1
|
De Luna-Bonilla OÁ, Valencia-Á S, Ibarra-Manríquez G, Morales-Saldaña S, Tovar-Sánchez E, González-Rodríguez A. Leaf morphometric analysis and potential distribution modelling contribute to taxonomic differentiation in the Quercus microphylla complex. JOURNAL OF PLANT RESEARCH 2024; 137:3-19. [PMID: 37740854 PMCID: PMC10764464 DOI: 10.1007/s10265-023-01495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023]
Abstract
Mexico is a major center of evolutionary radiation for the genus Quercus, with oak species occurring across different habitat types and showing a wide variation in morphology and growth form. Despite representing about 20% of Mexican species, scrub oaks have received little attention and even basic aspects of their taxonomy and geographic distribution remain unresolved. In this study, we analyzed the morphological and climatic niche differentiation of scrub oak populations forming a complex constituted by six named species, Quercus cordifolia, Quercus frutex, Quercus intricata, Quercus microphylla, Quercus repanda, Quercus striatula and a distinct morphotype of Q. striatula identified during field and herbarium work (hereafter named Q. striatula II). Samples were obtained from 35 sites covering the geographic distribution of the complex in northern and central Mexico. Morphological differentiation was analyzed through geometric morphometrics of leaf shape and quantification of trichome traits. Our results indicated the presence of two main morphological groups with geographic concordance. The first was formed by Q. frutex, Q. microphylla, Q. repanda and Q. striatula, distributed in the Trans-Mexican Volcanic Belt, the Sierra Madre Occidental and a little portion of the south of the Mexican Altiplano (MA). The second group consists of Q. cordifola, Q. intricata and Q. striatula II, found in the Sierra Madre Oriental and the MA. Therefore, our evidence supports the distinctness of the Q. striatula II morphotype, indicating the need for a taxonomic revision. Within the two groups, morphological differentiation among taxa varied from very clear to low or inexistent (i.e. Q. microphylla-Q. striatula and Q. cordifolia-Q. striatula II) but niche comparisons revealed significant niche differentiation in all pairwise comparisons, highlighting the relevance of integrative approaches for the taxonomic resolution of complicated groups such as the one studied here.
Collapse
Affiliation(s)
- Oscar Ángel De Luna-Bonilla
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, 04510, Ciudad de Mexico, México
| | - Susana Valencia-Á
- Herbario de la Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior, s.n, Ciudad Universitaria, Coyoacán, 04510, México City, México
| | - Guillermo Ibarra-Manríquez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, México
| | - Saddan Morales-Saldaña
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, México
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, CP, 62209, Cuernavaca, Morelos, Mexico
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, México.
| |
Collapse
|
2
|
Doellman MM, Saint Jean G, Egan SP, Powell THQ, Hood GR, Schuler H, Bruzzese DJ, Glover MM, Smith JJ, Yee WL, Goughnour R, Rull J, Aluja M, Feder JL. Evidence for spatial clines and mixed geographic modes of speciation for North American cherry-infesting Rhagoletis (Diptera: Tephritidae) flies. Ecol Evol 2020; 10:12727-12744. [PMID: 33304490 PMCID: PMC7713972 DOI: 10.1002/ece3.6667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 01/23/2023] Open
Abstract
An important criterion for understanding speciation is the geographic context of population divergence. Three major modes of allopatric, parapatric, and sympatric speciation define the extent of spatial overlap and gene flow between diverging populations. However, mixed modes of speciation are also possible, whereby populations experience periods of allopatry, parapatry, and/or sympatry at different times as they diverge. Here, we report clinal patterns of variation for 21 nuclear-encoded microsatellites and a wing spot phenotype for cherry-infesting Rhagoletis (Diptera: Tephritidae) across North America consistent with these flies having initially diverged in parapatry followed by a period of allopatric differentiation in the early Holocene. However, mitochondrial DNA (mtDNA) displays a different pattern; cherry flies at the ends of the clines in the eastern USA and Pacific Northwest share identical haplotypes, while centrally located populations in the southwestern USA and Mexico possess a different haplotype. We hypothesize that the mitochondrial difference could be due to lineage sorting but more likely reflects a selective sweep of a favorable mtDNA variant or the spread of an endosymbiont. The estimated divergence time for mtDNA suggests possible past allopatry, secondary contact, and subsequent isolation between USA and Mexican fly populations initiated before the Wisconsin glaciation. Thus, the current genetics of cherry flies may involve different mixed modes of divergence occurring in different portions of the fly's range. We discuss the need for additional DNA sequencing and quantification of prezygotic and postzygotic reproductive isolation to verify the multiple mixed-mode hypothesis for cherry flies and draw parallels from other systems to assess the generality that speciation may commonly involve complex biogeographies of varying combinations of allopatric, parapatric, and sympatric divergence.
