1
|
Johnson IM, Edwards TJ, Johnson SD. Geographical Variation in Flower Color in the Grassland Daisy Gerbera aurantiaca: Testing for Associations With Pollinators and Abiotic Factors. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.676520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Geographical variation in flower color of a plant species may reflect the outcome of selection by pollinators or may reflect abiotic factors such as soil chemistry or neutral processes such as genetic drift. Here we document striking geographical structure in the color of capitula of the endemic South African grassland daisy Gerbera aurantiaca and ask which of these competing explanations best explains this pattern. The color of capitula ranges from predominantly red in the southwest to yellow in the center, with some northern populations showing within-population polymorphism. Hopliine scarab beetles were the most abundant flower visitors in all populations, apart from a yellow-flowered one where honeybees were frequent. In a mixed color population, yellow, orange and red morphs were equally attractive to hopliine beetles and did not differ significantly in terms of fruit set. Beetles were attracted to both red and yellow pan traps, but preferred the latter even at sites dominated by the red morph. We found no strong associations between morph color and abiotic factors, including soil chemistry. Plants in a common garden retained the capitulum color of the source population, even when grown from seed, suggesting that flower color variation is not a result of phenotypic plasticity. These results show that flower color in G. aurantiaca is geographically structured, but the ultimate evolutionary basis of this color variation remains elusive.
Collapse
|
2
|
Rahim SA, Kodandaramaiah U, Kulkarni A, Barua D. Striking between-population floral divergences in a habitat specialized plant. PLoS One 2021; 16:e0253038. [PMID: 34181672 PMCID: PMC8238184 DOI: 10.1371/journal.pone.0253038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022] Open
Abstract
When the habitat occupied by a specialist species is patchily distributed, limited gene flow between the fragmented populations may allow population differentiation and eventual speciation. 'Sky islands'-montane habitats that form terrestrial islands-have been shown to promote diversification in many taxa through this mechanism. We investigate floral variation in Impatiens lawii, a plant specialized on laterite rich rocky plateaus that form sky islands in the northern Western Ghats mountains of India. We focus on three plateaus separated from each other by ca. 7 to 17 km, and show that floral traits have diverged strongly between these populations. In contrast, floral traits have not diverged in the congeneric I. oppositifolia, which co-occurs with I. lawii in the plateaus, but is a habitat generalist that is also found in the intervening valleys. We conducted common garden experiments to test whether the differences in I. lawii are due to genetic differentiation or phenotypic plasticity. There were strong differences in floral morphology between experimental plants sourced from the three populations, and the relative divergences between population pairs mirrored that seen in the wild, indicating that the populations are genetically differentiated. Common garden experiments confirmed that there was no differentiation in I. oppositifolia. Field floral visitation surveys indicated that the observed differences in floral traits have consequences for I. lawii populations, by reducing the number of visitors and changing the relative abundance of different floral visitor groups. Our results highlight the role of habitat specialization in diversification, and corroborates the importance of sky islands as centres of diversification.
