1
|
Ivković S, Dey LS, Maria Buzzetti F, Puskás G, Warchałowska‑Śliwa E, Horvat L, Chobanov D, Hochkirch A. Strong intraspecific phylogenetic and karyotypic diversification in Isophya modestior (Orthoptera: Tettigoniidae: Phaneropterinae). Biol J Linn Soc Lond 2023. [DOI: 10.1093/biolinnean/blac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Isophya modestior (Orthoptera: Tettigoniidae) is a species distributed in central and south-eastern Europe, where its distribution is largely separated by two large rivers (Sava and Danube). Since previous studies on the song and morphology of the stridulatory file across its complete geographic range showed that the species is separated into two main groups, we decided to use phylogenetic and karyological analyses in order to evaluate the status of the previously analysed populations.
Phylogenetic analyses showed the existence of two major clades within I. modestior with very high bootstrap values and posterior probabilities—Clade A: present on the Balkan Peninsula, Slovenia (Inner Carniola), Italy, Pannonian Serbia (Vršac Mts and Deronje) and Austria (Burgenland and Lower Austria); Clade B: present in Slovenia (Upper Carniola), Croatia and Austria (Carinthia), Pannonian Serbia (Fruška Gora Mt.) and Hungary.
A comparison of chromosomes of 51 specimens revealed discrete differences between their karyotypes. The physical characteristics of the karyotypes included chromosome number (2n), sex chromosome (X) morphology and C-banding patterns. The standard chromosome complement of 50 specimens from different localities is characterized by 2n = 30 + X0 in males. In one male collected in Fruška Gora Mt. (Andrevlje), the chromosome number was reduced to 2n = 28 + neo-XY. Therefore, further cytogenetic studies involving larger samples, especially from Fruška Gora Mt., are needed in order to gain a more comprehensive view of the chromosome evolution in this group of Isophya species.
Collapse
Affiliation(s)
- Slobodan Ivković
- Department of Biogeography, Trier University, Universitätsring 15 , 54296 Trier , Germany
| | - Lara-Sophie Dey
- Leibniz Institute for the Analysis of Biodiversity (LIB), University of Hamburg, Martin-Luther-King Platz 3 , 20146 Hamburg , Germany
| | | | | | - Elżbieta Warchałowska‑Śliwa
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences , Sławkowska 17, 31-016 Kraków , Poland
| | | | - Dragan Chobanov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences , 1 Tsar Osvoboditel Boulevard, 1000 Sofia , Bulgaria
| | - Axel Hochkirch
- Department of Biogeography, Trier University, Universitätsring 15 , 54296 Trier , Germany
| |
Collapse
|
2
|
Eliášová K, Lucas Lledó JI, Grau JH, Loudová M, Bannikova AA, Zolotareva KI, Beneš V, Hulva P, Černá Bolfíková B. Contrasting levels of hybridization across the two contact zones between two hedgehog species revealed by genome-wide SNP data. Heredity (Edinb) 2022; 129:305-315. [PMID: 36229647 PMCID: PMC9613676 DOI: 10.1038/s41437-022-00567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Hybridization and introgression have played important roles in the history of various species, including lineage diversification and the evolution of adaptive traits. Hybridization can accelerate the development of reproductive isolation between diverging species, and thus valuable insight into the evolution of reproductive barrier formation may be gained by studying secondary contact zones. Hedgehogs of the genus Erinaceus, which are insectivores sensitive to changes in climate, are a pioneer model in Pleistocene phylogeography. The present study provides the first genome-wide SNP data regarding the Erinaceus hedgehogs species complex, offering a unique comparison of two secondary contact zones between Erinaceus europaeus and E. roumanicus. Results confirmed diversification of the genus during the Pleistocene period, and detected a new refugial lineage of E. roumanicus outside the Mediterranean basin, most likely in the Ponto-Caspian region. In the Central European zone, the level of hybridization was low, whereas in the Russian-Baltic zone, both species hybridise extensively. Asymmetrical gene flow from E. europaeus to E. roumanicus suggests that reproductive isolation varies according to the direction of the crosses in the hybrid zones. However, no loci with significantly different patterns of introgression were detected. Markedly different pre- and post-zygotic barriers, and thus diverse modes of species boundary maintenance in the two contact zones, likely exist. This pattern is probably a consequence of the different age and thus of the different stage of evolution of reproductive isolating mechanisms in each hybrid zone.
Collapse
Affiliation(s)
- Kristýna Eliášová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic.
| | | | - José Horacio Grau
- Evolutionary Adaptive Genomics, University of Potsdam, Potsdam, Germany
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Miroslava Loudová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | | | | - Pavel Hulva
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Černá Bolfíková
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
3
|
Solovyev VI, Dubatolov VV, Vavilova VY, Kosterin OE. Estimating range disjunction time of the Palearctic Admirals (Limenitis L.) with COI and histone H1 genes. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Amiri N, Vaissi S, Aghamir F, Saberi‐Pirooz R, Rödder D, Ebrahimi E, Ahmadzadeh F. Tracking climate change in the spatial distribution pattern and the phylogeographic structure of Hyrcanian wood frog,
Rana pseudodalmatina
(Anura: Ranidae). J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Negar Amiri
- Department of Biodiversity and Ecosystem Management Environmental Sciences Research Institute Shahid Beheshti University Tehran Iran
| | - Somaye Vaissi
- Department of Biology Faculty of Science Razi University Kermanshah Iran
| | - Fateme Aghamir
- Department of Agroecology Environmental Sciences Research Institute Shahid Beheshti University Tehran Iran
| | - Reihaneh Saberi‐Pirooz
- Department of Biodiversity and Ecosystem Management Environmental Sciences Research Institute Shahid Beheshti University Tehran Iran
| | - Dennis Rödder
- Herpetology Section Zoologisches Forschungsmuseum Alexander Koenig (ZFMK) Bonn Germany
| | - Elham Ebrahimi
- Department of Biodiversity and Ecosystem Management Environmental Sciences Research Institute Shahid Beheshti University Tehran Iran
| | - Faraham Ahmadzadeh
- Department of Biodiversity and Ecosystem Management Environmental Sciences Research Institute Shahid Beheshti University Tehran Iran
| |
Collapse
|
5
|
Vörös J, Varga Z, Martínez-Solano I, Szabó K. Mitochondrial DNA diversity of the alpine newt (Ichthyosaura alpestris) in the Carpathian Basin: evidence for multiple cryptic lineages associated with Pleistocene refugia. ACTA ZOOL ACAD SCI H 2021. [DOI: 10.17109/azh.67.2.177.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The phylogeography and molecular taxonomy of the Alpine newt, Ichthyosaura alpestris, has been intensively studied in the past. However, previous studies did not include a comprehensive sampling from the Carpathian Basin, possibly a key region in the evolution of the species. We used a 1251 bp long fragment of the mitochondrial genome to infer the species’ evolutionary history in central-eastern Europe by assigning isolated Carpathian Basin populations from 6 regions to previously defined mtDNA lineages. We also revised the morphology-based intraspecific taxonomy of the species in the light of new genetic data. Alpine newt populations from the Carpathian Basin represented two different mitochondrial lineages. The Mátra, Bükk and Zemplén Mts populations can be assigned to the Western lineage of the nominotypical subspecies. Bakony and Őrség populations showed high haplotype diversity and formed a separate clade within the Western lineage, suggesting that the Carpathian Basin might have provided cryptic refugia for Alpine newt populations in their cold-continental forest-steppe landscapes during the younger Pleistocene. Newts from Apuseni Mts were related to the Eastern lineage but formed a distinct clade within this lineage. Considering the morphological and genetic differentiation of the Bakony and Őrség populations, consistent with a long independent evolutionary history, we propose these populations be referred to as Ichthyosaura alpestris bakonyiensis (Dely, 1964). We provide a redescription of this poorly known subspecies.
