1
|
McPherson C, Frymoyer A, Ortinau CM, Miller SP, Groenendaal F. Management of comfort and sedation in neonates with neonatal encephalopathy treated with therapeutic hypothermia. Semin Fetal Neonatal Med 2021; 26:101264. [PMID: 34215538 PMCID: PMC8900710 DOI: 10.1016/j.siny.2021.101264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ensuring comfort for neonates undergoing therapeutic hypothermia (TH) after neonatal encephalopathy (NE) exemplifies a vital facet of neonatal neurocritical care. Physiologic markers of stress are frequently present in these neonates. Non-pharmacologic comfort measures form the foundation of care, benefitting both the neonate and parents. Pharmacological sedatives may also be indicated, yet have the potential to both mitigate and intensify the neurotoxicity of a hypoxic-ischemic insult. Morphine represents current standard of care with a history of utilization and extensive pharmacokinetic data to guide safe and effective dosing. Dexmedetomidine, as an alternative to morphine, has several appealing characteristics, including neuroprotective effects in animal models; robust pharmacokinetic studies in neonates with NE treated with TH are required to ensure a safe and effective standard dosing approach. Future studies in neonates treated with TH must address comfort, adverse events, and long-term outcomes in the context of specific sedation practices.
Collapse
Affiliation(s)
- Christopher McPherson
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO, 63110, USA.
| | - Adam Frymoyer
- Department of Pediatrics, Stanford University, 750 Welch Road, Suite 315, Palo Alto, CA, 94304, USA.
| | - Cynthia M Ortinau
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO, 63110, USA.
| | - Steven P Miller
- Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, 555 University Avenue, Toronto, ON, Canada.
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Lundlaan 6, 3584 EA, Utrecht, Netherlands.
| |
Collapse
|
2
|
Cui GF, Hou M, Shao YF, Chen HL, Gao JX, Xie JF, Chen YN, Cong CY, Dai FQ, Hou YP. A Novel Continuously Recording Approach for Unraveling Ontogenetic Development of Sleep-Wake Cycle in Rats. Front Neurol 2019; 10:873. [PMID: 31456739 PMCID: PMC6700276 DOI: 10.3389/fneur.2019.00873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/26/2019] [Indexed: 11/25/2022] Open
Abstract
Sleep-wake development in postnatal rodent life could reflect the brain maturational stages. As the altricial rodents, rats are born in a very undeveloped state. Continuous sleep recording is necessary to study the sleep-wake cycle profiles. However, it is difficult to realize in infant rats since they rely on periodic feeding before weaning and constant warming and appropriate EEG electrodes. We developed a new approach including two types of EEG electrodes and milk-feeding system and temperature-controlled incubator to make continuously polysomnographic (PSG) recording possible. The results showed that there was no evident difference in weight gaining and behaviors between pups fed through the milk-feeding system and warmed with temperature-controlled incubator and those kept with their dam. Evolutional profiles of EEG and electromyogram (EMG) activities across sleep-wake states were achieved perfectly during dark and light period from postnatal day (P) 11 to P75 rats. The ontogenetic features of sleep-wake states displayed that the proportion of rapid eye movement (REM) was 57.0 ± 2.4% and 59.7 ± 1.7% and non-REM (NREM) sleep was 5.2 ± 0.8% and 4.9 ± 0.5% respectively, in dark and light phase at P11, and then REM sleep progressively decreased and NREM sleep increased with age. At P75, REM sleep in dark and light phase respectively, reduced to 6.3 ± 0.6% and 6.9 ± 0.5%, while NREM correspondingly increased to 37.5 ± 2.1% and 58.4 ± 1.7%. Wakefulness from P11 to P75 in dark phase increased from 37.8 ± 2.2% to 56.2 ± 2.6%, but the change in light phase was not obvious. P20 pups began to sleep more in light phase than in dark phase. The episode number of vigilance states progressively decreased with age, while the mean duration of that significantly increased. EEG power spectra in 0.5–4 Hz increased with age accompanied with prolonged duration of cortical slow wave activity. Results also indicated that the dramatic changes of sleep-wake cycle mainly occurred in the first month after birth. The novel approaches used in our study are reliable and valid for continuous PSG recording for infant rats and unravel the ontogenetic features of sleep-wake cycle.