Collapse
Affiliation(s)
- Sumayya Abdul Rahim
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | - Ullasa Kodandaramaiah
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| | - Aboli Kulkarni
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Deepak Barua
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
3
|
Mabry ME, Turner-Hissong SD, Gallagher EY, McAlvay AC, An H, Edger PP, Moore JD, Pink DAC, Teakle GR, Stevens CJ, Barker G, Labate J, Fuller DQ, Allaby RG, Beissinger T, Decker JE, Gore MA, Pires JC. The Evolutionary History of Wild, Domesticated, and Feral Brassica Oleracea (Brassicaceae). Mol Biol Evol 2021; 38:4419-4434. [PMID: 34157722 PMCID: PMC8476135 DOI: 10.1093/molbev/msab183] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the evolutionary history of crops, including identifying wild relatives, helps to provide insight for conservation and crop breeding efforts. Cultivated Brassica oleracea has intrigued researchers for centuries due to its wide diversity in forms, which include cabbage, broccoli, cauliflower, kale, kohlrabi, and Brussels sprouts. Yet, the evolutionary history of this species remains understudied. With such different vegetables produced from a single species, B. oleracea is a model organism for understanding the power of artificial selection. Persistent challenges in the study of B. oleracea include conflicting hypotheses regarding domestication and the identity of the closest living wild relative. Using newly generated RNA-seq data for a diversity panel of 224 accessions, which represents 14 different B. oleracea crop types and nine potential wild progenitor species, we integrate phylogenetic and population genetic techniques with ecological niche modeling, archaeological, and literary evidence to examine relationships among cultivars and wild relatives to clarify the origin of this horticulturally important species. Our analyses point to the Aegean endemic B. cretica as the closest living relative of cultivated B. oleracea, supporting an origin of cultivation in the Eastern Mediterranean region. Additionally, we identify several feral lineages, suggesting that cultivated plants of this species can revert to a wild-like state with relative ease. By expanding our understanding of the evolutionary history in B. oleracea, these results contribute to a growing body of knowledge on crop domestication that will facilitate continued breeding efforts including adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, U.S.A
| | | | - Evan Y Gallagher
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, U.S.A
| | - Alex C McAlvay
- Institute of Economic Botany, The New York Botanical Garden, Bronx, NY, U.S.A
| | - Hong An
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, U.S.A
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, MI, USA
| | | | - David A C Pink
- Agriculture and Environment Department, Harper Adams University, UK
| | | | - Chris J Stevens
- School of Archaeology and Museology, Peking University, Beijing, China.,Institute of Archaeology, University College London, London, UK
| | - Guy Barker
- School of Life Science, University of Warwick, UK
| | - Joanne Labate
- USDA, ARS Plant Genetic Resources Unit, Cornell AgriTech, Geneva, NY, USA
| | - Dorian Q Fuller
- Institute of Archaeology, University College London, London, UK.,School of Cultural Heritage, Northwest University, Xi'an, Shaanxi, China.,Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | | | - Timothy Beissinger
- Division of Plant Breeding Methodology, Department of Crop Sciences, University of Goettingen, Goettingen, Germany
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - J Chris Pires
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, U.S.A
| |
Collapse
|
4
|
Edwards CE, Tessier BC, Swift JF, Bassüner B, Linan AG, Albrecht MA, Yatskievych GA. Conservation genetics of the threatened plant species Physaria filiformis (Missouri bladderpod) reveals strong genetic structure and a possible cryptic species. PLoS One 2021; 16:e0247586. [PMID: 33705416 PMCID: PMC7951829 DOI: 10.1371/journal.pone.0247586] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022] Open
Abstract
Understanding genetic diversity and structure in a rare species is critical for prioritizing both in situ and ex situ conservation efforts. One such rare species is Physaria filiformis (Brassicaceae), a threatened, winter annual plant species. The species has a naturally fragmented distribution, occupying three different soil types spread across four disjunct geographical locations in Missouri and Arkansas. The goals of this study were to understand: (1) whether factors associated with fragmentation and small population size (i.e., inbreeding, genetic drift or genetic bottlenecks) have reduced levels of genetic diversity, (2) how genetic variation is structured and which factors have influenced genetic structure, and (3) how much extant genetic variation of P. filiformis is currently publicly protected and the implications for the development of conservation strategies to protect its genetic diversity. Using 16 microsatellite markers, we genotyped individuals from 20 populations of P. filiformis from across its geographical range and one population of Physaria gracilis for comparison and analyzed genetic diversity and structure. Populations of P. filiformis showed comparable levels of genetic diversity to its congener, except a single population in northwest Arkansas showed evidence of a genetic bottleneck and two populations in the Ouachita Mountains of Arkansas showed lower genetic variation, consistent with genetic drift. Populations showed isolation by distance, indicating that migration is geographically limited, and analyses of genetic structure grouped individuals into seven geographically structured genetic clusters, with geographic location/spatial separation showing a strong influence on genetic structure. At least one population is protected for all genetic clusters except one in north-central Arkansas, which should therefore be prioritized for protection. Populations in the Ouachita Mountains were genetically divergent from the rest of P. filiformis; future morphological analyses are needed to identify whether it merits recognition as a new, extremely rare species.
