1
|
Lysophosphatidylethanolamine Affects Lipid Accumulation and Metabolism in a Human Liver-Derived Cell Line. Nutrients 2022; 14:nu14030579. [PMID: 35276938 PMCID: PMC8839386 DOI: 10.3390/nu14030579] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022] Open
Abstract
The physiological functions of lysophosphatidylethanolamine (lysoPE) have not been fully elucidated. In this study, the effects of lysoPE on lipogenesis and lipolysis were investigated in a cultured human liver-derived cell line. The intracellular lipid profile was investigated in detail using liquid chromatography–tandem mass spectrometry (LC-MS/MS) to better understand the underlying mechanism. The expression of genes related to lipid metabolism and catabolism was analyzed using real-time PCR. LysoPE supplementation induced cellular lipid droplet formation and altered triacylglycerol (TAG) profiles. Furthermore, lysoPE downregulated expression of the TAG hydrolyzation regulation factor ATGL, and reduced the expression of fatty acid biosynthesis-related genes SREBP1 and SCD1. LC-MS/MS-based lipidomic profiling revealed that the addition of lysoPE 18:2 increased the PE species containing linoleic acyl, as well as the CE 18:2 species, likely due to the incorporation of linoleic acyl from lysoPE 18:2. Collectively, these findings suggest that lysoPE 18:2 is involved in lipid droplet formation by suppressing lipolysis and fatty acid biosynthesis. Thus, lysoPE might play a pathological role in the induction of fatty liver disease.
Collapse
|
2
|
Frías M, Rivero-Juárez A, Machuca I, Camacho Á, Rivero A. The outlook for precision medicine for the treatment of chronic hepatitis C infection: challenges and opportunities. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1764346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mario Frías
- Clinical Virology and Zoonoses, Hospital Universitario Reina Sofía de Córdoba. Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Spain
| | - Antonio Rivero-Juárez
- Clinical Virology and Zoonoses, Hospital Universitario Reina Sofía de Córdoba. Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Spain
| | - Isabel Machuca
- Clinical Virology and Zoonoses, Hospital Universitario Reina Sofía de Córdoba. Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Spain
| | - Ángela Camacho
- Clinical Virology and Zoonoses, Hospital Universitario Reina Sofía de Córdoba. Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Spain
| | - Antonio Rivero
- Clinical Virology and Zoonoses, Hospital Universitario Reina Sofía de Córdoba. Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Spain
| |
Collapse
|
3
|
Gupta T, Aggarwal HK, Goyal S, Singh V. Prediction of Cirrhosis in Patients with Chronic Hepatitis C by Genotype 3. Euroasian J Hepatogastroenterol 2020; 10:7-10. [PMID: 32742965 PMCID: PMC7376599 DOI: 10.5005/jp-journals-10018-1311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Genotype 3 increases fibrosis in chronic hepatitis C (CHC). Aim To evaluate the effect of the hepatitis C virus (HCV) genotype on prevalence and severity of liver disease in CHC. Materials and methods Nine hundred and forty-nine individuals with positive anti-HCV from June 2016 to May 2017 were enrolled in the study. We compared biochemical and hematological parameters, HCV RNA load, transient elastography, and ultrasound, in genotype 3 and nongenotype 3 patients. Cirrhosis was diagnosed in patients with liver stiffness measurement (LSM) ≥13 kPa. Results Out of 835 CHC patients, overall, genotype 3 had higher LSM (11.3 vs 7.62, p = 0.01), higher aspartate aminotransferase (AST) (88.4 vs 68.6, p = 0.02), and low platelets (228.4 vs 261, p = 0.03) with higher prevalence of cirrhosis (115/415 vs 25/245, p = 0.01) than nongenotype 3. However, decompensation rates were not significantly different between two groups (32/115 vs 7/25, p = 0.98). The subgroup analysis revealed that cirrhotic genotype 3 had advanced age (50 vs 35, p < 0.01), male predominance, and higher AST (74.4 vs 57, p = 0.01) as compared to noncirrhotic genotype 3 patients. On multivariate analysis, age and AST values were higher in cirrhotic than noncirrhotic genotype 3 patients. Conclusion Genotype 3 patients have higher prevalence of cirrhosis and fibrosis compared to nongenotype 3 patients; however, decompensation was not different between two groups. How to cite this article Gupta T, Aggarwal HK, Goyal S, et al. Prediction of Cirrhosis in Patients with Chronic Hepatitis C by Genotype 3. Euroasian J Hepato-Gastroenterol 2020;10(1):7–10.