Collapse
Affiliation(s)
- Guang-Fu Cui
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Min Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Department of Anatomy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yu-Feng Shao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hai-Lin Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jin-Xian Gao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jun-Fan Xie
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Nong Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chao-Yu Cong
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Feng-Qiu Dai
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yi-Ping Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Abstract
Therapeutic hypothermia is the only treatment currently recommended for moderate or severe encephalopathy of hypoxic‒ischaemic origin in term neonates. Though the effects of hypothermia on human physiology have been explored for many decades, much of the data comes from animal or adult studies; the latter originally after accidental hypothermia, followed by application of controlled hypothermia after cardiac arrest or trauma, or during cardiopulmonary bypass. Though this work is informative, the effects of hypothermia on neonatal physiology after perinatal asphyxia must be considered in the context of a prolonged hypoxic insult that has already induced a number of significant physiological sequelae. This article reviews the effects of therapeutic hypothermia on respiratory, cardiovascular, and metabolic parameters, including glycaemic control and feeding requirements. The potential pitfalls of blood‒gas analysis and overtreatment of physiological changes in cardiovascular parameters are also discussed. Finally, the effects of hypothermia on drug metabolism are covered, focusing on how the pharmacokinetics, pharmacodynamics, and dosing requirements of drugs frequently used in neonatal intensive care may change during therapeutic hypothermia.
Collapse
|
4
|
Ghyselen L, Fontaine C, Dégrugilliers L, Degorre C, Léké A, Tourneux P. Polyethylene bag wrapping to prevent hypothermia during percutaneous central venous catheter insertion in the preterm newborn under 32 weeks of gestation. J Matern Fetal Neonatal Med 2014; 27:1922-5. [DOI: 10.3109/14767058.2014.885498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Stéphan-Blanchard E, Chardon K, Léké A, Delanaud S, Bach V, Telliez F. Heart rate variability in sleeping preterm neonates exposed to cool and warm thermal conditions. PLoS One 2013; 8:e68211. [PMID: 23840888 PMCID: PMC3698119 DOI: 10.1371/journal.pone.0068211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/27/2013] [Indexed: 11/18/2022] Open
Abstract
Sudden infant death syndrome (SIDS) remains the main cause of postneonatal infant death. Thermal stress is a major risk factor and makes infants more vulnerable to SIDS. Although it has been suggested that thermal stress could lead to SIDS by disrupting autonomic functions, clinical and physiopathological data on this hypothesis are scarce. We evaluated the influence of ambient temperature on autonomic nervous activity during sleep in thirty-four preterm neonates (mean ± SD gestational age: 31.4±1.5 weeks, postmenstrual age: 36.2±0.9 weeks). Heart rate variability was assessed as a function of the sleep stage at three different ambient temperatures (thermoneutrality and warm and cool thermal conditions). An elevated ambient temperature was associated with a higher basal heart rate and lower short- and long-term variability in all sleep stages, together with higher sympathetic activity and lower parasympathetic activity. Our study results showed that modification of the ambient temperature led to significant changes in autonomic nervous system control in sleeping preterm neonates. The latter changes are very similar to those observed in infants at risk of SIDS. Our findings may provide greater insight into the thermally-induced disease mechanisms related to SIDS and may help improve prevention strategies.
Collapse
|
6
|
Deguines C, Dégrugilliers L, Ghyselen L, Chardon K, Bach V, Tourneux P. Impact of nursing care on temperature environment in preterm newborns nursed in closed convective incubators. Acta Paediatr 2013. [PMID: 23190392 DOI: 10.1111/apa.12109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Very-low-birth-weight (VLBW) neonates require regular nursing procedures with frequent opening of the incubator resulting in a decrease in incubator air temperature. This study was designed to assess changes in the thermal status of VLBW neonates according to the type of nursing care and incubator openings. METHODS Thirty-one VLBW neonates (mean gestational age: 28.7 ± 0.3 weeks of gestation) were included. Over a 10-day period, each opening of the incubator was recorded together with details about caregiving. Body temperature was recorded continuously, and door opening and closing events were recorded by a video camera. RESULTS This study analysed 1,798 caregiving procedures with mean durations ranging from 6.2 ± 2.1 to 88.5 ± 33.4 min. Abdominal skin temperature decreased by up to 1.08°C/h for procedures such as tracheal intubation (p < 0.01). The temperature decrease was strongly correlated with the type of procedure (p < 0.01), incubator opening (p < 0.01) and procedure duration (p < 0.01). The procedure duration accounted for only 10% of the abdominal skin temperature change (p < 0.01). CONCLUSIONS For VLBW neonates nursed in skin temperature servo-control incubators, the decrease in abdominal skin temperature during caregiving was correlated with the type of procedure, incubator opening modalities and procedure duration. These parameters should be considered to optimize the thermal management of VLBW neonates.