Collapse
Affiliation(s)
- Christine E. Edwards
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, United States of America
| | - Brooke C. Tessier
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, United States of America
- Department of Cellular and Molecular Biology, Winona State University, Winona, Minnesota, United States of America
| | - Joel F. Swift
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, United States of America
| | - Burgund Bassüner
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, United States of America
| | - Alexander G. Linan
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, United States of America
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Matthew A. Albrecht
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, United States of America
| | - George A. Yatskievych
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, United States of America
- Plant Resources Center, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
5
|
Spatial Phylogenetics, Biogeographical Patterns and Conservation Implications of the Endemic Flora of Crete (Aegean, Greece) under Climate Change Scenarios. BIOLOGY 2020; 9:biology9080199. [PMID: 32751787 PMCID: PMC7463760 DOI: 10.3390/biology9080199] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022]
Abstract
Human-induced biodiversity loss has been accelerating since the industrial revolution. The climate change impacts will severely alter the biodiversity and biogeographical patterns at all scales, leading to biotic homogenization. Due to underfunding, a climate smart, conservation-prioritization scheme is needed to optimize species protection. Spatial phylogenetics enable the identification of endemism centers and provide valuable insights regarding the eco-evolutionary and conservation value, as well as the biogeographical origin of a given area. Many studies exist regarding the conservation prioritization of mainland areas, yet none has assessed how climate change might alter the biodiversity and biogeographical patterns of an island biodiversity hotspot. Thus, we conducted a phylogenetically informed, conservation prioritization study dealing with the effects of climate change on Crete’s plant diversity and biogeographical patterns. Using several macroecological analyses, we identified the current and future endemism centers and assessed the impact of climate change on the biogeographical patterns in Crete. The highlands of Cretan mountains have served as both diversity cradles and museums, due to their stable climate and high topographical heterogeneity, providing important ecosystem services. Historical processes seem to have driven diversification and endemic species distribution in Crete. Due to the changing climate and the subsequent biotic homogenization, Crete’s unique bioregionalization, which strongly reminiscent the spatial configuration of the Pliocene/Pleistocene Cretan paleo-islands, will drastically change. The emergence of the ‘Anthropocene’ era calls for the prioritization of biodiversity-rich areas, serving as mixed-endemism centers, with high overlaps among protected areas and climatic refugia.
Collapse
|
6
|
Li C, Zheng Y, Huang P. Molecular markers from the chloroplast genome of rose provide a complementary tool for variety discrimination and profiling. Sci Rep 2020; 10:12188. [PMID: 32699274 PMCID: PMC7376030 DOI: 10.1038/s41598-020-68092-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
The rose is one of the most important ornamental woody plants because of its extensive use and high economic value. Herein, we sequenced a complete chloroplast genome of the miniature rose variety Rosa 'Margo Koster' and performed comparative analyses with sequences previously published for other species in the Rosaceae family. The chloroplast genome of Rosa 'Margo Koster', with a size of 157,395 bp, has a circular quadripartite structure typical of angiosperm chloroplast genomes and contains a total of 81 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Conjunction regions in the chloroplast genome of Rosa 'Margo Koster' were verified and manually corrected by Sanger sequencing. Comparative genome analysis showed that the IR contraction and expansion events resulted in rps19 and ycf1 pseudogenes. The phylogenetic analysis within the Rosa genus showed that Rosa 'Margo Koster' is closer to Rosa odorata than to other Rosa species. Additionally, we identified and screened highly divergent sequences and cpSSRs and compared their power to discriminate rose varieties by Sanger sequencing and capillary electrophoresis. The results showed that 15 cpSSRs are polymorphic, but their discriminating power is only moderate among a set of rose varieties. However, more than 150 single nucleotide variations (SNVs) were discovered in the flanking region of cpSSRs, and the results indicated that these SNVs have a higher divergence and stronger power for profiling rose varieties. These findings suggest that nucleotide mutations in the chloroplast genome may be an effective and powerful tool for rose variety discrimination and DNA profiling. These molecular markers in the chloroplast genome sequence of Rosa spp. will facilitate population and phylogenetic studies and other related studies of this species.