Collapse
|
6
|
Jablonski D, Gkontas I, Poursanidis D, Lymberakis P, Poulakakis N. Stability in the Balkans: phylogeography of the endemic Greek stream frog, Rana graeca. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
We still have little knowledge concerning the phylogeography of amphibians and reptiles from the Balkan Peninsula compared with the other two Mediterranean peninsulas. This raises concerns for endemic taxa from these peninsulas, because it might interfere with further conservation efforts. Here we focus on the endemic Greek stream frog (Rana graeca) and reconstruct its biogeography and evolutionary history. Using four genetic markers (Cytb, 16S, COI and BDNF) in > 350 sequences covering the whole distribution range, we conducted phylogenetic, demographic and ecological niche analyses, which revealed the phylogeography of this species. Surprisingly, this examination of R. graeca reveals a very shallow level of intraspecific genetic variability through the Balkans, with two main, statistically supported lineages having a partly sympatric distribution. The most variable marker was Cytb, which showed 19 haplotypes in 123 analysed sequences in the whole species distribution area. Here presented genetic data, together with the environmental niche projection and demographic analyses suggest that R. graeca was probably affected only marginally by climatic oscillations, with the Hellenides as the most suitable area for the occurrence of the species in different geological periods. This is consistent with the observed genetic diversity, which is mostly related to these mountains. Although the species shows a certain level of phenotypic variability and ecological preferences, this might be related to species plasticity affected by the micro-climatic conditions in small areas, which merits further research. Comparing phylogeography of other amphibian and reptile species in the Balkans, we showed that the observed pattern represents a new view on the phylogeography of the Balkan herpetofauna.
Collapse
Affiliation(s)
- Daniel Jablonski
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ioannis Gkontas
- Department of Biology, School of Sciences and Engineering, University of Crete, Vassilika Vouton, Irakleio, Greece
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knosos Avenue, Irakleio, Greece
| | - Dimitris Poursanidis
- Foundation for Research and Technology Hellas, Institute of Applied and Computational Mathematics, The Remote Sensing Lab, Vassilika Vouton, Irakleio, Greece
| | - Petros Lymberakis
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knosos Avenue, Irakleio, Greece
| | - Nikos Poulakakis
- Department of Biology, School of Sciences and Engineering, University of Crete, Vassilika Vouton, Irakleio, Greece
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knosos Avenue, Irakleio, Greece
| |
Collapse
|
7
|
Berman D, Bulakhova N, Meshcheryakova E, Shekhovtsov S. Overwintering and cold tolerance in the Moor Frog (Rana arvalis) across its range. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Only two species of boreal Holarctic frogs (genus Rana Linnaeus, 1758) can survive freezing and overwinter on land; they are found in the subarctic and cold regions of North America (Wood Frog, Rana sylvatica LeConte, 1825) and Eurasia (Moor Frog, Rana arvalis Nilsson, 1842) and are an example of an unusual adaptive strategy of overwintering. Freeze tolerance (down to –16 °C) of R. sylvatica has been thoroughly studied; however, little is known about cold resistance of R. arvalis in cold regions. We found that R. arvalis from European Russia and from West Siberia tolerate freezing down to –12 or –16 °C, whereas frogs from the Danish population survived freezing only to –4 °C (Y. Voituron et al. 2009b; J. Comp. Physiol. B, 179: 223–230). All of these populations, according to mitochondrial DNA markers, are closely related. We suggest that the observed differences in cold tolerance (–4 °C vs. –12 or –16 °C) could be caused either by adaptations to climatic factors or by differences in experimental protocols. The northeastern boundary of the geographic range of R. arvalis in Yakutia coincides with the transitional area between discontinuous and continuous permafrost; beyond this area, winter soil temperature sharply declines. The lower lethal temperature and overwintering ecology of R. arvalis in Siberia are similar to those of the North American R. sylvatica.
Collapse
Affiliation(s)
- D.I. Berman
- Institute of Biological Problems of the North FEB RAS, Portovaya St. 18, 685000 Magadan, Russia
| | - N.A. Bulakhova
- Institute of Biological Problems of the North FEB RAS, Portovaya St. 18, 685000 Magadan, Russia; Research Institute of Biology and Biophysics, Tomsk State University, Pr. Lenina 36, 634050 Tomsk, Russia
| | - E.N. Meshcheryakova
- Institute of Biological Problems of the North FEB RAS, Portovaya St. 18, 685000 Magadan, Russia
| | - S.V. Shekhovtsov
- Institute of Cytology and Genetics SB RAS, Pr. Lavrentieva 10, 630090 Novosibirsk, Russia; Institute of Biological Problems of the North FEB RAS, Portovaya St. 18, 685000 Magadan, Russia
| |
Collapse
|
8
|
Zangl L, Daill D, Schweiger S, Gassner G, Koblmüller S. A reference DNA barcode library for Austrian amphibians and reptiles. PLoS One 2020; 15:e0229353. [PMID: 32163447 PMCID: PMC7067431 DOI: 10.1371/journal.pone.0229353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/04/2020] [Indexed: 11/19/2022] Open
Abstract
In the last few years, DNA barcoding became an established method for species identification in biodiversity inventories and monitoring studies. Such studies depend on the access to a comprehensive reference data base, covering all relevant taxa. Here we present a comprehensive DNA barcode inventory of all amphibian and reptile species native to Austria, except for the putatively extinct Vipera ursinii rakosiensis and Lissotriton helveticus, which has been only recently reported for the very western edge of Austria. A total of 194 DNA barcodes were generated in the framework of the Austrian Barcode of Life (ABOL) initiative. Species identification via DNA barcodes was successful for most species, except for the hybridogenetic species complex of water frogs (Pelophylax spp.) and the crested newts (Triturus spp.), in areas of sympatry. However, DNA barcoding also proved powerful in detecting deep conspecific lineages, e.g. within Natrix natrix or the wall lizard (Podarcis muralis), resulting in more than one Barcode Index Number (BIN) per species. Moreover, DNA barcodes revealed the presence of Natrix helvetica, which has been elevated to species level only recently, and genetic signatures of the Italian water frog Pelophylax bergeri in Western Austria for the first time. Comparison to previously published DNA barcoding data of European amphibians and reptiles corroborated the results of the Austrian data but also revealed certain peculiarities, underlining the particular strengths and in the case of the genus Pelophylax also the limitations of DNA barcoding. Consequently, DNA barcoding is not only powerful for species identification of all life stages of most Austrian amphibian and reptile species, but also for the detection of new species, the monitoring of gene flow or the presence of alien populations and/or species. Thus, DNA barcoding and the data generated in this study may serve both scientific and national or even transnational conservation purposes.
