1
|
Cerri M, Hitrec T, Luppi M, Amici R. Be cool to be far: Exploiting hibernation for space exploration. Neurosci Biobehav Rev 2021; 128:218-232. [PMID: 34144115 DOI: 10.1016/j.neubiorev.2021.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/08/2023]
Abstract
In mammals, torpor/hibernation is a state that is characterized by an active reduction in metabolic rate followed by a progressive decrease in body temperature. Torpor was successfully mimicked in non-hibernators by inhibiting the activity of neurons within the brainstem region of the Raphe Pallidus, or by activating the adenosine A1 receptors in the brain. This state, called synthetic torpor, may be exploited for many medical applications, and for space exploration, providing many benefits for biological adaptation to the space environment, among which an enhanced protection from cosmic rays. As regards the use of synthetic torpor in space, to fully evaluate the degree of physiological advantage provided by this state, it is strongly advisable to move from Earth-based experiments to 'in the field' tests, possibly on board the International Space Station.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Timna Hitrec
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Marco Luppi
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| |
Collapse
|
2
|
Cerri M, Amici R. Thermoregulation and Sleep: Functional Interaction and Central Nervous Control. Compr Physiol 2021; 11:1591-1604. [PMID: 33792906 DOI: 10.1002/cphy.c140012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Each of the wake-sleep states is characterized by specific changes in autonomic activity and bodily functions. The goal of such changes is not always clear. During non-rapid eye movement (NREM) sleep, the autonomic outflow and the activity of the endocrine system, the respiratory system, the cardiovascular system, and the thermoregulatory system seem to be directed at increasing energy saving. During rapid eye movement (REM) sleep, the goal of the specific autonomic and regulatory changes is unclear, since a large instability of autonomic activity and cardiorespiratory function is observed in concomitance with thermoregulatory changes, which are apparently non-functional to thermal homeostasis. Reciprocally, the activation of thermoregulatory responses under thermal challenges interferes with sleep occurrence. Such a double-edged and reciprocal interaction between sleep and thermoregulation may be favored by the fact that the central network controlling sleep overlaps in several parts with the central network controlling thermoregulation. The understanding of the central mechanism behind the interaction between sleep and thermoregulation may help to understand the functionality of thermoregulatory sleep-related changes and, ultimately, the function(s) of sleep. © 2021 American Physiological Society. Compr Physiol 11:1591-1604, 2021.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and Neuromotor Sciences - Physiology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences - Physiology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
|
4
|
c-Fos expression in the limbic thalamus following thermoregulatory and wake-sleep changes in the rat. Exp Brain Res 2019; 237:1397-1407. [PMID: 30887077 DOI: 10.1007/s00221-019-05521-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
A cellular degeneration of two thalamic nuclei belonging to the "limbic thalamus", i.e., the anteroventral (AV) and mediodorsal (MD) nuclei, has been shown in patients suffering from Fatal Familial Insomnia (FFI), a lethal prion disease characterized by autonomic activation and severe insomnia. To better assess the physiological role of these nuclei in autonomic and sleep regulation, c-Fos expression was measured in rats during a prolonged exposure to low ambient temperature (Ta, - 10 °C) and in the first hours of the subsequent recovery period at normal laboratory Ta (25 °C). Under this protocol, the thermoregulatory and autonomic activation led to a tonic increase in waking and to a reciprocal depression in sleep occurrence, which was more evident for REM sleep. These effects were followed by a clear REM sleep rebound and by a rebound of Delta power during non-REM sleep in the following recovery period. In the anterior thalamic nuclei, c-Fos expression was (1) larger during the activity rather than the rest period in the baseline; (2) clamped at a level in-between the normal daily variation during cold exposure; (3) not significantly affected during the recovery period in comparison to the time-matched baseline. No significant changes were observed in either the MD or the paraventricular thalamic nucleus, which is also part of the limbic thalamus. The observed changes in the activity of the anterior thalamic nuclei appear, therefore, to be more specifically related to behavioral activation than to autonomic or sleep regulation.