Collapse
Affiliation(s)
- Changhong Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
7
|
Plant Diversity Patterns and Conservation Implications under Climate-Change Scenarios in the Mediterranean: The Case of Crete (Aegean, Greece). DIVERSITY 2020. [DOI: 10.3390/d12070270] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change poses a great challenge for biodiversity conservation. Several studies exist regarding climate change’s impacts on European plants, yet none has investigated how climate change will affect the extinction risk of the entire endemic flora of an island biodiversity hotspot, with intense human disturbance. Our aim is to assess climate change’s impacts on the biodiversity patterns of the endemic plants of Crete (S Aegean) and provide a case-study upon which a climate-smart conservation planning strategy might be set. We employed a variety of macroecological analyses and estimated the current and future biodiversity, conservation and extinction hotspots in Crete. We evaluated the effectiveness of climatic refugia and the Natura 2000 network of protected areas (PAs) for protecting the most vulnerable species and identified the taxa of conservation priority based on the Evolutionary Distinct and Globally Endangered (EDGE) index. The results revealed that high altitude areas of Cretan mountains constitute biodiversity hotspots and areas of high conservation and evolutionary value. Due to the “escalator to extinction” phenomenon, these areas are projected to become diversity “death-zones” and should thus be prioritised. Conservation efforts should be targeted at areas with overlaps among PAs and climatic refugia, characterised by high diversity and EDGE scores. This conservation-prioritisation planning will allow the preservation of evolutionary heritage, trait diversity and future ecosystem services for human well-being and acts as a pilot for similar regions worldwide.
Collapse
|
8
|
Hao M, Jin Q, Meng G, Yang C, Yang S, Shi Z, Tang M, Liu S, Li Y, Zhang D, Su X, Shih C, Sun Y, Zhou X, Zhang AB. Regional assemblages shaped by historical and contemporary factors: Evidence from a species-rich insect group. Mol Ecol 2020; 29:2492-2510. [PMID: 32163643 DOI: 10.1111/mec.15412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/04/2020] [Accepted: 03/03/2020] [Indexed: 11/30/2022]
Abstract
Understanding diversity patterns requires accounting for the roles of both historical and contemporary factors in the assembly of communities. Here, we compared diversity patterns of two moth assemblages sampled from Taihang and Yanshan mountains in Northern China and performed ancestral range reconstructions using the Multi-State Speciation and Extinction model, to track the origins of these patterns. Further, we estimated diversification rates of the two moth assemblages and explored the effects of contemporary ecological factors. From 7,788 specimens we identified 835 species belonging to 23 families, using both DNA barcode analysis and morphology. Moths in Yanshan mountains showed higher species diversity than in Taihang mountains. Ancestral range analysis indicated Yanshan as the origin, with significant historical dispersals from Yanshan to Taihang. Asymmetrical diversification, population expansion, along with frequent and considerable gene flow were detected between communities. Moreover, dispersal limitation or the joint effect of environment filtering and dispersal limitation were inferred as main driving forces shaping current diversity patterns. In summary, we demonstrate that a multiscale (community, population and species level) analysis incorporating both historical and contemporary factors can be useful in delineating factors contributing to community assembly and patterning in diversity.