Collapse
Affiliation(s)
- Meredith M. Doellman
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinoisUSA
| | - Gilbert Saint Jean
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Scott P. Egan
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
- Advanced Diagnostics & TherapeuticsUniversity of Notre DameNotre DameIndianaUSA
- Department of BioSciencesRice UniversityHoustonTexasUSA
| | - Thomas H. Q. Powell
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
- Department of Biological SciencesBinghamton UniversityBinghamtonNew YorkUSA
| | - Glen R. Hood
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
- Department of Biological SciencesWayne State UniversityDetroitMichiganUSA
| | - Hannes Schuler
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBozenItaly
| | - Daniel J. Bruzzese
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Mary M. Glover
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - James J. Smith
- Department of EntomologyLyman Briggs CollegeMichigan State UniversityEast LansingMichiganUSA
| | - Wee L. Yee
- Temperate Tree Fruit & Vegetable Research UnitUnited States Department of Agriculture, Agricultural Research ServiceWapatoWashingtonUSA
| | | | - Juan Rull
- Instituto de Ecología, A.C.XalapaMéxico
- LIEMEN‐División Control Biológico de PlagasPROIMI Biotecnología‐CONICETTucumánArgentina
| | | | - Jeffrey L. Feder
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
- Advanced Diagnostics & TherapeuticsUniversity of Notre DameNotre DameIndianaUSA
- Environmental Change InitiativeUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
3
|
Quintero-Corrales C, Ángeles-Argáiz R, Jaramillo-Correa JP, Piñero D, Garibay-Orijel R, Mastretta-Yanes A. Allopatric instead of parapatric divergence in an ectomycorrhizal fungus (Laccaria trichodermophora) in tropical sky-islands. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Zamudio-Beltrán LE, Licona-Vera Y, Hernández-Baños BE, Klicka J, Ornelas JF. Phylogeography of the widespread white-eared hummingbird (Hylocharis leucotis): pre-glacial expansion and genetic differentiation of populations separated by the Isthmus of Tehuantepec. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractThe Pleistocene glacial cycles had a strong influence on the demography and genetic structure of many species, particularly on northern-latitude taxa. Here we studied the phylogeography of the white-eared hummingbird (Hylocharis leucotis), a widely distributed species of the highlands of Mexico and Central America. Analysis of mitochondrial DNA (mtDNA) sequences was combined with ecological niche modelling (ENM) to infer the demographic and population differentiation scenarios under present and past conditions. Analyses of 108 samples from 11 geographic locations revealed population structure and genetic differentiation among populations separated by the Isthmus of Tehuantepec (IT) and the Motagua-Polochic-Jocotán (MPJ) fault barriers. ENM predicted a widespread distribution of suitable habitat for H. leucotis since the Last Inter Glacial (LIG), but this habitat noticeably contracted and fragmented at the IT. Models for historical dispersal corridors based on population genetics data and ENM revealed the existence of corridors among populations west of the IT; however, the connectivity of populations across the IT has changed little since the LIG. The shallow geographic structure on either side of the isthmus and a star-like haplotype network, combined with the long-term persistence of populations across time based on genetic data and potential dispersal routes, support a scenario of divergence with migration and subsequent isolation and differentiation in Chiapas and south of the MPJ fault. Our findings corroborate the profound effects of Pleistocene climatic fluctuations on the evolutionary history of montane taxa but challenge the generality of expanded suitable habitat (pine-oak forests) during glacial cycles.