Collapse
Affiliation(s)
- Tarana Gupta
- Department of Medicine, Post Graduate Institute of Medical Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Hari K Aggarwal
- Department of Medicine, Post Graduate Institute of Medical Sciences, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| | | | - Virendra Singh
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Transforming Growth Factor β Acts as a Regulatory Molecule for Lipogenic Pathways among Hepatitis C Virus Genotype-Specific Infections. J Virol 2019; 93:JVI.00811-19. [PMID: 31243135 DOI: 10.1128/jvi.00811-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection promotes metabolic disorders, and the severity of lipogenic disease depends upon the infecting virus genotype. Here, we have examined HCV genotype 1-, 2-, or 3-specific regulation of lipid metabolism, involving transforming growth factor β (TGF-β)-regulated phospho-Akt (p-Akt) and peroxisome proliferator-activated receptor alpha (PPARα) axes. Since HCV core protein is one of the key players in metabolic regulation, we also examined its contribution in lipid metabolic pathways. The expression of regulatory molecules, TGF-β1/2, phospho-Akt (Ser473), PPARα, sterol regulatory element-binding protein 1 (SREBP-1), fatty acid synthase (FASN), hormone-sensitive lipase (HSL), and acyl dehydrogenases was analyzed in virus-infected hepatocytes. Interestingly, HCV genotype 3a exhibited much higher activation of TGF-β and p-Akt, with a concurrent decrease in PPARα expression and fatty acid oxidation. A significant and similar decrease in HSL, unlike in HCV genotype 1a, was observed with both genotypes 2a and 3a. Similar observations were made from ectopic expression of the core genomic region from each genotype. The key role of TGF-β was further verified using specific small interfering RNA (siRNA). Together, our results highlight a significant difference in TGF-β-induced activity for the HCV genotype 2a- or 3a-induced lipogenic pathway, exhibiting higher triglyceride synthesis and a decreased lipolytic mechanism. These results may help in therapeutic modalities for early treatment of HCV genotype-associated lipid metabolic disorders.IMPORTANCE Hepatic steatosis is a frequent complication associated with chronic hepatitis C virus (HCV) infection and is a key prognostic indicator for progression to fibrosis and cirrhosis. Several mechanisms are proposed for the development of steatosis, especially with HCV genotype 3a. Our observations suggest that transforming growth factor β (TGF-β) and peroxisome proliferator-activated receptor alpha (PPARα)-associated mechanistic pathways in hepatocytes infected with HCV genotype 2a and 3a differ from those in cells infected with genotype 1a. The results suggest that a targeted therapeutic approach for enhanced PPARα and lipolysis may reduce HCV genotype-associated lipid metabolic disorder in liver disease.