Collapse
Affiliation(s)
| | | | | | - K Chardon
- PériTox (EA 4285 - UMI 01 INERIS); UFR de Médecine; Université de Picardie Jules Verne; Amiens; France
| | - V Bach
- PériTox (EA 4285 - UMI 01 INERIS); UFR de Médecine; Université de Picardie Jules Verne; Amiens; France
| | | |
Collapse
|
7
|
Cizza G, Requena M, Galli G, de Jonge L. Chronic sleep deprivation and seasonality: implications for the obesity epidemic. J Endocrinol Invest 2011; 34:793-800. [PMID: 21720205 PMCID: PMC3297412 DOI: 10.3275/7808] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sleep duration has progressively fallen over the last 100 years while obesity has increased in the past 30 years. Several studies have reported an association between chronic sleep deprivation and long-term weight gain. Increased energy intake due to sleep loss has been listed as the main mechanism. The consequences of chronic sleep deprivation on energy expenditure have not been fully explored. Sleep, body weight, mood and behavior are subjected to circannual changes. However, in our modern environment seasonal changes in light and ambient temperature are attenuated. Seasonality, defined as cyclic changes in mood and behavior, is a stable personality trait with a strong genetic component. We hypothesize that the attenuation in seasonal changes in the environment may produce negative consequences, especially in individuals more predisposed to seasonality, such as women. Seasonal affective disorder, a condition more common in women and characterized by depressed mood, hypersomnia, weight gain, and carbohydrate craving during the winter, represents an extreme example of seasonality. One of the postulated functions of sleep is energy preservation. Hibernation, a phenomenon characterized by decreased energy expenditure and changes in the state of arousal, may offer useful insight into the mechanisms behind energy preservation during sleep. The goals of this article are to: a) consider the contribution of changes in energy expenditure to the weight gain due to sleep loss; b) review the phenomena of seasonality, hibernation, and their neuroendocrine mechanisms as they relate to sleep, energy expenditure, and body weight regulation.
Collapse
Affiliation(s)
- G Cizza
- Section on Neuroendocrinology of Obesity, NIDDK, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
8
|
Abstract
BACKGROUND Maternal-neonate separation (MNS) in mammals is a model for studying the effects of stress on the development and function of physiological systems. In contrast, for humans, MNS is a Western norm and standard medical practice. However, the physiological impact of this is unknown. The physiological stress-response is orchestrated by the autonomic nervous system and heart rate variability (HRV) is a means of quantifying autonomic nervous system activity. Heart rate variability is influenced by level of arousal, which can be accurately quantified during sleep. Sleep is also essential for optimal early brain development. METHODS To investigate the impact of MNS in humans, we measured HRV in 16 2-day-old full-term neonates sleeping in skin-to-skin contact with their mothers and sleeping alone, for 1 hour in each place, before discharge from hospital. Infant behavior was observed continuously and manually recorded according to a validated scale. Cardiac interbeat intervals and continuous electrocardiogram were recorded using two independent devices. Heart rate variability (taken only from sleep states to control for level of arousal) was analyzed in the frequency domain using a wavelet method. RESULTS Results show a 176% increase in autonomic activity and an 86% decrease in quiet sleep duration during MNS compared with skin-to-skin contact. CONCLUSIONS Maternal-neonate separation is associated with a dramatic increase in HRV power, possibly indicative of central anxious autonomic arousal. Maternal-neonate separation also had a profoundly negative impact on quiet sleep duration. Maternal separation may be a stressor the human neonate is not well-evolved to cope with and may not be benign.
