1
|
Faure MC, Corona R, Roomans C, Lenfant F, Foidart JM, Cornil CA. Role of Membrane Estrogen Receptor Alpha on the Positive Feedback of Estrogens on Kisspeptin and GnRH Neurons. eNeuro 2024; 11:ENEURO.0271-23.2024. [PMID: 39375032 PMCID: PMC11520851 DOI: 10.1523/eneuro.0271-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 06/14/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Estrogens act through nuclear and membrane-initiated signaling. Estrogen receptor alpha (ERα) is critical for reproduction, but the relative contribution of its nuclear and membrane signaling to the central regulation of reproduction is unclear. To address this question, two complementary approaches were used: estetrol (E4) a natural estrogen acting as an agonist of nuclear ERs, but as an antagonist of their membrane fraction, and the C451A-ERα mouse lacking mERα. E4 dose- dependently blocks ovulation in female rats, but the central mechanism underlying this effect is unknown. To determine whether E4 acts centrally to control ovulation, its effect was tested on the positive feedback of estradiol (E2) on neural circuits underlying luteinizing hormone (LH) secretion. In ovariectomized females chronically exposed to a low dose of E2, estradiol benzoate (EB) alone or combined with progesterone (P) induced an increase in the number of kisspeptin (Kp) and gonadotropin-releasing hormone (GnRH) neurons coexpressing Fos, a marker of neuronal activation. E4 blocked these effects of EB, but not when combined to P. These results indicate that E4 blocked the central induction of the positive feedback in the absence of P, suggesting an antagonistic effect of E4 on mERα in the brain as shown in peripheral tissues. In parallel, as opposed to wild-type females, C451A-ERα females did not show the activation of Kp and GnRH neurons in response to EB unless they are treated with P. Together these effects support a role for membrane-initiated estrogen signaling in the activation of the circuit mediating the LH surge.
Collapse
Affiliation(s)
- Mélanie C. Faure
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Rebeca Corona
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Céline Roomans
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Françoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297-UPS, CHU, Toulouse 31432, France
| | - Jean-Michel Foidart
- Department of Obstetrics and Gynecology, University of Liège, Liège, Belgium
- Estetra SRL, Légiapark, Boulevard Patience et Beaujonc 3, 4000 Liège, Belgium
| | - Charlotte A. Cornil
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Bisphenol A Activates Calcium Influx in Immortalized GnRH Neurons. Int J Mol Sci 2019; 20:ijms20092160. [PMID: 31052388 PMCID: PMC6539360 DOI: 10.3390/ijms20092160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
Bisphenol A (BPA) is one of the most widely used chemicals worldwide, e.g., as a component of plastic containers for food and water. It is considered to exert an estrogenic effect, by mimicking estradiol (E2) action. Because of this widespread presence, it has attracted the interest and concern of researchers and regulators. Despite the vast amount of related literature, the potential adverse effects of environmentally significant doses of BPA are still object of controversy, and the mechanisms by which it can perturb endocrine functions, and particularly the neuroendocrine axis, are not adequately understood. One of the ways by which endocrine disruptors (EDCs) can exert their effects is the perturbation of calcium signaling mechanisms. In this study, we addressed the issue of the impact of BPA on the neuroendocrine system with an in vitro approach, using a consolidated model of immortalized Gonadotropin-Releasing Hormone (GnRH) expressing neurons, the GT1–7 cell line, focusing on the calcium signals activated by the endocrine disruptor. The investigation was limited to biologically relevant doses (nM–µM range). We found that BPA induced moderate increases in intracellular calcium concentration, comparable with those induced by nanomolar doses of E2, without affecting cell survival and with only a minor effect on proliferation.