Collapse
Affiliation(s)
- Luz E Zamudio-Beltrán
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Yuyini Licona-Vera
- Departamento de Biología Evolutiva, Instituto de Ecología, Asociación Civil (INECOL), Xalapa, Veracruz, Mexico
| | - Blanca E Hernández-Baños
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - John Klicka
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Juan Francisco Ornelas
- Departamento de Biología Evolutiva, Instituto de Ecología, Asociación Civil (INECOL), Xalapa, Veracruz, Mexico
| |
Collapse
|
5
|
Cavender-Bares J. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. THE NEW PHYTOLOGIST 2019; 221:669-692. [PMID: 30368821 DOI: 10.1111/nph.15450] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/10/2018] [Indexed: 05/26/2023]
Abstract
Contents Summary 669 I. Model clades for the study and integration of ecology and evolution 670 II. Oaks: an important model clade 671 III. Insights from the history of the American oaks for understanding community assembly and ecosystem dominance 673 IV. Bridging the gap between micro- and macroevolutionary processes relevant to ecology 679 V. How do we reconcile evidence for adaptive evolution with niche conservatism and long-term stasis? 682 VI. High plasticity and within-population genetic variation contribute to population persistence 683 VII. Emerging technologies for tracking functional change 685 VIII. Conclusions 685 Acknowledgements 686 References 686 SUMMARY: Ecologists and evolutionary biologists are concerned with explaining the diversity and composition of the natural world and are aware of the inextricable linkages between ecological and evolutionary processes that maintain the Earth's life support systems. Yet examination of these linkages remains challenging due to the contrasting nature of focal systems and research approaches. Model clades provide a critical means to integrate ecology and evolution, as illustrated by the oaks (genus Quercus), an important model clade, given their ecological dominance, remarkable diversity, and growing phylogenetic, genomic, and ecological data resources. Studies of the clade reveal that their history of sympatric parallel adaptive radiation continues to influence community assembly today, highlighting questions on the nature and extent of coexistence mechanisms. Flexible phenology and hydraulic traits, despite evolutionary stasis, may have enabled adaptation to a wide range of environments within and across species, contributing to their high abundance and diversity. The oaks offer fundamental insights at the intersection of ecology and evolution on the role of diversification in community assembly processes, on the importance of flexibility in key functional traits in adapting to new environments, on factors contributing to persistence of long-lived organisms, and on evolutionary legacies that influence ecosystem function.
Collapse
Affiliation(s)
- Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
6
|
Zamudio-Beltrán LE, Hernández-Baños BE. Genetic and morphometric divergence in the Garnet-Throated Hummingbird Lamprolaima rhami (Aves: Trochilidae). PeerJ 2018; 6:e5733. [PMID: 30364579 PMCID: PMC6197039 DOI: 10.7717/peerj.5733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/12/2018] [Indexed: 12/28/2022] Open
Abstract
Cloud forests are one of the most endangered ecosystems in the Americas, as well as one of the richest in biological diversity in the world. The species inhabiting these forests are susceptible to environmental changes and characterized by high levels of geographic structure. The Garnet-Throated Hummingbird, Lamprolaima rhami, mainly inhabits cloud forests, but can also be found in other habitats. This species has a highly restricted distribution in Mesoamerica, and five disjunct regions have been delimited within the current geographic distribution of the species from Mexico to Honduras. According to variation in size and color, three subspecies have been described: L. r. rhami restricted to the Mexican highlands and Guatemala, L. r. occidentalis distributed in Guerrero (Mexico), and L. r. saturatior, distributed in the highlands from Honduras and El Salvador. We analyzed the levels of geographic structure in L. rhami and its taxonomic implications. We used mitochondrial and nuclear DNA to analyze genetic variation, demographic history, divergence times, reconstructed a multilocus phylogeny, and performed a species delimitation analyses. We also evaluated morphological variation in 208 specimens. We found high levels of genetic differentiation in three groups, and significant variation in morphological traits corresponding with the disjunct geographic populations. L. rhami presents population stability with the highest genetic variation explained by differences between populations. Divergence time estimates suggest that L. rhami split from its sister group around 10.55 million years ago, and the diversification of the complex was dated ca. 0.207 Mya. The hypotheses tested in the species delimitation analyses validated three independent lineages corresponding to three disjunct populations. This study provides evidence of genetic and/or morphometric differentiation between populations in the L. rhami complex where four separate evolutionary lineages are supported: (1) populations from the Sierra Madre Oriental and the highlands of Oaxaca (rhami), (2) populations from the highlands of Guerrero (occidentalis), (3) populations from the highlands of Chiapas and Guatemala (this is a non-previously proposed potential taxon: tacanensis), and (4) populations from the highlands of Honduras and El Salvador (saturatior). The main promoters of the geographic structure found in the L. rhami complex are likely the Isthmus of Tehuantepec as a geographic barrier, isolation by distance resulting from habitat fragmentation, and climatic conditions during the Pleistocene.