Collapse
Affiliation(s)
- Lukas Zangl
- Institute of Biology, University of Graz, Graz, Austria
- Studienzentrum Naturkunde, Universalmuseum Joanneum, Graz, Austria
- * E-mail: (LZ); (SK)
| | - Daniel Daill
- Institute of Biology, University of Graz, Graz, Austria
- Consultants in Aquatic Ecology and Engineering—blattfisch e.U., Wels, Austria
| | - Silke Schweiger
- First Zoological Department, Herpetological Collection, Museum of Natural History Vienna, Vienna, Austria
| | - Georg Gassner
- First Zoological Department, Herpetological Collection, Museum of Natural History Vienna, Vienna, Austria
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Graz, Austria
- * E-mail: (LZ); (SK)
| |
Collapse
|
9
|
Rödin‐Mörch P, Luquet E, Meyer‐Lucht Y, Richter‐Boix A, Höglund J, Laurila A. Latitudinal divergence in a widespread amphibian: Contrasting patterns of neutral and adaptive genomic variation. Mol Ecol 2019; 28:2996-3011. [DOI: 10.1111/mec.15132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Patrik Rödin‐Mörch
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Emilien Luquet
- CNRS, ENTPE, UMR5023 LEHNA Univ Lyon, Université Claude Bernard Lyon 1 Villeurbanne France
| | - Yvonne Meyer‐Lucht
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Alex Richter‐Boix
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| |
Collapse
|
10
|
Meyer‐Lucht Y, Luquet E, Jóhannesdóttir F, Rödin‐Mörch P, Quintela M, Richter‐Boix A, Höglund J, Laurila A. Genetic basis of amphibian larval development along a latitudinal gradient: Gene diversity, selection and links with phenotypic variation in transcription factor
C/EBP‐1. Mol Ecol 2019; 28:2786-2801. [DOI: 10.1111/mec.15123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Yvonne Meyer‐Lucht
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Emilien Luquet
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés Université Lyon 1 Villeurbanne France
| | - Fríða Jóhannesdóttir
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York
- Ecology and Genetics Research Unit University of Oulu Oulu Finland
| | - Patrik Rödin‐Mörch
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - María Quintela
- Department of Population Genetics Institute of Marine Research Bergen Norway
| | - Alex Richter‐Boix
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| |
Collapse
|
11
|
Luquet E, Rödin Mörch P, Cortázar‐Chinarro M, Meyer‐Lucht Y, Höglund J, Laurila A. Post‐glacial colonization routes coincide with a life‐history breakpoint along a latitudinal gradient. J Evol Biol 2019; 32:356-368. [DOI: 10.1111/jeb.13419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Emilien Luquet
- Univ LyonUniversité Claude Bernard Lyon 1CNRSENTPEUMR5023 LEHNA Villeurbanne France
| | - Patrik Rödin Mörch
- Animal Ecology/Department of Ecology and GeneticsEvolutionary Biology CentreUppsala University Uppsala Sweden
| | - Maria Cortázar‐Chinarro
- Animal Ecology/Department of Ecology and GeneticsEvolutionary Biology CentreUppsala University Uppsala Sweden
| | - Yvonne Meyer‐Lucht
- Animal Ecology/Department of Ecology and GeneticsEvolutionary Biology CentreUppsala University Uppsala Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and GeneticsEvolutionary Biology CentreUppsala University Uppsala Sweden
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and GeneticsEvolutionary Biology CentreUppsala University Uppsala Sweden
| |
Collapse
|
12
|
Cortázar-Chinarro M, Meyer-Lucht Y, Laurila A, Höglund J. Signatures of historical selection on MHC reveal different selection patterns in the moor frog (Rana arvalis). Immunogenetics 2018; 70:477-484. [PMID: 29387920 PMCID: PMC6006221 DOI: 10.1007/s00251-017-1051-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022]
Abstract
MHC genes are key components in disease resistance and an excellent system for studying selection acting on genetic variation in natural populations. Current patterns of variation in MHC genes are likely to be influenced by past and ongoing selection as well as demographic fluctuations in population size such as those imposed by post-glacial recolonization processes. Here, we investigated signatures of historical selection and demography on an MHC class II gene in 12 moor frog populations along a 1700-km latitudinal gradient. Sequences were obtained from 207 individuals and consecutively assigned into two different clusters (northern and southern clusters, respectively) in concordance with a previously described dual post-glacial colonization route. Selection analyses comparing the relative rates of non-synonymous to synonymous substitutions (dN/dS) suggested evidence of different selection patterns in the northern and the southern clusters, with divergent selection prevailing in the south but uniform positive selection predominating in the north. Also, models of codon evolution revealed considerable differences in the strength of selection: The southern cluster appeared to be under strong selection while the northern cluster showed moderate signs of selection. Our results indicate that the MHC alleles in the north diverged from southern MHC alleles as a result of differential selection patterns.
Collapse
Affiliation(s)
- M Cortázar-Chinarro
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.
| | - Y Meyer-Lucht
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - A Laurila
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - J Höglund
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| |
Collapse
|
13
|
Kindler C, Graciá E, Fritz U. Extra-Mediterranean glacial refuges in barred and common grass snakes (Natrix helvetica, N. natrix). Sci Rep 2018; 8:1821. [PMID: 29379101 PMCID: PMC5788984 DOI: 10.1038/s41598-018-20218-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/16/2018] [Indexed: 11/30/2022] Open
Abstract
Extra-Mediterranean glacial refugia of thermophilic biota, in particular in northern latitudes, are controversial. In the present study we provide genetic evidence for extra-Mediterranean refugia in two species of grass snake. The refuge of a widely distributed western European lineage of the barred grass snake (Natrix helvetica) was most likely located in southern France, outside the classical refuges in the southern European peninsulas. One genetic lineage of the common grass snake (N. natrix), distributed in Scandinavia, Central Europe and the Balkan Peninsula, had two distinct glacial refuges. We show that one was located in the southern Balkan Peninsula. However, Central Europe and Scandinavia were not colonized from there, but from a second refuge in Central Europe. This refuge was located in between the northern ice sheet and the Alpine glaciers of the last glaciation and most likely in a permafrost region. Another co-distributed genetic lineage of N. natrix, now massively hybridizing with the aforementioned lineage, survived the last glaciation in a structured refuge in the southern Balkan Peninsula, according to the idea of 'refugia-within-refugia'. It reached Central Europe only very recently. This study reports for the first time the glacial survival of a thermophilic egg-laying reptile species in Central Europe.
Collapse
Affiliation(s)
- Carolin Kindler
- Museum of Zoology (Museum für Tierkunde), Senckenberg Dresden, A. B. Meyer Building, 01109, Dresden, Germany
| | - Eva Graciá
- Ecology Area, Department of Applied Biology, Miguel Hernández University, Av. de la Universidad, Torreblanca, 03202, Elche, Spain
| | - Uwe Fritz
- Museum of Zoology (Museum für Tierkunde), Senckenberg Dresden, A. B. Meyer Building, 01109, Dresden, Germany.
| |
Collapse
|
14
|
Boenigk J, Wodniok S, Bock C, Beisser D, Hempel C, Grossmann L, Lange A, Jensen M. Geographic distance and mountain ranges structure freshwater protist communities on a European scalе. METABARCODING AND METAGENOMICS 2018. [DOI: 10.3897/mbmg.2.21519] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Cortázar-Chinarro M, Lattenkamp EZ, Meyer-Lucht Y, Luquet E, Laurila A, Höglund J. Drift, selection, or migration? Processes affecting genetic differentiation and variation along a latitudinal gradient in an amphibian. BMC Evol Biol 2017; 17:189. [PMID: 28806900 PMCID: PMC5557520 DOI: 10.1186/s12862-017-1022-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Past events like fluctuations in population size and post-glacial colonization processes may influence the relative importance of genetic drift, migration and selection when determining the present day patterns of genetic variation. We disentangle how drift, selection and migration shape neutral and adaptive genetic variation in 12 moor frog populations along a 1700 km latitudinal gradient. We studied genetic differentiation and variation at a MHC exon II locus and a set of 18 microsatellites. RESULTS Using outlier analyses, we identified the MHC II exon 2 (corresponding to the β-2 domain) locus and one microsatellite locus (RCO8640) to be subject to diversifying selection, while five microsatellite loci showed signals of stabilizing selection among populations. STRUCTURE and DAPC analyses on the neutral microsatellites assigned populations to a northern and a southern cluster, reflecting two different post-glacial colonization routes found in previous studies. Genetic variation overall was lower in the northern cluster. The signature of selection on MHC exon II was weaker in the northern cluster, possibly as a consequence of smaller and more fragmented populations. CONCLUSION Our results show that historical demographic processes combined with selection and drift have led to a complex pattern of differentiation along the gradient where some loci are more divergent among populations than predicted from drift expectations due to diversifying selection, while other loci are more uniform among populations due to stabilizing selection. Importantly, both overall and MHC genetic variation are lower at northern latitudes. Due to lower evolutionary potential, the low genetic variation in northern populations may increase the risk of extinction when confronted with emerging pathogens and climate change.