Collapse
|
3
|
Kirk SE, Xie TY, Steyn FJ, Grattan DR, Bunn SJ. Restraint stress increases prolactin-mediated phosphorylation of signal transducer and activator of transcription 5 in the hypothalamus and adrenal cortex in the male mouse. J Neuroendocrinol 2017; 29. [PMID: 28425631 DOI: 10.1111/jne.12477] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/22/2017] [Accepted: 04/14/2017] [Indexed: 11/28/2022]
Abstract
Prolactin is a pleiotropic peptide hormone produced by the lactotrophs in the anterior pituitary. Its rate of secretion is primarily regulated by a negative-feedback mechanism where prolactin stimulates the activity of the tuberoinfundibular dopaminergic (TIDA) neurones, increasing their release of dopamine, which accesses the pituitary via the median eminence to suppress further prolactin secretion. In addition to its well established role in lactation, circulating prolactin is secreted in response to stress, although the mechanism by which this is achieved or its cellular targets remains unknown. In the present study, we show that 15 minutes of restraint stress causes an approximately seven-fold increase in circulating prolactin concentration in male mice. Monitoring prolactin receptor activation, using immunohistochemistry to determine the level and distribution of tyrosine phosphorylated signal transducer and activator of transcription 5 (pSTAT5), we show that this stress-induced increase in prolactin interacts with both central and peripheral targets. Restraint stress for 15 minutes significantly increased pSTAT5 staining in the arcuate nucleus, median eminence and the zona fasciculata of the adrenal cortex. In each case, this response was prevented by pretreating the animals with bromocriptine to block prolactin secretion from the pituitary. Interestingly, in contrast to many cells in the arcuate nucleus, stress reduced pSTAT5 staining of the TIDA neurones (identified by dual-labelling for tyrosine hydroxylase). This suggests that there is reduced prolactin signalling in these cells and thus potentially a decline in their inhibitory influence on prolactin secretion. These results provide evidence that prolactin secreted in response to acute stress is sufficient to activate prolactin receptors in selected target tissues known to be involved in the physiological adaptation to stress.
Collapse
Affiliation(s)
- S E Kirk
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - T Y Xie
- School of Biomedical Sciences, The University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - F J Steyn
- School of Biomedical Sciences, The University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - D R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - S J Bunn
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Kenealy BP, Keen KL, Garcia JP, Richter DJ, Terasawa E. Prolonged infusion of estradiol benzoate into the stalk median eminence stimulates release of GnRH and kisspeptin in ovariectomized female rhesus macaques. Endocrinology 2015; 156:1804-14. [PMID: 25734362 PMCID: PMC4398774 DOI: 10.1210/en.2014-1979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our recent study indicates that a brief infusion (20 min) of estradiol (E2) benzoate (EB) into the stalk-median eminence (S-ME) stimulates GnRH release with a latency of approximately 10 minutes. In contrast to the effect induced by a brief infusion of EB, it has previously been shown that systemic EB administration suppresses release of GnRH, kisspeptin, and LH with a latency of several hours, which is known as the negative feedback action of E2. We speculated that the differential results by these 2 modes of EB administration are due to the length of E2 exposure. Therefore, in the present study, the effects of EB infusion for periods of 20 minutes, 4 hours, or 7 hours into the S-ME of ovariectomized female monkeys on the release of GnRH and kisspeptin were examined using a microdialysis method. To assess the effects of the EB infusion on LH release, serum samples were also collected. The results show that similar to the results with 20-minute infusion, both 4- and 7-hour infusions of EB consistently stimulated release of GnRH and kisspeptin from the S-ME accompanied by LH release in the general circulation. In contrast, sc injection of EB suppressed all 3 hormones (GnRH, kisspeptin, and LH) measured. It is concluded that regardless of the exposure period, direct E2 action on GnRH and kisspeptin neurons in the S-ME, where their neuroterminals are present, is stimulatory, and the E2-negative feedback effects do not occur at the S-ME level.
Collapse
Affiliation(s)
- Brian P Kenealy
- Wisconsin National Primate Research Center (B.P.K., K.L.K., J.P.G., D.J.R., E.T.) and Department of Pediatrics (E.T.), University of Wisconsin, Madison, Wisconsin 53715-1299
| | | | | | | | | |
Collapse
|
5
|
Non-classical effects of estradiol on cAMP responsive element binding protein phosphorylation in gonadotropin-releasing hormone neurons: mechanisms and role. Front Neuroendocrinol 2014; 35:31-41. [PMID: 23978477 DOI: 10.1016/j.yfrne.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 12/17/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is produced by a heterogenous neuronal population in the hypothalamus to control pituitary gonadotropin production and reproductive function in all mammalian species. Estradiol is a critical component for the communication between the gonads and the central nervous system. Resolving the mechanisms by which estradiol modulates GnRH neurons is critical for the understanding of how fertility is regulated. Extensive studies during the past decades have provided compelling evidence that estradiol has the potential to alter the intracellular signal transduction mechanisms. The common target of many signaling pathways is the phosphorylation of a key transcription factor, the cAMP response element binding protein (CREB). This review first addresses the aspects of estradiol action on CREB phosphorylation (pCREB) in GnRH neurons. Secondly, this review considers the receptors and signaling network that regulates estradiol's action on pCREB within GnRH neurons and finally it summarizes the physiological significance of CREB to estrogen feedback.
