results show that rat isolated NHT exhibit a biphasic response to exogenous ATP that is differentially dependent on extracellular calcium and sodium. Furthermore, the initial transient release appears to be through P2X2 and/or P2X3 receptors and the sustained release is through a P2X7 receptor. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- E E Custer
- Depts. MaPS Prog. Neurosci, Univ. Mass. Med. School, Worcester, MA, 01605
| | - T K Knott
- Depts. MaPS Prog. Neurosci, Univ. Mass. Med. School, Worcester, MA, 01605
| | - S Ortiz-Miranda
- Neurobiology& Prog. Neurosci., Univ. Mass. Med. School, Worcester, MA, 01605
| | - J R Lemos
- Depts. MaPS Prog. Neurosci, Univ. Mass. Med. School, Worcester, MA, 01605
| |
Collapse
|
3
|
Lemos JR, Custer EE, Ortiz-Miranda S. Purinergic receptor types in the hypothalamic-neurohypophysial system. J Neuroendocrinol 2018; 30:10.1111/jne.12588. [PMID: 29512852 PMCID: PMC6128781 DOI: 10.1111/jne.12588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/28/2018] [Indexed: 11/27/2022]
Abstract
Many different types of purinergic receptors are present in the Hypothalamic-Neurohypophysial System (HNS), which synthesizes and releases vasopressin and oxytocin. The specific location of purinergic receptor subtypes has important functional repercussions for neuronal activity and synaptic output. Yet, until the advent of receptor KOs, this had been hindered by the low selectivity of the available pharmacological tools. The HNS offers an excellent opportunity to differentiate the functional properties of these purinergic receptors in cell bodies vs. terminals of the same physiological system. P2X2, P2X3, P2X4 and P2X7 receptors are present in vasopressin terminals while oxytocin terminals exclusively express the P2X7 subtype. The latter is not functional in the cell bodies of the HNS. These purinergic receptor subtypes are permeable to sodium vs. calcium in varying amounts and this could play an important role in the release of vasopressin vs. oxytocin during bursting activity. Endogenous ATP and its metabolite, adenosine, have autocrine and paracrine modulatory effects on the release of these neuropeptides during physiological stimulation. Finally, we hypothesize that during such action potential bursts, ATP potentiates the release of vasopressin but not of oxytocin, and that adenosine, via A1 receptors, inhibits the release of both neuropeptides. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | - Sonia Ortiz-Miranda
- Neurobiology Depts. & Prog. Neurosci., Univ. Mass. Med. School, Worcester, MA 01605
| |
Collapse
|
4
|
Abstract
The posterior pituitary gland secretes oxytocin and vasopressin (the antidiuretic hormone) into the blood system. Oxytocin is required for normal delivery of the young and for delivery of milk to the young during lactation. Vasopressin increases water reabsorption in the kidney to maintain body fluid balance and causes vasoconstriction to increase blood pressure. Oxytocin and vasopressin secretion occurs from the axon terminals of magnocellular neurons whose cell bodies are principally found in the hypothalamic supraoptic nucleus and paraventricular nucleus. The physiological functions of oxytocin and vasopressin depend on their secretion, which is principally determined by the pattern of action potentials initiated at the cell bodies. Appropriate secretion of oxytocin and vasopressin to meet the challenges of changing physiological conditions relies mainly on integration of afferent information on reproductive, osmotic, and cardiovascular status with local regulation of magnocellular neurons by glia as well as intrinsic regulation by the magnocellular neurons themselves. This review focuses on the control of magnocellular neuron activity with a particular emphasis on their regulation by reproductive function, body fluid balance, and cardiovascular status. © 2016 American Physiological Society. Compr Physiol 6:1701-1741, 2016.
Collapse
Affiliation(s)
- Colin H Brown
- Brain Health Research Centre, Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Abstract
Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling.