Collapse
|
9
|
Thoresen M, Hellström-Westas L, Liu X, de Vries LS. Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics 2010; 126:e131-9. [PMID: 20566612 DOI: 10.1542/peds.2009-2938] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Amplitude-integrated electroencephalogram (aEEG) at <6 hours is the best single outcome predictor in term infants with perinatal asphyxia at normothermia. Hypothermia has been used to treat those infants and proved to improve their outcome. The objectives of this study were to compare the predictive value of aEEG at <6 hours on outcomes in normothermia- and hypothermia-treated infants and to investigate the best outcome predictor (time to normal trace or sleep-wake cycling [SWC]) in normothermia- and hypothermia-treated infants. METHODS Seventy-four infants were recruited by using the CoolCap entry criteria, and their outcomes were assessed by using the Bayley Scales of Infant Development II at 18 months. The aEEG was recorded for 72 hours. Patterns and voltages of aEEG backgrounds were assessed. RESULTS The positive predictive value of an abnormal aEEG pattern at the age of 3 to 6 hours was 84% for normothermia and 59% for hypothermia. Moderate abnormal voltage background at 3 to 6 hours of age did not predict outcome. The recovery time to normal background pattern was the best predictor of poor outcome (96.2% in hypothermia, 90.9% in normothermia). Never developing SWC always predicted poor outcome. Time to SWC was a better outcome predictor for infants who were treated with hypothermia (88.5%) than with normothermia (63.6%). CONCLUSIONS Early aEEG patterns can be used to predict outcome for infants treated with normothermia but not hypothermia. Infants with good outcome had normalized background pattern by 24 hours when treated with normothermia and by 48 hours when treated with hypothermia.
Collapse
|
10
|
Tourneux P, Libert JP, Ghyselen L, Léké A, Delanaud S, Dégrugilliers L, Bach V. [Heat exchanges and thermoregulation in the neonate]. Arch Pediatr 2009; 16:1057-62. [PMID: 19410440 DOI: 10.1016/j.arcped.2009.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 09/22/2008] [Accepted: 03/25/2009] [Indexed: 11/16/2022]
Abstract
The newborn's energy expenditure is used in order of priority for: (i) basic metabolism; (ii) body temperature regulation and (iii) body growth. Thermal regulation is an important part of energy expenditure, especially for low birth-weight infants or preterm newborns. The heat exchanges with the environment are greater in the infant than in the adult, explaining the increased risk of body hypo- or hyperthermia. The newborn infant is a homeotherm, but over a long period of time, he cannot maintain the thermal processes. Further developments are expected to improve the infant's thermal environment, with assessment of the various heat exchange mechanisms by conduction, convection, radiation and evaporation. The quantification of the respective parts of these exchanges would improve nursing care through clinical procedures or equipment used to ensure the control of the optimal thermohygrometric conditions in incubators, especially when the likelihood of excessive body cooling is high. The present review focuses on the various body heat exchange mechanisms, the thermoregulation processes of the newborn, and their implications in clinical usage and limitations in the neonatal intensive care unit.
Collapse
Affiliation(s)
- P Tourneux
- PériTox (EA4285-unité mixte Ineris), faculté de médecine, UPJV, 3, rue des Louvels, 80036 Amiens cedex, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Bollen B, Bouslama M, Matrot B, Rotrou Y, Vardon G, Lofaso F, Van den Bergh O, D'Hooge R, Gallego J. Cold stimulates the behavioral response to hypoxia in newborn mice. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1503-11. [DOI: 10.1152/ajpregu.90582.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In newborns, hypoxia elicits increased ventilation, arousal followed by defensive movements, and cries. Cold is known to affect the ventilatory response to hypoxia, but whether it affects the arousal response remains unknown. The aim of the present study was to assess the effects of cold on the ventilatory and arousal responses to hypoxia in newborn mice. We designed an original platform measuring noninvasively and simultaneously the breathing pattern by whole body plethysmography, body temperature by infrared thermography, as well as motor and ultrasonic vocal (USV) responses. Six-day-old mice were exposed twice to 10% O2 for 3 min at either cold temperature (26°C) or thermoneutrality (33°C). At 33°C, hypoxia elicited a marked increase in ventilation followed by a small ventilatory decline, small motor response, and almost no USVs. Body temperature was not influenced by hypoxia, and oxygen consumption (V̇o2) displayed minimal changes. At 26°C, hypoxia elicited a slight increase in ventilation with a large ventilatory decline and a large drop of V̇o2. This response was accompanied by marked USV and motor responses. Hypoxia elicited a small decrease in temperature after the return to normoxia, thus precluding any causal influence on the motor and USV responses to hypoxia. In conclusion, cold stimulated arousal and stress responses to hypoxia, while depressing hypoxic hyperpnea. Arousal is an important defense mechanism against sleep-disordered breathing. The dissociation between ventilatory and behavioral responses to hypoxia suggests that deficits in the arousal response associated with sleep breathing disorders cannot be attributed to a depressed hypoxic response.