Collapse
Affiliation(s)
- Maria Cortázar-Chinarro
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.
| | - Ella Z Lattenkamp
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Present address: Department of Neurogenetics of Vocal Communication, Max Planck Institute of Psycholinguistics, Box 310, 6500, Nijmegen, Netherlands
| | - Yvonne Meyer-Lucht
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Emilien Luquet
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Present address: Université Claude Bernard - Lyon I, CNRS, UMR 5023 - LEHNA, 3-6, rue Raphaël Dubois - Bâtiments Darwin C and Forel, 69622 Villeurbanne Cedex 43, Boulevard du 11 novembre, 1918, Lyon, France
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| |
Collapse
|
16
|
Vörös J, Ursenbacher S, Kiss I, Jelić D, Schweiger S, Szabó K. Increased genetic structuring of isolatedSalamandra salamandrapopulations (Caudata: Salamandridae) at the margins of the Carpathian Mountains. J ZOOL SYST EVOL RES 2016. [DOI: 10.1111/jzs.12157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Judit Vörös
- Department of Zoology; Hungarian Natural History Museum; Budapest Hungary
- Laboratory for Molecular Taxonomy; Hungarian Natural History Museum; Budapest Hungary
| | - Sylvain Ursenbacher
- Department of Environmental Science Section of Conservation Biology; University of Basel; Basel Switzerland
| | - István Kiss
- Department of Zoology and Animal Ecology; Szent István University; Gödöllő Hungary
| | - Dušan Jelić
- Croatian Institute for Biodiversity; Zagreb Croatia
| | | | - Krisztián Szabó
- Department of Ecology; University of Veterinary Medicine; Budapest Hungary
| |
Collapse
|
17
|
Kolář F, Fuxová G, Záveská E, Nagano AJ, Hyklová L, Lučanová M, Kudoh H, Marhold K. Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant modelArabidopsis arenosa. Mol Ecol 2016; 25:3929-49. [DOI: 10.1111/mec.13721] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/25/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Filip Kolář
- Natural History Museum; University of Oslo; PO Box 1172 Blindern Oslo NO-0318 Norway
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
- Institute of Botany; The Czech Academy of Sciences; Průhonice CZ-252 43 Czech Republic
| | - Gabriela Fuxová
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
| | - Eliška Záveská
- Institute of Botany; University of Innsbruck; Innsbruck AT-6020 Austria
| | - Atsushi J. Nagano
- Center for Ecological Research; Kyoto University; Kyoto JP-520-2113 Japan
- Faculty of Agriculture; Ryukoku University; Shiga JP-612-8577 Japan
- JST PRESTO; Saitama JP-332-0012 Japan
| | - Lucie Hyklová
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
| | - Magdalena Lučanová
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
- Institute of Botany; The Czech Academy of Sciences; Průhonice CZ-252 43 Czech Republic
| | - Hiroshi Kudoh
- Center for Ecological Research; Kyoto University; Kyoto JP-520-2113 Japan
| | - Karol Marhold
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
- Institute of Botany; Slovak Academy of Sciences; Bratislava SK-845 23 Slovak Republic
| |
Collapse
|
18
|
Genetic structure of Parnassius mnemosyne (Lepidoptera: Papilionidae) populations in the Carpathian Basin. ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0281-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Ancient, but not recent, population declines have had a genetic impact on alpine yellow-bellied toad populations, suggesting potential for complete recovery. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0818-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Junker M, Zimmermann M, Ramos AA, Gros P, Konvička M, Nève G, Rákosy L, Tammaru T, Castilho R, Schmitt T. Three in One--Multiple Faunal Elements within an Endangered European Butterfly Species. PLoS One 2015; 10:e0142282. [PMID: 26566029 PMCID: PMC4643965 DOI: 10.1371/journal.pone.0142282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 10/20/2015] [Indexed: 11/18/2022] Open
Abstract
Ice ages within Europe forced many species to retreat to refugia, of which three major biogeographic basic types can be distinguished: "Mediterranean", "Continental" and "Alpine / Arctic" species. However, this classification often fails to explain the complex phylogeography of European species with a wide range of latitudinal and altitudinal distribution. Hence, we tested for the possibility that all three mentioned faunal elements are represented within one species. Our data was obtained by scoring 1,307 Euphydryas aurinia individuals (46 European locations) for 17 allozyme loci, and sequencing a subset of 492 individuals (21 sites) for a 626 base pairs COI fragment. Genetic diversity indices, F statistics, hierarchical analyses of molecular variance, individual-based clustering, and networks were used to explore the phylogeographic patterns. The COI fragment represented 18 haplotypes showing a strong geographic structure. All but one allozyme loci analysed were polymorphic with a mean FST of 0.20, supporting a pronounced among population structure. Interpretation of both genetic marker systems, using several analytical tools, calls for the recognition of twelve genetic groups. These analyses consistently distinguished different groups in Iberia (2), Italy, Provence, Alps (3), Slovenia, Carpathian Basin, the lowlands of West and Central Europe as well as Estonia, often with considerable additional substructures. The genetic data strongly support the hypothesis that E. aurinia survived the last glaciation in Mediterranean, extra-Mediterranean and perialpine refugia. It is thus a rare example of a model organism that combines attributes of faunal elements from all three of these sources. The observed differences between allozymes and mtDNA most likely result from recent introgression of mtDNA into nuclear allozyme groups. Our results indicate discrepancies with the morphologically-based subspecies models, underlining the need to revise the current taxonomy.
Collapse
Affiliation(s)
- Marius Junker
- Department of Biogeography, Trier University, Trier, Germany
| | - Marie Zimmermann
- Université de Tours, CNRS, UMR 6035 –IRBI, Avenue Monge, Parc Grandmont, Tours, France
| | - Ana A. Ramos
- Centre of Marine Sciences, CCMAR/CIMAR Associate Laboratory, University of Algarve, Gambelas, Faro, Portugal
| | - Patrick Gros
- Haus der Natur, Museum für Natur und Technik, Museumsplatz 5, Salzburg, Austria
| | - Martin Konvička
- School of Biological Sciences, University South Bohemia, Branisovska 31, Ceske Budejovice, Czech Republic
| | - Gabriel Nève
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale, Aix Marseille Université, CNRS, IRD, Avignon Université, Case 36, 3 place Victor Hugo, Marseille Cedex 3, France
| | - László Rákosy
- Faculty of Biology, University Babes-Bolyai, Str. Clinicilor 5–7, Cluj, Romania
| | - Toomas Tammaru
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, Estonia
| | - Rita Castilho
- Centre of Marine Sciences, CCMAR/CIMAR Associate Laboratory, University of Algarve, Gambelas, Faro, Portugal
| | - Thomas Schmitt
- Department of Biogeography, Trier University, Trier, Germany
- Senckenberg German Entomological Institute, Eberswalder Straße 90, Müncheberg, Germany
- Zoology, Institute of Biology, Faculty Natural Science I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| |
Collapse
|
21
|
Cabria MT, Gonzalez EG, Gomez-Moliner BJ, Michaux JR, Skumatov D, Kranz A, Fournier P, Palazon S, Zardoya R. Patterns of genetic variation in the endangered European mink (Mustela lutreola L., 1761). BMC Evol Biol 2015; 15:141. [PMID: 26183103 PMCID: PMC4504092 DOI: 10.1186/s12862-015-0427-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/02/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The European mink (Mustela lutreola, L. 1761) is a critically endangered mustelid, which inhabits several main river drainages in Europe. Here, we assess the genetic variation of existing populations of this species, including new sampling sites and additional molecular markers (newly developed microsatellite loci specific to European mink) as compared to previous studies. Probabilistic analyses were used to examine genetic structure within and between existing populations, and to infer phylogeographic processes and past demography. RESULTS According to both mitochondrial and nuclear microsatellite markers, Northeastern (Russia, Estonia and Belarus) and Southeastern (Romania) European populations showed the highest intraspecific diversity. In contrast, Western European (France and Spain) populations were the least polymorphic, featuring a unique mitochondrial DNA haplotype. The high differentiation values detected between Eastern and Western European populations could be the result of genetic drift in the latter due to population isolation and reduction. Genetic differences among populations were further supported by Bayesian clustering and two main groups were confirmed (Eastern vs. Western Europe) along with two contained subgroups at a more local scale (Northeastern vs. Southeastern Europe; France vs. Spain). CONCLUSIONS Genetic data and performed analyses support a historical scenario of stable European mink populations, not affected by Quaternary climate oscillations in the Late Pleistocene, and posterior expansion events following river connections in both North- and Southeastern European populations. This suggests an eastern refuge during glacial maxima (as already proposed for boreal and continental species). In contrast, Western Europe was colonised more recently following either natural expansions or putative human introductions. Low levels of genetic diversity observed within each studied population suggest recent bottleneck events and stress the urgent need for conservation measures to counteract the demographic decline experienced by the European mink.