Collapse
|
5
|
Cerri M, Luppi M, Tupone D, Zamboni G, Amici R. REM Sleep and Endothermy: Potential Sites and Mechanism of a Reciprocal Interference. Front Physiol 2017; 8:624. [PMID: 28883799 PMCID: PMC5573803 DOI: 10.3389/fphys.2017.00624] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/11/2017] [Indexed: 01/11/2023] Open
Abstract
Numerous data show a reciprocal interaction between REM sleep and thermoregulation. During REM sleep, the function of thermoregulation appears to be impaired; from the other hand, the tonic activation of thermogenesis, such as during cold exposure, suppresses REM sleep occurrence. Recently, both the central neural network controlling REM sleep and the central neural network controlling thermoregulation have been progressively unraveled. Thermoregulation was shown to be controlled by a central “core” circuit, responsible for the maintenance of body temperature, modulated by a set of accessory areas. REM sleep was suggested to be controlled by a group of hypothalamic neurons overlooking at the REM sleep generating circuits within the brainstem. The two networks overlap in a few areas, and in this review, we will suggest that in such overlap may reside the explanation of the reciprocal interaction between REM sleep and thermoregulation. Considering the peculiar modulation of thermoregulation by REM sleep the result of their coincidental evolution, REM sleep may therefore be seen as a period of transient heterothermy.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, University of BolognaBologna, Italy
| | - Marco Luppi
- Department of Biomedical and NeuroMotor Sciences, University of BolognaBologna, Italy
| | - Domenico Tupone
- Department of Biomedical and NeuroMotor Sciences, University of BolognaBologna, Italy
| | - Giovanni Zamboni
- Department of Biomedical and NeuroMotor Sciences, University of BolognaBologna, Italy
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, University of BolognaBologna, Italy
| |
Collapse
|
6
|
Luppi M, Al-Jahmany AA, Del Vecchio F, Cerri M, Di Cristoforo A, Hitrec T, Martelli D, Perez E, Zamboni G, Amici R. Wake-sleep and cardiovascular regulatory changes in rats made obese by a high-fat diet. Behav Brain Res 2017; 320:347-355. [PMID: 28011172 DOI: 10.1016/j.bbr.2016.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/18/2022]
Abstract
Obesity is known to be associated with alterations in wake-sleep (WS) architecture and cardiovascular parameters. This study was aimed at assessing the possible influence of diet-induced obesity (DIO) on sleep homeostasis and on the WS state-dependent levels of arterial pressure (AP) and heart rate in the rat. Two groups of age-matched Sprague-Dawley rats were fed either a high-fat hypercaloric diet, leading to DIO, or a normocaloric standard diet (lean controls) for 8 weeks. While under general anesthesia, animals were implanted with instrumentation for the recording of electroencephalogram, electromyogram, arterial pressure, and deep brain temperature. The experimental protocol consisted of 48h of baseline, 12h of gentle handling, enhancing wake and depressing sleep, and 36-h post-handling recovery. Compared to lean controls, DIO rats showed: i) the same amount of rapid-eye movement (REM) and non-REM (NREM) sleep in the rest period, although the latter was characterized by more fragmented episodes; ii) an increase in both REM sleep and NREM sleep in the activity period; iii) a comparable post-handling sleep homeostatic response, in terms of either the degree of Delta power increase during NREM sleep or the quantitative compensation of the REM sleep loss at the end of the 36-h recovery period; iv) significantly higher levels of AP, irrespectively of the different WS states and of the changes in their intensity throughout the experimental protocol. Overall, these changes may be the reflection of a modification in the activity of the hypothalamic areas where WS, autonomic, and metabolic regulations are known to interact.