Collapse
Affiliation(s)
- Luz E Zamudio-Beltrán
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Biología Evolutiva, Facultad de Ciencias, Museo de Zoología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Blanca E Hernández-Baños
- Departamento de Biología Evolutiva, Facultad de Ciencias, Museo de Zoología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
7
|
Cannon CH, Brendel O, Deng M, Hipp AL, Kremer A, Kua CS, Plomion C, Romero-Severson J, Sork VL. Gaining a global perspective on Fagaceae genomic diversification and adaptation. THE NEW PHYTOLOGIST 2018; 218:894-897. [PMID: 29658637 DOI: 10.1111/nph.15101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Charles H Cannon
- Center for Tree Science, The Morton Arboretum, Lisle, IL, 60532, USA
| | - Oliver Brendel
- UMR INRA-UHP 'Forest Ecology and Ecophysiology', F 54280, Champenoux, France
| | - Min Deng
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences/Shanghai Chenshan Botanical Garden, 3888 Chenhua rd, 201602, Shanghai, China
| | - Andrew L Hipp
- Center for Tree Science, The Morton Arboretum, Lisle, IL, 60532, USA
| | | | - Chai-Shian Kua
- Center for Tree Science, The Morton Arboretum, Lisle, IL, 60532, USA
| | - Christophe Plomion
- Biodiversity Genes & Communities, BIOGECO Research Unit, INRA, 69, route d'Arcachon, 33610, Cestas, France
| | | | - Victoria L Sork
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
8
|
Cavender‐Bares J, González‐Rodríguez A, Eaton DAR, Hipp AAL, Beulke A, Manos PS. Phylogeny and biogeography of the American live oaks (
Quercus
subsection
Virentes
): a genomic and population genetics approach. Mol Ecol 2015; 24:3668-87. [DOI: 10.1111/mec.13269] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 05/15/2015] [Accepted: 06/01/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Jeannine Cavender‐Bares
- Department of Ecology, Evolution and Behavior University of Minnesota Saint Paul MN 55108 USA
| | - Antonio González‐Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad Universidad Nacional Autónoma de México, Morelia 58190 Michoacán México
| | - Deren A. R. Eaton
- Department of Ecology and Evolutionary Biology Yale University New Haven CT 06520‐8106 USA
| | - Andrew A. L. Hipp
- The Morton Arboretum Lisle IL 60532 USA
- The Field Museum Chicago IL 60605 USA
| | - Anne Beulke
- Department of Ecology, Evolution and Behavior University of Minnesota Saint Paul MN 55108 USA
| | - Paul S. Manos
- Department of Biology Duke University Raleigh NC 27708 USA
| |
Collapse
|
9
|
Coutinho JP, Carvalho A, Lima-Brito J. Taxonomic and ecological discrimination of Fagaceae species based on internal transcribed spacer polymerase chain reaction-restriction fragment length polymorphism. AOB PLANTS 2014; 7:plu079. [PMID: 25429047 PMCID: PMC4294445 DOI: 10.1093/aobpla/plu079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
The internal transcribed spacer (ITS) of ribosomal DNA has been used to confirm taxonomic classifications and define phylogenies in several plant species following sequencing or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) techniques. In this study, co-dominant ITS PCR-RFLP molecular markers were produced in 30 Fagaceae individuals belonging to the Castanea, Fagus and Quercus genera in order to assess the potential of this technique for taxonomic discrimination and determination of phylogenies. The complete ITS region (ITS1-5.8S rRNA-ITS2) was amplified in most of the Fagaceae individuals as a single fragment of ∼700 bp. The ITS amplified products were digested with nine restriction enzymes, but only four (HaeIII, HpaII, TaqI and Sau96I) produced polymorphic/discriminative patterns. The total expected heterozygosity (HE) was 20.31 % and the gene diversity (I), 32.97 %. The ITS polymorphism was higher within the Quercus genus (85.3 %). The ITS PCR-RFLP markers clustered the Fagaceae species according to genus or infrageneric group (in the case of Quercus sp. individuals). Five oaks did not cluster in line with the adopted infrageneric classification, but three of these were grouped according to their actual ecological distributions. The ITS PCR-RFLP markers indicated their potential for phylogenetic studies since all Fagaceae individuals were discriminated according to genus, and most of the oaks were clustered according to infrageneric group or ecological area.