Collapse
Affiliation(s)
- Maria Teresa Cabria
- Departamento de Zoología y B.C.A., Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Paseo de las Universidades, 7, 01006, Vitoria-Gasteiz, Spains.
- Laboratoire de Biologie Évolutive, Institut de Botanique (Bat.22), Université de Liège (Sart Tilman), Boulevard du Rectorat, 27, B4000, Liège, Belgium.
| | - Elena G Gonzalez
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain.
| | - Benjamin J Gomez-Moliner
- Departamento de Zoología y B.C.A., Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Paseo de las Universidades, 7, 01006, Vitoria-Gasteiz, Spains.
| | - Johan R Michaux
- Laboratoire de Biologie Évolutive, Institut de Botanique (Bat.22), Université de Liège (Sart Tilman), Boulevard du Rectorat, 27, B4000, Liège, Belgium.
- Centre de Biologie et de Gestion des Populations, CBGP, Campus international de Baillarguet, CS 30016, 34988, Montferrier-sur-Lez, Cedex, France.
| | - Dimitry Skumatov
- Russian Research Institute of Game Management and Fur Farming, Engels Street, 79, Kirov, Russia.
| | - Andreas Kranz
- Institute of Wildlife Biology and Game Management, BOKU University of Natural Resources and Life Sciences, Gregor Mendel Street 33, 1180, Vienna, Austria.
| | - Pascal Fournier
- Groupe de Recherche et d'Etudes pour la Gestion de l'Environnement (GREGE), Route de Préchac, 33730, Villandraut, France.
| | - Santiago Palazon
- Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 2ª planta, 08028, Barcelona, Spain.
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain.
| |
Collapse
|
22
|
Rodríguez A, Börner M, Pabijan M, Gehara M, Haddad CFB, Vences M. Genetic divergence in tropical anurans: deeper phylogeographic structure in forest specialists and in topographically complex regions. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9774-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Solovyev VI, Bogdanova VS, Dubatolov VV, Kosterin OE. Range of a Palearctic uraniid moth Eversmannia exornata (Lepidoptera: Uraniidae: Epipleminae) was split in the Holocene, as evaluated using histone H1 and COI genes with reference to the Beringian disjunction in the genus Oreta (Lepidoptera: Drepanidae). ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-014-0195-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Tominaga A, Matsui M, Eto K, Ota H. Phylogeny and Differentiation of Wide-Ranging Ryukyu Kajika FrogBuergeria japonica(Amphibia: Rhacophoridae): Geographic Genetic Pattern Not Simply Explained by Vicariance Through Strait Formation. Zoolog Sci 2015; 32:240-7. [DOI: 10.2108/zs140227] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Liu J, Wang C, Fu D, Hu X, Xie X, Liu P, Zhang Q, Li MH. Phylogeography of Nanorana parkeri (Anura: Ranidae) and multiple refugia on the Tibetan Plateau revealed by mitochondrial and nuclear DNA. Sci Rep 2015; 5:9857. [PMID: 25985205 PMCID: PMC4434895 DOI: 10.1038/srep09857] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/23/2015] [Indexed: 01/31/2023] Open
Abstract
Quaternary climatic changes have been recognized to influence the distribution patterns and evolutionary histories of extant organisms, but their effects on alpine species are not well understood. To investigate the Pleistocene climatic oscillations on the genetic structure of amphibians, we sequenced one mitochondrial and three nuclear DNA fragments in Nanorana parkeri, a frog endemic to the Tibetan Plateau, across its distribution range in the southern plateau. Mitochondrial cytochrome b (Cytb) and three nuclear genes (c-Myc2, Rhod, and Tyr) revealed two distinct lineages (i.e. the lineages East and West), which were strongly geographically structured. The split of the two divergent lineages was dated back earlier than the Middle Pleistocene, probably being associated with climatic and ecological factors. Species distribution modeling, together with the phylogeographic structuring, supported the hypothesis of multiple refugia for N. parkeri on the Tibetan Plateau during the Pleistocene glaciations, and suggested the Yarlung Zangbo valley and the Kyichu catchment to be the potential refugia. Our findings indicate that Pleistocene climatic changes have had a great impact on the evolution and demographic history of N. parkeri. Our study has important implications for conservation of this and other frog species in the Tibetan Plateau.
Collapse
Affiliation(s)
- Jun Liu
- 1] CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China [2] Deep-Sea Research Department, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences (CAS), Sanya 572000, China
| | - Cuimin Wang
- 1] CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China [2] College of Life Sciences, University of the Academy of Sciences, Beijing 100049, China
| | - Dongli Fu
- Gansu Provincial Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoju Hu
- 1] CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China [2] College of Life Sciences, University of the Academy of Sciences, Beijing 100049, China
| | - Xiangmo Xie
- 1] CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China [2] College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, China
| | - Pengfei Liu
- 1] CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China [2] College of Life Sciences, University of the Academy of Sciences, Beijing 100049, China
| | - Qiong Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| |
Collapse
|
26
|
Zinenko O, Stümpel N, Mazanaeva L, Bakiev A, Shiryaev K, Pavlov A, Kotenko T, Kukushkin O, Chikin Y, Duisebayeva T, Nilson G, Orlov NL, Tuniyev S, Ananjeva NB, Murphy RW, Joger U. Mitochondrial phylogeny shows multiple independent ecological transitions and northern dispersion despite of Pleistocene glaciations in meadow and steppe vipers (Vipera ursinii and Vipera renardi). Mol Phylogenet Evol 2015; 84:85-100. [DOI: 10.1016/j.ympev.2014.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 10/20/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
|
27
|
Qi Y, Lu B, Gao H, Hu P, Fu J. Hybridization and mitochondrial genome introgression between Rana chensinensis and R. kukunoris. Mol Ecol 2014; 23:5575-88. [PMID: 25308955 DOI: 10.1111/mec.12960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 02/01/2023]
Abstract
Mitochondrial genome (mito-genome) introgression among metazoans is commonplace, and several biological processes may promote such introgression. We examined two proposed processes for the mito-genome introgression between Rana chensinensis and R. kukunoris: natural hybridization and sex-biased dispersal. We sampled 477 individuals from 28 sites in the potential hybrid zone in the western Tsinling Mountains. Mitochondrial gene (cyt-b) trees were used to examine the introgression events. Microsatellite DNA loci, cyt-b and morphological data were used to identify hybrids and to examine the extent of natural hybridization. We detected rampant bidirectional introgressions, both ancient and recent, between the two species. Furthermore, we found a wide hybrid zone, and frequent and asymmetric hybridization. The hybrid zone cline analysis revealed a clear mitochondrial-nuclear discordance; while most nuclear markers displayed similar and steep clines, cyt-b had a displaced cline centre and a more gradual and wider cline. We also detected strong and asymmetric historical maternal gene flow across the hybrid zone. This widespread hybridization and detected low mito-nuclear conflicts may, at least partially, explain the high frequency of introgression. Lastly, microsatellite data and population genetic methods were used to assess sex-biased dispersal. A weak pattern of female-biased dispersal was detected in both species, suggesting it may not play an important role in the observed introgression. Our data are consistent with the hybridization hypothesis, but support for the sex-biased dispersal hypothesis is weak. We further suggest that selective advantages of the R. kukunoris-type mito-genome in thermal adaptation may also contribute to the introgression between the two species.