Collapse
|
6
|
Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal 2014; 10:189-231. [PMID: 24265070 PMCID: PMC3944044 DOI: 10.1007/s11302-013-9396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
There is widespread involvement of purinergic signalling in endocrine biology. Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone release. Adenosine 5'-triphosphate (ATP) regulates insulin release in the pancreas and is involved in the secretion of thyroid hormones. ATP plays a major role in the synthesis, storage and release of catecholamines from the adrenal gland. In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion, while in the testes, both Sertoli and Leydig cells express purinoceptors that mediate secretion of oestradiol and testosterone, respectively. ATP released as a cotransmitter with noradrenaline is involved in activities of the pineal gland and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and adenosine stimulate or modulate the release of luteinising hormone-releasing hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X and P2Y receptors have been identified on human placental syncytiotrophoblast cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes have been recognised recently to have endocrine function involving purinoceptors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
7
|
Cuadra AE, Custer EE, Bosworth EL, Lemos JR. P2X7 receptors in neurohypophysial terminals: evidence for their role in arginine-vasopressin secretion. J Cell Physiol 2014; 229:333-42. [PMID: 24037803 DOI: 10.1002/jcp.24453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 11/11/2022]
Abstract
Arginine-vasopressin (AVP) plays a major role in maintaining cardiovascular function and related pathologies. The mechanism involved in its release into the circulation is complex and highly regulated. Recent work has implicated the purinergic receptor, P2X7R, in a role for catecholamine-enhanced AVP release in the rat hypothalamic-neurohypophysial (NH) system. However, the site of P2X7R action in this endocrine system, and whether or not it directly mediates release in secretory neurons have not been determined. We hypothesized that the P2X7R is expressed and mediates AVP release in NH terminals. P2X7R function was first examined by patch-clamp recordings in isolated NH terminals. Results revealed that subpopulations of isolated terminals displayed either high ATP-sensitivity or low ATP-sensitivity, the latter of which was characteristic of the rat P2X7R. Additional recordings showed that terminals showing sensitivity to the P2X7R-selective agonist, BzATP, were further inhibited by P2X7R selective antagonists, AZ10606120 and brilliant blue-G. In confocal micrographs from tissue sections and isolated terminals of the NH P2X7R-immunoreactivity was found to be localized in plasma membranes. Lastly, the role of P2X7R on AVP release was tested. Our results showed that BzATP evoked sustained AVP release in NH terminals, which was inhibited by AZ10606120. Taken together, our data lead us to conclude that the P2X7R is expressed in NH terminals and corroborates its role in AVP secretion.
Collapse
Affiliation(s)
- Adolfo E Cuadra
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | | | |
Collapse
|
8
|
Brown CH, Bains JS, Ludwig M, Stern JE. Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol 2013; 25:678-710. [PMID: 23701531 PMCID: PMC3852704 DOI: 10.1111/jne.12051] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 01/12/2023]
Abstract
The hypothalamic supraoptic and paraventricular nuclei contain magnocellular neurosecretory cells (MNCs) that project to the posterior pituitary gland where they secrete either oxytocin or vasopressin (the antidiuretic hormone) into the circulation. Oxytocin is important for delivery at birth and is essential for milk ejection during suckling. Vasopressin primarily promotes water reabsorption in the kidney to maintain body fluid balance, but also increases vasoconstriction. The profile of oxytocin and vasopressin secretion is principally determined by the pattern of action potentials initiated at the cell bodies. Although it has long been known that the activity of MNCs depends upon afferent inputs that relay information on reproductive, osmotic and cardiovascular status, it has recently become clear that activity depends critically on local regulation by glial cells, as well as intrinsic regulation by the MNCs themselves. Here, we provide an overview of recent advances in our understanding of how intrinsic and local extrinsic mechanisms integrate with afferent inputs to generate appropriate physiological regulation of oxytocin and vasopressin MNC activity.