Collapse
|
5
|
Virus Genotype-Dependent Transcriptional Alterations in Lipid Metabolism and Inflammation Pathways in the Hepatitis C Virus-infected Liver. Sci Rep 2019; 9:10596. [PMID: 31332246 PMCID: PMC6646375 DOI: 10.1038/s41598-019-46664-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Despite advances in antiviral therapy, molecular drivers of Hepatitis C Virus (HCV)-related liver disease remain poorly characterised. Chronic infection with HCV genotypes (1 and 3) differ in presentation of liver steatosis and virological response to therapies, both to interferon and direct acting antivirals. To understand what drives these clinically important differences, liver expression profiles of patients with HCV Genotype 1 or 3 infection (n = 26 and 33), alcoholic liver disease (n = 8), and no liver disease (n = 10) were analysed using transcriptome-wide microarrays. In progressive liver disease, HCV genotype was the major contributor to altered liver gene expression with 2151 genes differentially expressed >1.5-fold between HCV Genotype 1 and 3. In contrast, only 6 genes were altered between the HCV genotypes in advanced liver disease. Induction of lipogenic, lipolytic, and interferon stimulated gene pathways were enriched in Genotype 1 injury whilst a broad range of immune-associated pathways were associated with Genotype 3 injury. The results are consistent with greater lipid turnover in HCV Genotype 1 patients. Moreover, the lower activity in inflammatory pathways associated with HCV genotype 1 is consistent with relative resistance to interferon-based therapy. This data provides a molecular framework to explain the clinical manifestations of HCV-associated liver disease.
Collapse
|
6
|
Blanco JR, Rivero-Juarez A. HCV genotype 3: a wolf in sheep's clothing. Expert Rev Anti Infect Ther 2016; 14:149-52. [PMID: 26635242 DOI: 10.1586/14787210.2016.1127757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- José-R Blanco
- a Infectious Diseases Area , Hospital San Pedro - Center for Biomedical Research of La Rioja (CIBIR) , Logroño , Spain
| | - Antonio Rivero-Juarez
- b Infectious Diseases Unit, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC) , Hospital Universitario Reina Sofía de Córdoba, Universidad de Córdoba , Córdoba , Spain
| |
Collapse
|
7
|
Khachatoorian R, French SW. Chaperones in hepatitis C virus infection. World J Hepatol 2016; 8:9-35. [PMID: 26783419 PMCID: PMC4705456 DOI: 10.4254/wjh.v8.i1.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
Collapse
|
8
|
Younossi ZM, Stepanova M, Estep M, Negro F, Clark PJ, Hunt S, Song Q, Paulson M, Stamm LM, Brainard DM, Subramanian GM, McHutchison JG, Patel K. Dysregulation of distal cholesterol biosynthesis in association with relapse and advanced disease in CHC genotype 2 and 3 treated with sofosbuvir and ribavirin. J Hepatol 2016; 64:29-36. [PMID: 26341824 DOI: 10.1016/j.jhep.2015.08.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) modulates host lipid metabolism for its replication and lifecycle. Our aims were to assess changes in the serum lipid and distal (post-squalene) cholesterol biosynthesis metabolite profile of HCV genotypes (GT) 2 and 3 patients treated with sofosbuvir+ribavirin. METHODS Serum samples [baseline, treatment week 12, 4weeks post-treatment] were analyzed for apolipoproteins B and E (apoB/E), total cholesterol, HDL, LDL, and 11 post-squalene sterol metabolites using a GC/MS platform. RESULTS We selected 127 patients (GT2 n=50, GT3 n=77), 50% cirrhotic patients, and 42% who experienced a virological relapse. At baseline, GT3 patients had lower level of serum lipids, apoB/E, 7-dehydrocholesterol, desmosterol, lathosterol, compared to GT2 (p<0.006). Baseline lathosterol was lower in relapsers with cirrhosis compared to cirrhotic patients with SVR (p=0.003). From baseline to treatment week 12, serum lipids, apoB/E, and key sterol pathway metabolites (7-dehydrocholesterol, desmosterol, lathosterol, lanosterol) increased in GT3. In contrast, in GT2 patients, apoB/E and dihydrolanosterol decreased with viral suppression (p<0.025). At follow-up week 4, cirrhotic SVR patients showed substantially greater increases in apoB and total sterols compared to cirrhotic relapsers regardless of HCV genotype. After adjustment for genotype and gender, baseline lathosterol was independently associated with virologic response (p=0.04). CONCLUSION HCV GT3 is associated with reduced circulation of lipids involved in the distal cholesterol biosynthesis pathway, resulting in relative hypocholesterolemia. HCV suppression during sofosbuvir+ribavirin restores distal sterol metabolites indicating viral interference with de novo lipogenesis or selective retention by hepatocytes.