Collapse
Affiliation(s)
- Yin Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | | | | | | | | |
Collapse
|
28
|
Tominaga A, Matsui M, Nakata K. Genetic Diversity and Differentiation of the Ryukyu Endemic FrogBabina holstias Revealed by Mitochondrial DNA. Zoolog Sci 2014; 31:64-70. [DOI: 10.2108/zsj.31.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Vences M, Hauswaldt JS, Steinfartz S, Rupp O, Goesmann A, Künzel S, Orozco-terWengel P, Vieites DR, Nieto-Roman S, Haas S, Laugsch C, Gehara M, Bruchmann S, Pabijan M, Ludewig AK, Rudert D, Angelini C, Borkin LJ, Crochet PA, Crottini A, Dubois A, Ficetola GF, Galán P, Geniez P, Hachtel M, Jovanovic O, Litvinchuk SN, Lymberakis P, Ohler A, Smirnov NA. Radically different phylogeographies and patterns of genetic variation in two European brown frogs, genus Rana. Mol Phylogenet Evol 2013; 68:657-70. [PMID: 23632031 DOI: 10.1016/j.ympev.2013.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 11/26/2022]
Abstract
We reconstruct range-wide phylogeographies of two widespread and largely co-occurring Western Palearctic frogs, Rana temporaria and R. dalmatina. Based on tissue or saliva samples of over 1000 individuals, we compare a variety of genetic marker systems, including mitochondrial DNA, single-copy protein-coding nuclear genes, microsatellite loci, and single nucleotide polymorphisms (SNPs) of transcriptomes of both species. The two focal species differ radically in their phylogeographic structure, with R. temporaria being strongly variable among and within populations, and R. dalmatina homogeneous across Europe with a single strongly differentiated population in southern Italy. These differences were observed across the various markers studied, including microsatellites and SNP density, but especially in protein-coding nuclear genes where R. dalmatina had extremely low heterozygosity values across its range, including potential refugial areas. On the contrary, R. temporaria had comparably high range-wide values, including many areas of probable postglacial colonization. A phylogeny of R. temporaria based on various concatenated mtDNA genes revealed that two haplotype clades endemic to Iberia form a paraphyletic group at the base of the cladogram, and all other haplotypes form a monophyletic group, in agreement with an Iberian origin of the species. Demographic analysis suggests that R. temporaria and R. dalmatina have genealogies of roughly the same time to coalescence (TMRCA ~3.5 mya for both species), but R. temporaria might have been characterized by larger ancestral and current effective population sizes than R. dalmatina. The high genetic variation in R. temporaria can therefore be explained by its early range expansion out of Iberia, with subsequent cycles of differentiation in cryptic glacial refugial areas followed by admixture, while the range expansion of R. dalmatina into central Europe is a probably more recent event.
Collapse
Affiliation(s)
- Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Homburg K, Drees C, Gossner MM, Rakosy L, Vrezec A, Assmann T. Multiple glacial refugia of the low-dispersal ground beetle Carabus irregularis: molecular data support predictions of species distribution models. PLoS One 2013; 8:e61185. [PMID: 23593425 PMCID: PMC3617161 DOI: 10.1371/journal.pone.0061185] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 03/07/2013] [Indexed: 11/19/2022] Open
Abstract
Classical glacial refugia such as the southern European peninsulas were important for species survival during glacial periods and acted as sources of post-glacial colonisation processes. Only recently, some studies have provided evidence for glacial refugia north of the southern European peninsulas. In the present study, we combined species distribution models (SDMs) with phylogeographic analyses (using mitochondrial DNA = mtDNA) to investigate if the cold-adapted, stenotopic and flightless ground beetle species, Carabus irregularis, survived the Last Glacial Maximum (LGM) in classical and/or other refugia. SDMs (for both a western European and for a Carpathian subgroup) were calculated with MAXENT on the basis of 645 species records to predict current and past distribution patterns. Two mtDNA loci (CO1 and ND5, concatenated sequence length: 1785 bp) were analyzed from 91 C. irregularis specimens to reconstruct the phylogeography of Central and eastern European populations and to estimate divergence times of the given lineages. Strong intra-specific genetic differentiation (inter-clade ΦST values ranged from 0.92 to 0.99) implied long-term isolation of major clades and subsclades. The high divergence between the nominate subspecies and the Carpathian subspecies C. i. montandoni points to two independent species rather than subspecies (K-2P distance 0.042 ± 0.004; supposed divergence of the maternal lineages dated back 1.6 to 2.5 million years BP) differing not only morphologically but also genetically and ecologically from each other. The SDMs also inferred classical as well as other refugia for C. irregularis, especially north of the Alps, in southeastern Europe and in the Carpathians. The coincidences between the results of both methods confirm the assumption of multiple glacial refugia for the studied species and the usefulness of combining methodological approaches for the understanding of the history of low-dispersal insect species.
Collapse
Affiliation(s)
- Katharina Homburg
- Leuphana University Lüneburg, Institute of Ecology, Lüneburg, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Litvinchuk SN, Crottini A, Federici S, De Pous P, Donaire D, Andreone F, Kalezić ML, Džukić G, Lada GA, Borkin LJ, Rosanov JM. Phylogeographic patterns of genetic diversity in the common spadefoot toad, Pelobates fuscus (Anura: Pelobatidae), reveals evolutionary history, postglacial range expansion and secondary contact. ORG DIVERS EVOL 2013. [DOI: 10.1007/s13127-013-0127-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Zhou W, Yan F, Fu J, Wu S, Murphy RW, Che J, Zhang Y. River islands, refugia and genetic structuring in the endemic brown frog Rana kukunoris (Anura, Ranidae) of the Qinghai-Tibetan Plateau. Mol Ecol 2012; 22:130-42. [PMID: 23116243 DOI: 10.1111/mec.12087] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/30/2012] [Accepted: 09/04/2012] [Indexed: 11/30/2022]
Abstract
Frequently, Pleistocene climatic cycling has been found to be the diver of genetic structuring in populations, even in areas that did not have continental ice sheets, such as on the Qinghai-Tibetan Plateau (QTP). Typically, species distributed on the plateau have been hypothesized to re-treat to south-eastern refugia, especially during the Last Glacial Maximum (LGM). We evaluated sequence variation in the mitochondrial DNA gene Cytb and the nuclear DNA gene RAG-1 in Rana kukunoris, a species endemic to the QTP. Two major lineages, N and S, were identified, and lineage N was further subdivided into N1 and N2. The geographical distribution and genealogical divergences supported the hypothesis of multiple refugia. However, major lineages and sublineages diverged prior to the LGM. Demographical expansion was detected only in lineage S and sublineage N2. Sublineage N1 might have survived several glacial cycles in situ and did not expand after the LGM because of the absence of suitable habitat; it survived in river islands. Genetic analysis and environment modelling suggested that the north-eastern edge of QTP contained a major refugium for R. kukunoris. From here, lineage S dispersed southwards after the LGM. Two microrefugia in northern Qilian Mountains greatly contributed to current level of intraspecific genetic diversity. These results were found to have important implications for the habitat conservation in Northwest China.
Collapse
Affiliation(s)
- Weiwei Zhou
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | | | | | | | | | | | | |
Collapse
|
33
|
References. Mol Ecol 2012. [DOI: 10.1002/9780470979365.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Schmitt T, Varga Z. Extra-Mediterranean refugia: The rule and not the exception? Front Zool 2012; 9:22. [PMID: 22953783 PMCID: PMC3462695 DOI: 10.1186/1742-9994-9-22] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/28/2012] [Indexed: 11/23/2022] Open
Abstract
Some decades ago, biogeographers distinguished three major faunal types of high importance for Europe: (i) Mediterranean elements with exclusive glacial survival in the Mediterranean refugia, (ii) Siberian elements with glacial refugia in the eastern Palearctic and only postglacial expansion to Europe and (iii) arctic and/or alpine elements with large zonal distributions in the periglacial areas and postglacial retreat to the North and/or into the high mountain systems. Genetic analyses have unravelled numerous additional refugia both of continental and Mediterranean species, thus strongly modifying the biogeographical view of Europe. This modified notion is particularly true for the so-called Siberian species, which in many cases have not immigrated into Europe during the postglacial period, but most likely have survived the last, or even several glacial phases, in extra-Mediterranean refugia in some climatically favourable but geographically limited areas of southern Central and Eastern Europe. Recently, genetic analyses revealed that typical Mediterranean species have also survived the Last Glacial Maximum in cryptic northern refugia (e.g. in the Carpathians or even north of the Alps) in addition to their Mediterranean refuge areas.