Collapse
Affiliation(s)
- Marco Luppi
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Abed A Al-Jahmany
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Flavia Del Vecchio
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Matteo Cerri
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Alessia Di Cristoforo
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Timna Hitrec
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Davide Martelli
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia.
| | - Emanuele Perez
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Giovanni Zamboni
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences-Physiology, Alma Mater Studiorum - University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
| |
Collapse
|
7
|
Martelli D, Luppi M, Cerri M, Tupone D, Mastrotto M, Perez E, Zamboni G, Amici R. The direct cooling of the preoptic-hypothalamic area elicits the release of thyroid stimulating hormone during wakefulness but not during REM sleep. PLoS One 2014; 9:e87793. [PMID: 24498374 PMCID: PMC3911997 DOI: 10.1371/journal.pone.0087793] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/01/2014] [Indexed: 12/03/2022] Open
Abstract
Thermoregulatory responses to temperature changes are not operant during REM sleep (REMS), but fully operant in non-REM sleep and wakefulness. The specificity of the relationship between REMS and the impairment of thermoregulation was tested by eliciting the reflex release of Thyrotropin Releasing Hormone (TRH), which is integrated at hypothalamic level. By inducing the sequential secretion of Thyroid Stimulating Hormone (TSH) and Thyroid Hormone, TRH intervenes in the regulation of obligatory and non-shivering thermogenesis. Experiments were performed on male albino rats implanted with epidural electrodes for EEG recording and 2 silver-copper wire thermodes, bilaterally placed in the preoptic-hypothalamic area (POA) and connected to small thermoelectric heat pumps driven by a low-voltage high current DC power supply. In preliminary experiments, a thermistor was added in order to measure hypothalamic temperature. The activation of TRH hypophysiotropic neurons by the thermode cooling of POA was indirectly assessed, in conditions in which thermoregulation was either fully operant (wakefulness) or not operant (REMS), by a radioimmunoassay determination of plasmatic levels of TSH. Different POA cooling were performed for 120 s or 40 s at current intensities of 80 mA and 125 mA, respectively. At both current intensities, POA cooling elicited, with respect to control values (no cooling current), a significant increase in plasmatic TSH levels in wakefulness, but not during REMS. These results confirm the inactivation of POA thermal sensitivity during REMS and show, for the first time, that this inactivation concerns also the fundamental endocrine control of non-shivering thermogenesis.
Collapse
Affiliation(s)
- Davide Martelli
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Systems Neurophysiology Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Marco Luppi
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Domenico Tupone
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Marco Mastrotto
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Department of Cellular and Molecular Physiology and Center for Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Emanuele Perez
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giovanni Zamboni
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- * E-mail:
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Martelli D, Luppi M, Cerri M, Tupone D, Perez E, Zamboni G, Amici R. Waking and sleeping following water deprivation in the rat. PLoS One 2012; 7:e46116. [PMID: 23029406 PMCID: PMC3454381 DOI: 10.1371/journal.pone.0046116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 08/28/2012] [Indexed: 11/30/2022] Open
Abstract
Wake-sleep (W-S) states are affected by thermoregulation. In particular, REM sleep (REMS) is reduced in homeotherms under a thermal load, due to an impairment of hypothalamic regulation of body temperature. The aim of this work was to assess whether osmoregulation, which is regulated at a hypothalamic level, but, unlike thermoregulation, is maintained across the different W-S states, could influence W-S occurrence. Sprague-Dawley rats, kept at an ambient temperature of 24°C and under a 12 h∶12 h light-dark cycle, were exposed to a prolonged osmotic challenge of three days of water deprivation (WD) and two days of recovery in which free access to water was restored. Two sets of parameters were determined in order to assess: i) the maintenance of osmotic homeostasis (water and food consumption; changes in body weight and fluid composition); ii) the effects of the osmotic challenge on behavioral states (hypothalamic temperature (Thy), motor activity, and W-S states). The first set of parameters changed in WD as expected and control levels were restored on the second day of recovery, with the exception of urinary Ca++ that almost disappeared in WD, and increased to a high level in recovery. As far as the second set is concerned, WD was characterized by the maintenance of the daily oscillation of Thy and by a decrease in activity during the dark periods. Changes in W-S states were small and mainly confined to the dark period: i) REMS slightly decreased at the end of WD and increased in recovery; ii) non-REM sleep (NREMS) increased in both WD and recovery, but EEG delta power, a sign of NREMS intensity, decreased in WD and increased in recovery. Our data suggest that osmoregulation interferes with the regulation of W-S states to a much lesser extent than thermoregulation.