Collapse
Affiliation(s)
- João Paulo Coutinho
- Institute of Biotechnology and Bioengineering (IBB), Centre of Genomics and Biotechnology (CGB), University of Tras-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Ana Carvalho
- Institute of Biotechnology and Bioengineering (IBB), Centre of Genomics and Biotechnology (CGB), University of Tras-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - José Lima-Brito
- Institute of Biotechnology and Bioengineering (IBB), Centre of Genomics and Biotechnology (CGB), University of Tras-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
10
|
Moreno-Letelier A, Mastretta-Yanes A, Barraclough TG. Late Miocene lineage divergence and ecological differentiation of rare endemic Juniperus blancoi: clues for the diversification of North American conifers. THE NEW PHYTOLOGIST 2014; 203:335-347. [PMID: 24611638 DOI: 10.1111/nph.12761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/08/2014] [Indexed: 06/03/2023]
Abstract
Western North America and Mexico contain a large number of conifer species. This diversity could be the product of orographic and climate changes of the late Tertiary and Quaternary. In this study, we focus on the evolutionary history of Juniperus blancoi, in order to determine the impact of climate change and environmental heterogeneity on population differentiation. We estimated the population structure, phylogenetic relationships and historical demography of J. blancoi populations using nuclear genes. We correlated genetic structure with ecological differentiation, divergence times and changes in population size. Populations of J. blancoi are differentiated into three lineages that correspond to low-, mid- and high-altitude populations. The three groups diversified in the late Miocene, early Pliocene, with only a few events of gene flow since then. Two lineages in the north exhibited a pattern of population growth during the Pleistocene that could be linked to climate changes. Populations of J. blancoi experienced significant ecological differentiation and early divergence events, which correspond to periods of global cooling and mountain uplift during the Miocene. This suggests that mountain ranges in tropical and subtropical latitudes play an important role in the speciation and persistence of conifer taxa in diversity hotspots, by providing diverse environmental conditions.
Collapse
|
11
|
Gerber S, Chadœuf J, Gugerli F, Lascoux M, Buiteveld J, Cottrell J, Dounavi A, Fineschi S, Forrest LL, Fogelqvist J, Goicoechea PG, Jensen JS, Salvini D, Vendramin GG, Kremer A. High rates of gene flow by pollen and seed in oak populations across Europe. PLoS One 2014; 9:e85130. [PMID: 24454802 PMCID: PMC3890301 DOI: 10.1371/journal.pone.0085130] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/10/2013] [Indexed: 11/18/2022] Open
Abstract
Gene flow is a key factor in the evolution of species, influencing effective population size, hybridisation and local adaptation. We analysed local gene flow in eight stands of white oak (mostly Quercus petraea and Q. robur, but also Q. pubescens and Q. faginea) distributed across Europe. Adult trees within a given area in each stand were exhaustively sampled (range [239, 754], mean 423), mapped, and acorns were collected ([17,147], 51) from several mother trees ([3], [47], 23). Seedlings ([65,387], 178) were harvested and geo-referenced in six of the eight stands. Genetic information was obtained from screening distinct molecular markers spread across the genome, genotyping each tree, acorn or seedling. All samples were thus genotyped at 5–8 nuclear microsatellite loci. Fathers/parents were assigned to acorns and seedlings using likelihood methods. Mating success of male and female parents, pollen and seed dispersal curves, and also hybridisation rates were estimated in each stand and compared on a continental scale. On average, the percentage of the wind-borne pollen from outside the stand was 60%, with large variation among stands (21–88%). Mean seed immigration into the stand was 40%, a high value for oaks that are generally considered to have limited seed dispersal. However, this estimate varied greatly among stands (20–66%). Gene flow was mostly intraspecific, with large variation, as some trees and stands showed particularly high rates of hybridisation. Our results show that mating success was unevenly distributed among trees. The high levels of gene flow suggest that geographically remote oak stands are unlikely to be genetically isolated, questioning the static definition of gene reserves and seed stands.