Collapse
|
12
|
Tourula M, Isola A, Hassi J. Children sleeping outdoors in winter: parents' experiences of a culturally bound childcare practice. Int J Circumpolar Health 2008; 67:269-78. [PMID: 18767347 DOI: 10.3402/ijch.v67i2-3.18284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The purpose of this study was to describe parents' opinions about their children sleeping outdoors during the Finnish winter and the prevalence of this practice in the city of Oulu. STUDY DESIGN A cross-sectional study using a questionnaire. METHODS Data were collected using a questionnaire compiled for the purpose of giving us a window into this childcare practice in northern Finland. The questionnaire was distributed to the parents of children under 2 years of age using the services of child welfare clinics in Oulu (n = 116). The study was mainly quantitative and partly qualitative. RESULTS Allowing children to sleep outdoors in the winter was considered a common practice and was taken for granted. It usually began when the child was 2 weeks old, and was carried out once a day. Children took longer naps outdoors compared with naps taken indoors. Outdoor temperatures ranged between -27 and +5 degrees C. Parents' experiences were mainly positive and most parents had not faced potentially dangerous situations. However, parents reported that the children's fingers felt cold in 3% of the children sleeping in 0 degree C temperatures and in 25% sleeping in -15 degrees C temperatures. Almost half of the children had sweaty necks at 0 degree C, but the most frequent symptoms were red cheeks and cold nose tips. CONCLUSIONS In addition to this cross-sectional study and the parents' subjective and mainly positive experiences, objective measurements and an extensive study about parents' experiences are needed before guidelines for allowing children to sleep outdoors in the winter can be updated.
Collapse
Affiliation(s)
- Marjo Tourula
- Finnish Post-Graduate School in Nursing Science, Institute of Health Sciences, University of Oulu, Oulu, Finland.
| | | | | |
Collapse
|
13
|
Tourneux P, Cardot V, Museux N, Chardon K, Léké A, Telliez F, Libert JP, Bach V. Influence of thermal drive on central sleep apnea in the preterm neonate. Sleep 2008; 31:549-56. [PMID: 18457243 DOI: 10.1093/sleep/31.4.549] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The incidence of apnea in neonates depends on a number of factors, including sleep state and thermoregulation. OBJECTIVE To assess the role of thermal drive (body heat loss [BHL]) in the mechanisms underlying short episodes of central apnea during active and quiet sleep in neonates. MATERIAL AND METHOD Twenty-two neonates (postconceptional age: 36.3 +/- 0.9 weeks) were exposed at thermoneutral (incubator temperature: 32.5 degrees C), warm (34.2 degrees C), and cool (30.4 degrees C) conditions during 3 consecutive morning naps. Oxygen consumption (VO2), skin and rectal temperatures, and central apnea were scored during active sleep and quiet sleep. The thermal drive was expressed as BHL calculated using indirect partitional calorimetry. RESULTS As expected, apnea occurred more frequently in active sleep than in quiet sleep (P < 0.001). The frequency of apnea in active sleep was higher in the warm condition (P < 0.05). In contrast, apnea episodes were less frequent (P < 0.05) and shorter (P < 0.05) for cool exposure, during which VO2 and rectal temperature increased. The frequency (P < 0.001, r2 = 0.31), mean (P < 0.05, r2 = 0.06), and maximum (P < 0.001, r2 = 0.19) durations of apnea were correlated with the BHL: the greater the BHL (body cooling), the less frequent and the shorter the apnea episodes. In contrast, no relationship between apnea and mean skin or rectal temperature was observed. CONCLUSION Apneic events were more closely related to BHL than to body temperatures. In cool exposure, the decreases in the duration and frequency of apneic episodes suggest that these events depend on the metabolic drive (which is proportional to energy expenditure).
Collapse
Affiliation(s)
- Pierre Tourneux
- PériTox (EA 3901-UM INERIS), Faculty of Medicine, Jules Verne University of Picardy, Amiens, France.
| | | | | | | | | | | | | | | |
Collapse
|