Collapse
Affiliation(s)
- Thomas Schmitt
- Biogeography, Trier University, D - 54 286, Trier, Germany.
| | | |
Collapse
|
35
|
Stefani F, Gentilli A, Sacchi R, Razzetti E, Pellitteri-Rosa D, Pupin F, Galli P. Refugia within refugia as a key to disentangle the genetic pattern of a highly variable species: the case of Rana temporaria Linnaeus, 1758 (Anura, Ranidae). Mol Phylogenet Evol 2012; 65:718-26. [PMID: 22874474 DOI: 10.1016/j.ympev.2012.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 11/15/2022]
Abstract
Two distinct lineages of Rana temporaria are known in the Palaearctic region, but it is uncertain whether this species persisted in one or more Pleistocene refugia. We resolved the phylogeographic history and genetic variability of R. temporaria in the Italian peninsula, a 'traditional' Pleistocene refugium, and related our findings to patterns described for other European populations. We sequenced the mitochondrial markers Cox I and cytochrome b. Phylogenetic reconstruction only indicated the presence of haplotypes belonging to the Western lineage in the Italian peninsula. Overall, the genetic variability of Italian populations was higher than other European populations, which shared haplotypes with the Alpine populations. We demonstrated subdivision into five main Italian sublineages, which was associated with a geographical structure of populations in two divergent groups. In particular, one Apennine group might have resulted from bottlenecks during the last interglacials ages. In contrast, Alpine populations were recently diverged and showed incomplete lineage sorting. Our data indicate that the Italian peninsula served as refugium for the Western lineage of R. temporaria. Dispersion towards Central Europe probably started only from the western slope of the Alps via a rapid leading edge expansion. The identified structure is partially congruent with traditional peripheral refugia identified for plants. This evolutionary scenario does not support any taxonomic distinction at the subspecific level for R. temporaria.
Collapse
Affiliation(s)
- Fabrizio Stefani
- Water Research Institute-National Research Council (IRSA-CNR), Via del Mulino 19, I-20861 Brugherio (MB), Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Lin HD, Chen YR, Lin SM. Strict consistency between genetic and topographic landscapes of the brown tree frog (Buergeria robusta) in Taiwan. Mol Phylogenet Evol 2012; 62:251-62. [DOI: 10.1016/j.ympev.2011.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/24/2011] [Accepted: 09/28/2011] [Indexed: 11/30/2022]
|
37
|
Molecular phylogenetics and historical biogeography of the west-palearctic common toads (Bufo bufo species complex). Mol Phylogenet Evol 2011; 63:113-30. [PMID: 22214922 DOI: 10.1016/j.ympev.2011.12.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 12/18/2011] [Accepted: 12/20/2011] [Indexed: 11/20/2022]
Abstract
In most pan-Eurasiatic species complexes, two phenomena have been traditionally considered key processes of their cladogenesis and biogeography. First, it is hypothesized that the origin and development of the Central Asian Deserts generated a biogeographic barrier that fragmented past continuous distributions in Eastern and Western domains. Second, Pleistocene glaciations have been proposed as the main process driving the regional diversification within each of these domains. The European common toad and its closest relatives provide an interesting opportunity to examine the relative contributions of these paleogeographic and paleoclimatic events to the phylogeny and biogeography of a widespread Eurasiatic group. We investigate this issue by applying a multiproxy approach combining information from molecular phylogenies, a multiple correspondence analysis of allozyme data and species distribution models. Our study includes 304 specimens from 164 populations, covering most of the distributional range of the Bufo bufo species complex in the Western Palearctic. The phylogenies (ML and Bayesian analyses) were based on a total of 1988 bp of mitochondrial DNA encompassing three genes (tRNAval, 16S and ND1). A dataset with 173 species of the family Bufonidae was assembled to estimate the separation of the two pan-Eurasiatic species complexes of Bufo and to date the main biogeographic events within the Bufo bufo species complex. The allozyme study included sixteen protein systems, corresponding to 21 presumptive loci. Finally, the distribution models were based on maximum entropy. Our distribution models show that Eastern and Western species complexes are greatly isolated by the Central Asian Deserts, and our dating estimates place this divergence during the Middle Miocene, a moment in which different sources of evidence document a major upturn of the aridification rate of Central Asia. This climate-driven process likely separated the Eastern and Western species. At the level of the Western Palearctic, our dating estimates place most of the deepest phylogenetic structure before the Pleistocene, indicating that Pleistocene glaciations did not have a major role in splitting the major lineages. At a shallow level, the glacial dynamics contributed unevenly to the genetic structuring of populations, with a strong influence in the European-Caucasian populations, and a more relaxed effect in the Iberian populations.
Collapse
|
38
|
Nadachowska-Brzyska K, Zieliński P, Radwan J, Babik W. Interspecific hybridization increases MHC class II diversity in two sister species of newts. Mol Ecol 2011; 21:887-906. [PMID: 22066802 DOI: 10.1111/j.1365-294x.2011.05347.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our understanding of the evolutionary mechanisms generating variation within the highly polymorphic major histocompatibility complex (MHC) genes remains incomplete. Assessing MHC variation across multiple populations, of recent and ancient divergence, may facilitate understanding of geographical and temporal aspects of variation. Here, we applied 454 sequencing to perform a large-scale, comprehensive analysis of MHC class II in the closely related, hybridizing newts, Lissotriton vulgaris (Lv) and Lissotriton montandoni (Lm). Our study revealed an extensive (299 alleles) geographically structured polymorphism. Populations at the southern margin of the Lv distribution, inhabited by old and distinct lineages (southern Lv), exhibited moderate MHC variation and strong population structure, indicating little gene flow or extensive local adaptation. Lissotriton vulgaris in central Europe and the northern Balkans (northern Lv) and almost all Lm populations had a high MHC variation. A much higher proportion of MHC alleles was shared between Lm and northern Lv than between Lm and southern Lv. Strikingly, the average pairwise F(ST) between northern Lv and Lm was significantly lower than between northern and southern Lv for MHC, but not for microsatellites. Thus, high MHC variation in Lm and northern Lv may result from gene flow between species. We hypothesize that the interspecific exchange of MHC genes may be facilitated by frequency-dependent selection. A marginally significant correlation between the MHC and microsatellite allelic richness indicates that demographic factors may have contributed to the present-day pattern of MHC variation, but unequivocal signatures of adaptive evolution in MHC class II sequences emphasize the role of selection on a longer timescale.