Collapse
Affiliation(s)
- Sophie Gerber
- BIOGECO, UMR1202, INRA, Cestas, France ; BIOGECO, UMR1202, University of Bordeaux, Talence, France
| | | | - Felix Gugerli
- Biodiversity and Conservation Biology, WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| | - Martin Lascoux
- Department of Ecology and Genetics, EBC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Joan Cottrell
- Forest Research, Northern Research Station, Roslin, Midlothian, Scotland, United Kingdom
| | - Aikaterini Dounavi
- Biodiversity and Conservation Biology, WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| | - Silvia Fineschi
- Institute for Plant Protection, CNR, Sesto Fiorentino (Firenze), Italy
| | - Laura L Forrest
- Forest Research, Northern Research Station, Roslin, Midlothian, Scotland, United Kingdom
| | - Johan Fogelqvist
- Department of Ecology and Genetics, EBC, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | - Daniela Salvini
- Institute for Plant Protection, CNR, Sesto Fiorentino (Firenze), Italy ; Forest & Landscape, University of Copenhagen, Copenhagen, Denmark
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, CNR, Sesto Fiorentino (Firenze), Italy
| | - Antoine Kremer
- BIOGECO, UMR1202, INRA, Cestas, France ; BIOGECO, UMR1202, University of Bordeaux, Talence, France
| |
Collapse
|
12
|
Niche divergence versus neutral processes: combined environmental and genetic analyses identify contrasting patterns of differentiation in recently diverged pine species. PLoS One 2013; 8:e78228. [PMID: 24205167 PMCID: PMC3812143 DOI: 10.1371/journal.pone.0078228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022] Open
Abstract
Background and Aims Solving relationships of recently diverged taxa, poses a challenge due to shared polymorphism and weak reproductive barriers. Multiple lines of evidence are needed to identify independently evolving lineages. This is especially true of long-lived species with large effective population sizes, and slow rates of lineage sorting. North American pines are an interesting group to test this multiple approach. Our aim is to combine cytoplasmic genetic markers with environmental information to clarify species boundaries and relationships of the species complex of Pinus flexilis, Pinus ayacahuite, and Pinus strobiformis. Methods Mitochondrial and chloroplast sequences were combined with previously obtained microsatellite data and contrasted with environmental information to reconstruct phylogenetic relationships of the species complex. Ecological niche models were compared to test if ecological divergence is significant among species. Key Results and Conclusion Separately, both genetic and ecological evidence support a clear differentiation of all three species but with different topology, but also reveal an ancestral contact zone between P. strobiformis and P. ayacahuite. The marked ecological differentiation of P. flexilis suggests that ecological speciation has occurred in this lineage, but this is not reflected in neutral markers. The inclusion of environmental traits in phylogenetic reconstruction improved the resolution of internal branches. We suggest that combining environmental and genetic information would be useful for species delimitation and phylogenetic studies in other recently diverged species complexes.
Collapse
|
13
|
Ornelas JF, Sosa V, Soltis DE, Daza JM, González C, Soltis PS, Gutiérrez-Rodríguez C, de los Monteros AE, Castoe TA, Bell C, Ruiz-Sanchez E. Comparative phylogeographic analyses illustrate the complex evolutionary history of threatened cloud forests of northern Mesoamerica. PLoS One 2013; 8:e56283. [PMID: 23409165 PMCID: PMC3567015 DOI: 10.1371/journal.pone.0056283] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 01/12/2013] [Indexed: 12/01/2022] Open
Abstract
Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests–among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage-specific, and thus difficult to capture in a simple conservation strategy.
Collapse
Affiliation(s)
- Juan Francisco Ornelas
- Departamento de Biología Evolutiva, Instituto de Ecología, AC, Xalapa, Veracruz, Mexico.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gutiérrez-Rodríguez C, Ornelas JF, Rodríguez-Gómez F. Chloroplast DNA phylogeography of a distylous shrub (Palicourea padifolia, Rubiaceae) reveals past fragmentation and demographic expansion in Mexican cloud forests. Mol Phylogenet Evol 2011; 61:603-15. [PMID: 21930221 DOI: 10.1016/j.ympev.2011.08.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 06/24/2011] [Accepted: 08/26/2011] [Indexed: 11/18/2022]
Abstract
Several phylogeographic studies in northern Mesoamerica have examined the influence of Pleistocene glaciations on the genetic structure of temperate tree species with their southern limit by the contact zone between species otherwise characteristic of North or South America, but few have featured plant species that presumably colonized northern Mesoamerica from South America. A phylogeographical study of Palicourea padifolia, a fleshy-fruited, bird dispersed distylous shrub, was conducted to investigate genetic variation at two chloroplast regions (trnS-trnG and rpl32-trnL) across cloud forest areas to determine if such patterns are consistent with the presence of Pleistocene refugia and/or with the historical fragmentation of the Mexican cloud forests. We conducted population and spatial genetic analyses as well as phylogenetic and isolation with migration analyses on 122 individuals from 22 populations comprising the distribution of P. padifolia in Mexico to gain insight of the evolutionary history of these populations. Twenty-six haplotypes were identified after sequencing 1389 bp of chloroplast DNA. These haplotypes showed phylogeographic structure (N(ST) = 0.508, G(ST) = 0.337, N(ST) > G(ST), P < 0.05), including a phylogeographic break at the Isthmus of Tehuantepec, with private haplotypes at either side of the isthmus, and a divergence time of the split in the absence of gene flow dating back c. 309,000-103,000 years ago. The patterns of geographic structure found in this study are consistent with past fragmentation and demographic range expansion, supporting the role of the Isthmus of Tehuantepec as a biogeographical barrier in the dispersal of P. padifolia. Our data suggest that P. padifolia populations were isolated throughout glacial cycles by the Isthmus of Tehuantepec, accumulating genetic differences due to the lack of migration across the isthmus in either direction, but the results of our study are not consistent with the existence of the previously proposed Pleistocene refugia for rain forest plant species in the region.