Collapse
|
6
|
Farkas I, Vastagh C, Sárvári M, Liposits Z. Ghrelin decreases firing activity of gonadotropin-releasing hormone (GnRH) neurons in an estrous cycle and endocannabinoid signaling dependent manner. PLoS One 2013; 8:e78178. [PMID: 24124622 PMCID: PMC3790731 DOI: 10.1371/journal.pone.0078178] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/16/2013] [Indexed: 12/11/2022] Open
Abstract
The orexigenic peptide, ghrelin is known to influence function of GnRH neurons, however, the direct effects of the hormone upon these neurons have not been explored, yet. The present study was undertaken to reveal expression of growth hormone secretagogue receptor (GHS-R) in GnRH neurons and elucidate the mechanisms of ghrelin actions upon them. Ca2+-imaging revealed a ghrelin-triggered increase of the Ca2+-content in GT1-7 neurons kept in a steroid-free medium, which was abolished by GHS-R-antagonist JMV2959 (10µM) suggesting direct action of ghrelin. Estradiol (1nM) eliminated the ghrelin-evoked rise of Ca2+-content, indicating the estradiol dependency of the process. Expression of GHS-R mRNA was then confirmed in GnRH-GFP neurons of transgenic mice by single cell RT-PCR. Firing rate and burst frequency of GnRH-GFP neurons were lower in metestrous than proestrous mice. Ghrelin (40nM-4μM) administration resulted in a decreased firing rate and burst frequency of GnRH neurons in metestrous, but not in proestrous mice. Ghrelin also decreased the firing rate of GnRH neurons in males. The ghrelin-evoked alterations of the firing parameters were prevented by JMV2959, supporting the receptor-specific actions of ghrelin on GnRH neurons. In metestrous mice, ghrelin decreased the frequency of GABAergic mPSCs in GnRH neurons. Effects of ghrelin were abolished by the cannabinoid receptor type-1 (CB1) antagonist AM251 (1µM) and the intracellularly applied DAG-lipase inhibitor THL (10µM), indicating the involvement of retrograde endocannabinoid signaling. These findings demonstrate that ghrelin exerts direct regulatory effects on GnRH neurons via GHS-R, and modulates the firing of GnRH neurons in an ovarian-cycle and endocannabinoid dependent manner.
Collapse
Affiliation(s)
- Imre Farkas
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| | - Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miklós Sárvári
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
7
|
Micevych P, Christensen A. Membrane-initiated estradiol actions mediate structural plasticity and reproduction. Front Neuroendocrinol 2012; 33:331-41. [PMID: 22828999 PMCID: PMC3496015 DOI: 10.1016/j.yfrne.2012.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 12/17/2022]
Abstract
Over the years, our ideas about estrogen signaling have greatly expanded. In addition to estradiol having direct nuclear actions that mediate transcription and translation, more recent experiments have demonstrated membrane-initiated signaling. Both direct nuclear and estradiol membrane signaling can be mediated by the classical estrogen receptors, ERα and ERβ, which are two of the numerous putative membrane estrogen receptors. Thus far, however, only ERα has been shown to play a prominent role in regulating female reproduction and sexual behavior. Because ERα is a ligand-gated transcription factor and not a typical membrane receptor, trafficking to the cell membrane requires post-translational modifications. Two necessary modifications are palmitoylation and association with caveolins, a family of scaffolding proteins. In addition to their role in trafficking, caveolin proteins also serve to determine ERα interactions with metabotropic glutamate receptors (mGluRs). It is through these complexes that ERα, which cannot by itself activate G proteins, is able to initiate intracellular signaling. Various combinations of ERα-mGluR interactions have been demonstrated throughout the nervous system from hippocampus to striatum to hypothalamus to dorsal root ganglion (DRG) in both neurons and astrocytes. These combinations of ER and mGluR allow estradiol to have both facilitative and inhibitory actions in neurons. In hypothalamic astrocytes, the estradiol-mediated release of intracellular calcium stores regulating neurosteroid synthesis requires ERα-mGluR1a interaction. In terms of estradiol regulation of female sexual receptivity, activation of ERα-mGluR1a signaling complex leads to the release of neurotransmitters and alteration of neuronal morphology. This review will examine estradiol membrane signaling (EMS) activating a limbic-hypothalamic lordosis regulating circuit, which involves ERα trafficking, internalization, and modifications of neuronal morphology in a circuit that underlies female sexual receptivity.
Collapse
Affiliation(s)
- Paul Micevych
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, United States.
| | | |
Collapse
|