Collapse
|
39
|
MATTOCCIA MARCO, MARTA SILVIO, ROMANO ANTONIO, SBORDONI VALERIO. Phylogeography of an Italian endemic salamander (genus Salamandrina): glacial refugia, postglacial expansions, and secondary contact. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01747.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Bernard R, Heiser M, Hochkirch A, Schmitt T. Genetic homogeneity of the Sedgling
Nehalennia speciosa
(Odonata: Coenagrionidae) indicates a single Würm glacial refugium and trans‐Palaearctic postglacial expansion. J ZOOL SYST EVOL RES 2011. [DOI: 10.1111/j.1439-0469.2011.00630.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rafał Bernard
- Department of General Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Markus Heiser
- Department of Biogeography, Trier University, Trier, Germany
| | - Axel Hochkirch
- Department of Biogeography, Trier University, Trier, Germany
| | - Thomas Schmitt
- Department of Biogeography, Trier University, Trier, Germany
| |
Collapse
|
41
|
Fijarczyk A, Nadachowska K, Hofman S, Litvinchuk SN, Babik W, Stuglik M, Gollmann G, Choleva L, Cogălniceanu D, Vukov T, Džukić G, Szymura JM. Nuclear and mitochondrial phylogeography of the European fire-bellied toads Bombina bombina and Bombina variegata supports their independent histories. Mol Ecol 2011; 20:3381-98. [PMID: 21749513 DOI: 10.1111/j.1365-294x.2011.05175.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exact location and number of glacial refugia still remain unclear for many European cold-blooded terrestrial vertebrates. We performed a fine-scaled multilocus phylogeographic analysis of two Bombina species combining mitochondrial variation of 950 toads from 385 sites and nuclear genes (Rag-1, Ncx-1) from a subset of samples to reconstruct their colonization and contemporary variation patterns. We identified the lowlands northwest of the Black Sea and the Carpathians to be important refugial areas for B. bombina and B. variegata, respectively. This result emphasizes the importance of Central European refugia for ectothermic terrestrial species, far north of the Mediterranean areas regarded as exclusive glacial refugia for the animals. Additional refugia for B. variegata have been located in the southern Apennines and Balkans. In contrast, no evidence for the importance of other east European plains as refugial regions has been found. The distribution of mtDNA and Ncx-1 variation suggests the presence of local refugia near the Black Sea for B. bombina; however, coalescent simulations did not allow to distinguish whether one or two refugia were present in the region. Strong genetic drift apparently accompanied postglacial expansions reducing diversity in the colonization areas. Extended sampling, coupled with the multilocus isolation with migration analysis, revealed a limited and geographically restricted gene flow from the Balkan to Carpathian populations of B. variegata. However, despite proximity of inferred B. bombina and B. variegata refugia, gene exchange between them was not detected.
Collapse
Affiliation(s)
- Anna Fijarczyk
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hammouti N, Schmitt T, Seitz A, Kosuch J, Veith M. Combining mitochondrial and nuclear evidences: a refined evolutionary history ofErebia medusa(Lepidoptera: Nymphalidae: Satyrinae) in Central Europe based on the COI gene. J ZOOL SYST EVOL RES 2010. [DOI: 10.1111/j.1439-0469.2009.00544.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Oláh-Hemmings V, Jaeger JR, Sredl MJ, Schlaepfer MA, Jennings RD, Drost CA, Bradford DF, Riddle BR. Phylogeography of declining relict and lowland leopard frogs in the desert Southwest of North America. J Zool (1987) 2010. [DOI: 10.1111/j.1469-7998.2009.00667.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Verardi A, Canestrelli D, Nascetti G. Nuclear and Mitochondrial Patterns of Introgression between the Parapatric European TreefrogsHyla arboreaandH. intermedia. ANN ZOOL FENN 2009. [DOI: 10.5735/086.046.0402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
KNOPP THERESA, MERILÄ JUHA. Microsatellite variation and population structure of the moor frog (Rana arvalis) in Scandinavia. Mol Ecol 2009; 18:2996-3005. [DOI: 10.1111/j.1365-294x.2009.04252.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Schmitt T. Biogeographical and evolutionary importance of the European high mountain systems. Front Zool 2009; 6:9. [PMID: 19480666 PMCID: PMC2700098 DOI: 10.1186/1742-9994-6-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 05/29/2009] [Indexed: 11/10/2022] Open
Abstract
Europe is characterised by several high mountain systems dominating major parts of its area, and these structures have strongly influenced the evolution of taxa. For species now restricted to these high mountain systems, characteristic biogeographical patterns of differentiation exist. (i) Many local endemics are found in most of the European high mountain systems especially in the Alps and the more geographically peripheral regions of Europe. Populations isolated in these peripheral mountain ranges often have strongly differentiated endemic genetic lineages, which survived and evolved in the vicinity of these mountain areas over long time periods. (ii) Populations of taxa with wide distributions in the Alps often have two or more genetic lineages, which in some cases even have the status of cryptic species. In many cases, these lineages are the results of several centres of glacial survival in the perialpine areas. Similar patterns also apply to the other geographically extended European high mountain systems, especially the Pyrenees and Carpathians. (iii) Populations from adjoining high mountain systems often show similar genetic lineages, a phenomenon best explained by postglacial retreat to these mountains from one single differentiation centre between them. (iv) The populations of a number of species show gradients of genetic diversity from a genetically richer East to a poorer West. This might indicate better glacial survival conditions for this biogeographical group of species in the more eastern parts of Europe.
Collapse
Affiliation(s)
- Thomas Schmitt
- Biogeographie, Fachbereich VI, Wissenschaftspark Trier-Petrisberg, Universität Trier, D - 54286 Trier, Germany.
| |
Collapse
|
47
|
Deffontaine V, Ledevin R, Fontaine MC, Quéré JP, Renaud S, Libois R, Michaux JR. A relict bank vole lineage highlights the biogeographic history of the Pyrenean region in Europe. Mol Ecol 2009; 18:2489-502. [PMID: 19389172 DOI: 10.1111/j.1365-294x.2009.04162.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Pyrenean region exhibits high levels of endemism suggesting a major contribution to the phylogeography of European species. But, to date, the role of the Pyrenees and surrounding areas as a glacial refugium for temperate species remains poorly explored. In the current study, we investigated the biogeographic role of the Pyrenean region through the analyses of genetic polymorphism and morphology of a typical forest-dwelling small mammal, the bank vole (Myodes glareolus). Analyses of the mitochondrial cytochrome b gene and the third upper molar (M(3)) show a complex phylogeographic structure in the Pyrenean region with at least three distinct lineages: the Western European, Spanish and Basque lineages. The Basque lineage in the northwestern (NW) Pyrenees was identified as a new clearly differentiated and geographically localized bank vole lineage in Europe. The average M(3) shape of Basque bank voles suggests morphological differentiation but also restricted genetic exchanges with other populations. Our genetic and morphological results as well as palaeo-environmental and fossils records support the hypothesis of a new glacial refugium in Europe situated in the NW Pyrenees. The permissive microclimatic conditions that prevailed for a long time in this region may have allowed the survival of temperate species, including humans. Moreover, local differentiation around the Pyrenees is favoured by the opportunity for populations to track the shift of the vegetation belt in altitude rather than in latitude. The finding of the Basque lineage is in agreement with the high level of endemic taxa reported in the NW Pyrenees.
Collapse
Affiliation(s)
- Valérie Deffontaine
- Unité de recherches zoogéographiques, University of Liège, Bât. B22, Boulevard du Rectorat, Sart Tilman, 4000 Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
48
|
European phylogeography of the common frog (Rana temporaria): routes of postglacial colonization into the British Isles, and evidence for an Irish glacial refugium. Heredity (Edinb) 2009; 102:490-6. [DOI: 10.1038/hdy.2008.133] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
49
|
Post-glacial phylogeography: new insight into an old story: the post-glacial recolonization of European biota. Heredity (Edinb) 2008; 102:213. [PMID: 19002203 DOI: 10.1038/hdy.2008.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
50
|
Knopp T, Merilä J. The postglacial recolonization of Northern Europe by Rana arvalis as revealed by microsatellite and mitochondrial DNA analyses. Heredity (Edinb) 2008; 102:174-81. [PMID: 18827835 DOI: 10.1038/hdy.2008.91] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The postglacial history of the moor frog (Rana arvalis) in Northern Europe was investigated with the aid of eight variable microsatellite loci and a 661 bp sequence of the mitochondrial cytochrome b gene. A division between eastern and western mitochondrial lineages was discovered, supporting two recolonization routes to Fennoscandia since the last glacial maximum. This result was corroborated by the microsatellite data, which revealed a contact zone between the two lineages in Northern Sweden. These findings add to the increasing evidence that an intraspecific genetic biodiversity founded on the existence of eastern and western clades is a common element in Fennoscandian fauna and flora.
Collapse
Affiliation(s)
- T Knopp
- Department of Biological and Environmental Sciences, Ecological Genetics Research Unit, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|