Collapse
Affiliation(s)
- Zobair M Younossi
- Center for Liver Diseases, Department of Medicine, Inova Fairfax Hospital, Falls Church, VA, United States; Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, United States.
| | - Maria Stepanova
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, United States
| | - Michael Estep
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, United States
| | | | | | - Sharon Hunt
- Center for Liver Diseases, Department of Medicine, Inova Fairfax Hospital, Falls Church, VA, United States; Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, United States
| | | | | | | | | | | | | | - Keyur Patel
- Division of Gastroenterology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
9
|
Lonardo A, Adinolfi LE, Restivo L, Ballestri S, Romagnoli D, Baldelli E, Nascimbeni F, Loria P. Pathogenesis and significance of hepatitis C virus steatosis: An update on survival strategy of a successful pathogen. World J Gastroenterol 2014; 20:7089-7103. [PMID: 24966582 PMCID: PMC4064057 DOI: 10.3748/wjg.v20.i23.7089] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a successful pathogen on the grounds that it exploits its host’s metabolism to build up viral particles; moreover it favours its own survival by inducing chronic disease and the development of specific anatomic changes in the infected organ. Steatosis, therefore, is associated with HCV infection by necessity rather than by chance alone. Approximately 6% of HCV patients have steatohepatitis. Interestingly, HCV steatosis occurs in the setting of multiple metabolic abnormalities (hyperuricemia, reversible hypocholesterolemia, insulin resistance, arterial hypertension and expansion of visceral adipose tissue) collectively referred to as “hepatitis C-associated dysmetabolic syndrome” (HCADS). General, nonalcoholic fatty liver disease (NAFLD)-like, mechanisms of steatogenesis (including increased availability of lipogenic substrates and de novo lipogenesis; decreased oxidation of fatty substrates and export of fatty substrates) are shared by all HCV genotypes. However, genotype 3 seemingly amplifies such steatogenic molecular mechanisms reported to occur in NAFLD via more profound changes in microsomal triglyceride transfer protein; peroxisome proliferator-activated receptor alpha; sterol regulatory element-binding proteins and phosphatase and tensin homologue. HCV steatosis has a remarkable clinical impact in as much as it is an acknowledged risk factor for accelerated fibrogenesis; for impaired treatment response to interferon and ribavirin; and development of hepatocellular carcinoma. Recent data, moreover, suggest that HCV-steatosis contributes to premature atherogenesis via both direct and indirect mechanisms. In conclusion, HCV steatosis fulfills all expected requirements necessary to perpetuate the HCV life cycle. A better understanding of the physiology of HCADS will likely result in a more successful handling of disease with improved antiviral success rates.
Collapse
|
10
|
Clostridium butyricum reduce lipogenesis through bacterial wall components and butyrate. Appl Microbiol Biotechnol 2014; 98:7549-57. [DOI: 10.1007/s00253-014-5829-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 01/08/2023]
|
11
|
Roingeard P. Hepatitis C virus diversity and hepatic steatosis. J Viral Hepat 2013; 20:77-84. [PMID: 23301542 DOI: 10.1111/jvh.12035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/01/2012] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection is closely associated with lipid metabolism defects throughout the viral lifecycle, with hepatic steatosis frequently observed in patients with chronic HCV infection. Hepatic steatosis is most common in patients infected with genotype 3 viruses, possibly due to direct effects of genotype 3 viral proteins. Hepatic steatosis in patients infected with other genotypes is thought to be mostly due to changes in host metabolism, involving insulin resistance in particular. Specific effects of the HCV genotype 3 core proteins have been observed in cellular models in vitro: mechanisms linked with a decrease in microsomal triglyceride transfer protein activity, decreases in the levels of peroxisome proliferator-activating receptors, increases in the levels of sterol regulatory element-binding proteins, and phosphatase and tensin homologue downregulation. Functional differences between the core proteins of genotype 3 viruses and viruses of other genotypes may reflect differences in amino acid sequences. However, bioclinical studies have failed to identify specific 'steatogenic' sequences in HCV isolates from patients with hepatic steatosis. It is therefore difficult to distinguish between viral and metabolic steatosis unambiguously, and host and viral factors are probably involved in both HCV genotype 3 and nongenotype 3 steatosis.