Collapse
Affiliation(s)
- Carla Gutiérrez-Rodríguez
- Departamento de Biología Evolutiva, Instituto de Ecología, AC, Carretera Antigua a Coatepec No 351, El Haya, Xalapa, Veracruz 91070, Mexico.
| | | | | |
Collapse
|
15
|
The Pleistocene glacial cycles shaped the historical demography and phylogeography of a pine fungal endophyte. Mycol Prog 2011. [DOI: 10.1007/s11557-011-0774-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Salvini D, Bruschi P, Fineschi S, Grossoni P, Kjaer ED, Vendramin GG. Natural hybridisation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. within an Italian stand as revealed by microsatellite fingerprinting. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:758-765. [PMID: 19689784 DOI: 10.1111/j.1438-8677.2008.00158.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Interspecific gene flow is frequently reported in the genus Quercus. However, interfertile oak species often seem to remain distinct, even within areas of sympatry. This study employed molecular markers to verify, at a fine scale, the presence of interspecific gene flow in a natural population of Quercus petraea and Quercus pubescens. Within a delimited area of 6 ha, all adult trees belonging to the studied oak complex and seeds from a subsample of such trees were collected and analysed using molecular microsatellite markers. A low interspecific genetic differentiation and a high level of interspecific genetic admixture suggested past hybridisation. Paternity inference of seeds allowed the estimation of pollination frequencies from the three groups of pollen donors (Q. petraea, Q. pubescens, intermediate). We also assayed pollen viability and germinability of each species group. We observed natural hybridisation between Q. petraea and Q. pubescens, with a predominant component in the direction Q. petraea --> Q. pubescens: Q. pubescens displayed a higher level of heterospecific pollination by Q. petraea (25.8%) and intermediate morphotypes (14.7%), compared to Q. petraea acting as pollen receptor (with less than 5% heterospecific pollinations). Intermediate 'mother trees' were pollinated in similar proportions by Q. petraea (23.1%), Q. pubescens (37.8%) and intermediate morphotypes (39.1%). The asymmetrical introgression observed for the studied generation may be caused, among other factors, by the relative abundance of trees from each species group in the studied area.
Collapse
Affiliation(s)
- D Salvini
- Istituto per la Protezione delle Piante, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Firenze, Italy
| | | | | | | | | | | |
Collapse
|
17
|
DU FANGK, PETIT RÉMYJ, LIU JIANQUAN. More introgression with less gene flow: chloroplast vs. mitochondrial DNA in thePicea asperatacomplex in China, and comparison with other Conifers. Mol Ecol 2009; 18:1396-407. [DOI: 10.1111/j.1365-294x.2009.04107.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Zhou HF, Zheng XM, Wei RX, Second G, Vaughan DA, Ge S. Contrasting population genetic structure and gene flow between Oryza rufipogon and Oryza nivara. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:1181-9. [PMID: 18712516 DOI: 10.1007/s00122-008-0855-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 07/28/2008] [Indexed: 05/17/2023]
Abstract
The cross compatible wild relatives of crops have furnished valuable genes for crop improvement. Understanding the genetics of these wild species may enhance their further use in breeding. In this study, sequence variation of the nuclear Lhs1 gene was used to investigate the population genetic structure and gene flow of Oryza rufipogon and O. nivara, two wild species most closely related to O. sativa. The two species diverge markedly in life history and mating system, with O. rufipogon being perennial and outcrossing and O. nivara being annual and predominantly inbreeding. Based on sequence data from 105 plants representing 11 wild populations covering the entire geographic range of these wild species, we detected significantly higher nucleotide variation in O. rufipogon than in O. nivara at both the population and species levels. At the population level the diversity in O. rufipogon (Hd = 0.712; theta (sil) = 0.0017) is 2-3 folds higher than that in O. nivara (Hd = 0.306; theta (sil) = 0.0005). AMOVA partitioning indicated that genetic differentiation among O. nivara populations (78.2%) was much higher than that among O. rufipogon populations (52.3%). The different level of genetic diversity and contrasting population genetic structure between O. rufipogon and O. nivara might be explained by their distinct life histories and mating systems. Our simulation using IM models demonstrated significant gene flow from O. nivara to O. rufipogon, indicating a directional introgression from the annual and selfing species into the perennial and outcrossing species. The ongoing introgression has played an important role in shaping current patterns of genetic diversity of these two wild species.