Collapse
Affiliation(s)
- C H Brown
- Department of Physiology and Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
9
|
Potentiation of inhibitory synaptic transmission by extracellular ATP in rat suprachiasmatic nuclei. J Neurosci 2013; 33:8035-44. [PMID: 23637193 DOI: 10.1523/jneurosci.4682-12.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The hypothalamic suprachiasmatic nuclei (SCN), the circadian master clock in mammals, releases ATP in a rhythm, but the role of extracellular ATP in the SCN is still unknown. In this study, we examined the expression and function of ATP-gated P2X receptors (P2XRs) in the SCN neurons of slices isolated from the brain of 16- to 20-day-old rats. Quantitative RT-PCR showed that the SCN contains mRNA for P2X 1-7 receptors and several G-protein-coupled P2Y receptors. Among the P2XR subunits, the P2X2 > P2X7 > P2X4 mRNAs were the most abundant. Whole-cell patch-clamp recordings from SCN neurons revealed that extracellular ATP application increased the frequency of spontaneous GABAergic IPSCs without changes in their amplitudes. The effect of ATP appears to be mediated by presynaptic P2X2Rs because ATPγS and 2MeS-ATP mimics, while the P2XR antagonist PPADS blocks, the observed enhancement of the frequency of GABA currents. There were significant differences between two SCN regions in that the effect of ATP was higher in the ventrolateral subdivision, which is densely innervated from outside the SCN. Little evidence was found for the presence of P2XR channels in somata of SCN neurons as P2X2R immunoreactivity colocalized with synapsin and ATP-induced current was observed in only 7% of cells. In fura-2 AM-loaded slices, BzATP as well as ADP stimulated intracellular Ca(2+) increase, indicating that the SCN cells express functional P2X7 and P2Y receptors. Our data suggest that ATP activates presynaptic P2X2Rs to regulate inhibitory synaptic transmission within the SCN and that this effect varies between regions.
Collapse
|
10
|
Modulation/physiology of calcium channel sub-types in neurosecretory terminals. Cell Calcium 2012; 51:284-92. [PMID: 22341671 DOI: 10.1016/j.ceca.2012.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/11/2012] [Accepted: 01/22/2012] [Indexed: 11/21/2022]
Abstract
The hypothalamic-neurohypophysial system (HNS) controls diuresis and parturition through the release of arginine-vasopressin (AVP) and oxytocin (OT). These neuropeptides are chiefly synthesized in hypothalamic magnocellular somata in the supraoptic and paraventricular nuclei and are released into the blood stream from terminals in the neurohypophysis. These HNS neurons develop specific electrical activity (bursts) in response to various physiological stimuli. The release of AVP and OT at the level of neurohypophysis is directly linked not only to their different burst patterns, but is also regulated by the activity of a number of voltage-dependent channels present in the HNS nerve terminals and by feedback modulators. We found that there is a different complement of voltage-gated Ca(2+) channels (VGCC) in the two types of HNS terminals: L, N, and Q in vasopressinergic terminals vs. L, N, and R in oxytocinergic terminals. These channels, however, do not have sufficiently distinct properties to explain the differences in release efficacy of the specific burst patterns. However, feedback by both opioids and ATP specifically modulate different types of VGCC and hence the amount of AVP and/or OT being released. Opioid receptors have been identified in both AVP and OT terminals. In OT terminals, μ-receptor agonists inhibit all VGCC (particularly R-type), whereas, they induce a limited block of L-, and P/Q-type channels, coupled to an unusual potentiation of the N-type Ca(2+) current in the AVP terminals. In contrast, the N-type Ca(2+) current can be inhibited by adenosine via A(1) receptors leading to the decreased release of both AVP and OT. Furthermore, ATP evokes an inactivating Ca(2+)/Na(+)-current in HNS terminals able to potentiate AVP release through the activation of P2X2, P2X3, P2X4 and P2X7 receptors. In OT terminals, however, only the latter receptor type is probably present. We conclude by proposing a model that can explain how purinergic and/or opioid feedback modulation during bursts can mediate differences in the control of neurohypophysial AVP vs. OT release.
Collapse
|