Collapse
Affiliation(s)
- P Roingeard
- INSERM U966, Université François Rabelais & CHRU de Tours, Tours, France.
| |
Collapse
|
12
|
García-Mediavilla MV, Pisonero-Vaquero S, Lima-Cabello E, Benedicto I, Majano PL, Jorquera F, González-Gallego J, Sánchez-Campos S. Liver X receptor α-mediated regulation of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication. J Transl Med 2012; 92:1191-202. [PMID: 22641099 DOI: 10.1038/labinvest.2012.88] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Molecular mechanisms contributing to hepatitis C virus (HCV)-associated steatosis are not well established, although HCV gene expression has been shown to alter host cell cholesterol/lipid metabolism. As liver X receptors (LXRs) play a role as key modulators of metabolism signaling in the development of steatosis, we aimed to investigate in an HCV in vitro model the effect of HCV NS5A protein, core protein, and viral replication on the intracellular lipid accumulation and the LXRα-regulated expression of lipogenic genes. The effects of LXRα siRNA or agonist GW3965 treatment on lipogenesis and HCV replication capacity in our HCV replicon system were also examined. NS5A- and core-expressing cells and replicon-containing cells exhibited an increase of lipid accumulation by inducing the gene expression and the transcriptional activity of LXRα, and leading to an increased expression of its lipogenic target genes sterol regulatory element binding protein-1c, peroxisome proliferator-activated receptor-γ, and fatty acid synthase. Transcriptional induction by NS5A protein, core protein, and viral replication occurred via LXR response element activation in the lipogenic gene promoter. No physical association between HCV proteins and LXRα was observed, whereas NS5A and core proteins indirectly upregulated LXRα through the phosphatidylinositol 3-kinase pathway. Finally, it was found that LXRα knockdown or agonist-mediated LXRα induction directly regulated HCV-induced lipogenesis and HCV replication efficiency in replicon-containing cells. Combined, our data suggest that LXRα-mediated regulation of lipogenesis by core and NS5A proteins may contribute to HCV-induced liver steatosis and to the efficient replication of HCV.
Collapse
|
13
|
Depla M, d'Alteroche L, Le Gouge A, Moreau A, Hourioux C, Meunier JC, Gaillard J, de Muret A, Bacq Y, Kazemi F, Avargues A, Roch E, Piver E, Gaudy-Graffin C, Giraudeau B, Roingeard P. Viral sequence variation in chronic carriers of hepatitis C virus has a low impact on liver steatosis. PLoS One 2012; 7:e33749. [PMID: 22479436 PMCID: PMC3315576 DOI: 10.1371/journal.pone.0033749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/16/2012] [Indexed: 12/14/2022] Open
Abstract
Most clinical studies suggest that the prevalence and severity of liver steatosis are higher in patients infected with hepatitis C virus (HCV) genotype 3 than in patients infected with other genotypes. This may reflect the diversity and specific intrinsic properties of genotype 3 virus proteins. We analyzed the possible association of particular residues of the HCV core and NS5A proteins known to dysregulate lipid metabolism with steatosis severity in the livers of patients chronically infected with HCV. We used transmission electron microscopy to quantify liver steatosis precisely in a group of 27 patients, 12 of whom were infected with a genotype 3 virus, the other 15 being infected with viruses of other genotypes. We determined the area covered by lipid droplets in liver tissues and analyzed the diversity of the core and NS5A regions encoded by the viral variants circulating in these patients. The area covered by lipid droplets did not differ significantly between patients infected with genotype 3 viruses and those infected with other genotypes. The core and NS5A protein sequences of the viral variants circulating in patients with mild or severe steatosis were evenly distributed throughout the phylogenic trees established from all the collected sequences. Thus, individual host factors seem to play a much greater role than viral factors in the development of severe steatosis in patients chronically infected with HCV, including those infected with genotype 3 viruses.