Collapse
Affiliation(s)
- Hai-Fei Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
| | | | | | | | | | | |
Collapse
|
19
|
Jaramillo-Correa JP, Aguirre-Planter E, Khasa DP, Eguiarte LE, Piñero D, Furnier GR, Bousquet J. Ancestry and divergence of subtropical montane forest isolates: molecular biogeography of the genus Abies (Pinaceae) in southern México and Guatemala. Mol Ecol 2008; 17:2476-90. [PMID: 18422927 DOI: 10.1111/j.1365-294x.2008.03762.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The genus Abies has a complex history in southern México and Guatemala. In this region, four closely related species, Abies flinckii, A. guatemalensis, A. hickelii, and A. religiosa, are distributed in fragmented and isolated montane populations. Range-wide genetic variation was investigated across species using cytoplasmic DNA markers with contrasted inheritance. Variation at two maternally inherited mitochondrial DNA markers was low. All species shared two of the nine mitotypes detected, while the remaining seven mitochondrial DNA types were restricted to a few isolated stands. Mitochondrial genetic differentiation across taxa was high (G(ST) = 0.933), it was not related to the taxonomic identity (amova; P > 0.05) of the populations, and it was not phylogeographically structured (G(ST) approximately N(ST)). In contrast, variation at three paternally inherited chloroplast DNA microsatellites was high. Chloroplast genetic differentiation was lower (G(ST) = 0.402; R(ST) = 0.547) than for mitochondrial DNA, but it was significantly related to taxonomy (amova; P < 0.001), and exhibited a significant phylogeographical structure (G(ST) < R(ST)). Different analyses of population structure indicated that A. flinckii was the most divergent taxon, while the remaining three species formed a relatively homogeneous group. However, a small number of the populations of these three taxa, all located at the limits of their respective ranges or in the Transverse Volcanic Belt, diverged from this main cluster. These trends suggest that the Mesoamerican Abies share a recent common ancestor and that their divergence and speciation is mainly driven by genetic drift and isolation during the warm interglacial periods.
Collapse
Affiliation(s)
- Juan P Jaramillo-Correa
- Canada Research Chair in Forest and Environmental Genomics and Centre for Forest Research, Pavillon Charles-Eugène Marchand, Université Laval, Québec, Québec, Canada G1K 7P4.
| | | | | | | | | | | | | |
Collapse
|
20
|
González-Rodríguez A, Arias DM, Oyama K. Genetic variation and differentiation of populations within the Quercus affinis Quercus laurina (Fagaceae) complex analyzed with RAPD markers. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b04-162] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The population genetics of two hybridizing Mexican red oaks, Quercus affinis Schweid. and Quercus laurina Humb. & Bonpl., was investigated with 54 randomly amplified polymorphic DNA (RAPD) markers scored in 415 individuals from 16 populations representing the distribution area of the two species and a probable secondary hybrid zone. Genetic relationships among populations, depicted in a unweighted pair group method with arithmetic averaging (UPGMA) dendrogram, were largely incongruent with the morphological classification of populations as Q. affinis-like or Q. laurina-like that was obtained in previous studies. In contrast, the two main population clusters in the UPGMA dendrogram corresponded to the location of populations in two distinct geographical areas: southwestern and northeastern. A Mantel test confirmed a significant association between geographic and genetic distances among populations. Analyses of molecular variance (AMOVA) indicated that most genetic variation is contained within populations (84%), while 10.5% (P < 0.0001) is among populations, and 5.1% (P = 0.007) is between the two morphological groups. Differentiation between the southwestern and northeastern geographical groups (as recognized by the UPGMA), was 7.8% (P < 0.0001). The incongruence between genetic and phenotypic patterns suggests that introgression of neutral markers has been considerable between the two species in the hybrid zone, while morphological differentiation has remained comparatively stable.Key words: hybridization, population genetics, Quercus, RAPD markers.
Collapse
|