Collapse
Affiliation(s)
- Davide Martelli
- Department of Human and General Physiology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Systems Neurophysiology Division, Florey Neuroscience Institutes, University of Melbourne, Melbourne, Australia
| | - Marco Luppi
- Department of Human and General Physiology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Department of Human and General Physiology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Domenico Tupone
- Department of Human and General Physiology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Emanuele Perez
- Department of Human and General Physiology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giovanni Zamboni
- Department of Human and General Physiology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- * E-mail:
| | - Roberto Amici
- Department of Human and General Physiology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Alò R, Avolio E, Carelli A, Facciolo RM, Canonaco M. Amygdalar glutamatergic neuronal systems play a key role on the hibernating state of hamsters. BMC Neurosci 2011; 12:10. [PMID: 21251260 PMCID: PMC3031265 DOI: 10.1186/1471-2202-12-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Excitatory transmitting mechanisms are proving to play a critical role on neuronal homeostasis conditions of facultative hibernators such as the Syrian golden hamster. Indeed works have shown that the glutamatergic system of the main olfactory brain station (amygdala) is capable of controlling thermoregulatory responses, which are considered vital for the different hibernating states. In the present study the role of amygdalar glutamatergic circuits on non-hibernating (NHIB) and hibernating (HIB) hamsters were assessed on drinking stimuli and subsequently compared to expression variations of some glutamatergic subtype mRNA levels in limbic areas. For this study the two major glutamatergic antagonists and namely that of N-methyl-D-aspartate receptor (NMDAR), 3-(+)-2-carboxypiperazin-4-yl-propyl-1-phosphonate (CPP) plus that of the acid α-amine-3-hydroxy-5-methyl-4-isoxazol-propionic receptor (AMPAR) site, cyano-7-nitro-quinoxaline-2,3-dione (CNQX) were infused into the basolateral amygdala nucleus. Attempts were made to establish the type of effects evoked by amygdalar glutamatergic cross-talking processes during drinking stimuli, a response that may corroborate their major role at least during some stages of this physiological activity in hibernators. RESULTS From the behavioral results it appears that the two glutamatergic compounds exerted distinct effects. In the first case local infusion of basolateral complexes (BLA) with NMDAR antagonist caused very great (p < 0.001) drinking rhythms while moderately increased feeding (p < 0.05) responses during arousal with respect to moderately increased drinking levels in euthermics. Conversely, treatment with CNQX did not modify drinking rhythms and so animals spent more time executing exploratory behaviors. These same antagonists accounted for altered glutamatergic transcription activities as displayed by greatly reduced GluR1, NR1 and GluR2 levels in hippocampus, ventromedial hypothalamic nucleus (VMN) and amygdala, respectively, plus a great (p < 0.01) up-regulation of GluR2 in VMN of hibernators. CONCLUSION We conclude that predominant drinking events evoked by glutamatergic mechanisms, in the presence of prevalently down regulated levels of NR1/2A of some telencephalic and hypothalamic areas appear to constitute an important neuronal switch at least during arousal stage of hibernation. The establishment of the type of glutamatergic subtypes that are linked to successful hibernating states, via drinking stimuli, may have useful bearings toward sleeping disorders.
Collapse
Affiliation(s)
- Raffaella Alò
- Comparative Neuroanatomy Laboratory of Ecology Department, University of Calabria, Ponte Pietro Bucci, 87030 Arcavacata di Rende, Cosenza, Italy
| | | | | | | | | |
Collapse
|
10
|
|