Collapse
Affiliation(s)
- Marion Depla
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | - Louis d'Alteroche
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Service d'Hépatogastroentérologie, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Amélie Le Gouge
- INSERM CIC 0202, Université François Rabelais and CHRU de Tours, Tours, France
| | - Alain Moreau
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | - Christophe Hourioux
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Unité de Biologie Cellulaire, Hôpital Bretonneau, CHRU de Tours, Tours, France
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais, Tours, France
| | | | - Julien Gaillard
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais, Tours, France
| | - Anne de Muret
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Yannick Bacq
- Service d'Hépatogastroentérologie, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Farhad Kazemi
- Service d'Hépatogastroentérologie, Centre Hospitalier de Blois, Blois, France
| | - Aurélie Avargues
- INSERM CIC 0202, Université François Rabelais and CHRU de Tours, Tours, France
| | - Emmanuelle Roch
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | - Eric Piver
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Service de Biochmie, Hôpital Trousseau, CHRU de Tours, Tours, France
| | - Catherine Gaudy-Graffin
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Service de Bactériologie-Virologie, Hôpital Bretonneau, CHRU de Tours, Tours, France
| | - Bruno Giraudeau
- INSERM CIC 0202, Université François Rabelais and CHRU de Tours, Tours, France
| | - Philippe Roingeard
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
- Unité de Biologie Cellulaire, Hôpital Bretonneau, CHRU de Tours, Tours, France
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais, Tours, France
- * E-mail:
| |
Collapse
|
14
|
Congiu M, Ryan MC, Desmond PV. No increase in the expression of key unfolded protein response genes in HCV genotype 3 patients with severe steatosis. Virus Res 2011; 160:420-3. [PMID: 21741418 DOI: 10.1016/j.virusres.2011.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/06/2023]
Abstract
Although hepatic steatosis is common in patients infected with HCV, the mechanisms leading to cellular triglyceride retention are obscure. A role for the Unfolded Protein Response (UPR) has been postulated, either through its activation or dysfunction. In this study we set out to investigate the expression of key UPR genes in HCV genotype 3 patients with moderate to severe steatosis. RNA was extracted from liver obtained by percutaneous biopsy and key genes from the UPR were semi quantified using real-time PCR. We compared values in patients with minimal steatosis to those with high steatosis. Patients with high steatosis were younger (44.6 ± 2.4 vs. 37.4 ± 2.1, p<0.05) and had higher hepatic viral RNA loads (1.00 ± 0.21 vs. 3.98 ± 0.22, p<0.05). We found no significant difference in the expression of UPR genes, except for a small increase in EDEM1 in the high steatosis group (1.00 ± 0.13 vs. 1.38 ± 0.09, p<0.05). In conclusion, despite a four-fold greater concentration of HCV RNA in tissue with a high level of steatosis, we found no change in the expression of key UPR related genes, except for a only a modest up-regulation of EDEM1. Our data does not support a sustained change in expression of UPR genes in the steatogenesis of HCVGT3 infected human liver.
Collapse
Affiliation(s)
- Mario Congiu
- Department of Gastroenterology, St. Vincent's Hospital Melbourne, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
15
|
Tripathi LP, Kataoka C, Taguwa S, Moriishi K, Mori Y, Matsuura Y, Mizuguchi K. Network based analysis of hepatitis C virus Core and NS4B protein interactions. MOLECULAR BIOSYSTEMS 2010; 6:2539-53. [DOI: 10.1039/c0mb00103a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|