Collapse
Affiliation(s)
- Mengdi Hao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Qian Jin
- College of Life Sciences, Capital Normal University, Beijing, China.,Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian, China
| | - Guanliang Meng
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Caiqing Yang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Shenzhou Yang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiyong Shi
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Min Tang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yinan Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Dan Zhang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xu Su
- Guizhou Provincial Center for Disease Control and Prevention, Guizhou, China
| | - Chungkun Shih
- College of Life Sciences, Capital Normal University, Beijing, China.,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Yiran Sun
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xin Zhou
- Department of Entomology, China Agricultural University, Beijing, China
| | - Ai-Bing Zhang
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
9
|
Asaf S, Khan AL, Lubna, Khan A, Khan A, Khan G, Lee IJ, Al-Harrasi A. Expanded inverted repeat region with large scale inversion in the first complete plastid genome sequence of Plantago ovata. Sci Rep 2020; 10:3881. [PMID: 32127603 PMCID: PMC7054531 DOI: 10.1038/s41598-020-60803-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/17/2020] [Indexed: 11/09/2022] Open
Abstract
Plantago ovata (Plantaginaceae) is an economically and medicinally important species, however, least is known about its genomics and evolution. Here, we report the first complete plastome genome of P. ovata and comparison with previously published genomes of related species from Plantaginaceae. The results revealed that P. ovata plastome size was 162,116 bp and that it had typical quadripartite structure containing a large single copy region of 82,084 bp and small single copy region of 5,272 bp. The genome has a markedly higher inverted repeat (IR) size of 37.4 kb, suggesting large-scale inversion of 13.8 kb within the expanded IR regions. In addition, the P. ovata plastome contains 149 different genes, including 43 tRNA, 8 rRNA, and 98 protein-coding genes. The analysis revealed 139 microsatellites, of which 71 were in the non-coding regions. Approximately 32 forward, 34 tandem, and 17 palindromic repeats were detected. The complete genome sequences, 72 shared genes, matK gene, and rbcL gene from related species generated the same phylogenetic signals, and phylogenetic analysis revealed that P. ovata formed a single clade with P. maritima and P. media. The divergence time estimation as employed in BEAST revealed that P. ovata diverged from P. maritima and P. media about 11.0 million years ago (Mya; 95% highest posterior density, 10.06-12.25 Mya). In conclusion, P. ovata had significant variation in the IR region, suggesting a more stable P. ovata plastome genome than that of other Plantaginaceae species.
Collapse
Affiliation(s)
- Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.
| | - Lubna
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Adil Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Arif Khan
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, 8049, Norway
| | - Gulzar Khan
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Oldenburg, Germany
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.
| |
Collapse
|
10
|
Kioukis A, Michalopoulou VA, Briers L, Pirintsos S, Studholme DJ, Pavlidis P, Sarris PF. Intraspecific diversification of the crop wild relative Brassica cretica Lam. using demographic model selection. BMC Genomics 2020; 21:48. [PMID: 31937246 PMCID: PMC6961386 DOI: 10.1186/s12864-019-6439-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/29/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Crop wild relatives (CWRs) contain genetic diversity, representing an invaluable resource for crop improvement. Many of their traits have the potential to help crops to adapt to changing conditions that they experience due to climate change. An impressive global effort for the conservation of various CWR will facilitate their use in crop breeding for food security. The genus Brassica is listed in Annex I of the International Treaty on Plant Genetic Resources for Food and Agriculture. Brassica oleracea (or wild cabbage), a species native to southern and western Europe, has become established as an important human food crop plant because of its large reserves stored over the winter in its leaves. Brassica cretica Lam. (Bc) is a CWR in the brassica group and B. cretica subsp. nivea (Bcn) has been suggested as a separate subspecies. The species Bc has been proposed as a potential gene donor to brassica crops, including broccoli, cabbage, cauliflower, oilseed rape, etc. RESULTS: We sequenced genomes of four Bc individuals, including two Bcn and two Bc. Demographic analysis based on our whole-genome sequence data suggests that populations of Bc are not isolated. Classification of the Bc into distinct subspecies is not supported by the data. Using only the non-coding part of the data (thus, the parts of the genome that has evolved nearly neutrally), we find the gene flow between different Bc population is recent and its genomic diversity is high. CONCLUSIONS Despite predictions on the disruptive effect of gene flow in adaptation, when selection is not strong enough to prevent the loss of locally adapted alleles, studies show that gene flow can promote adaptation, that local adaptations can be maintained despite high gene flow, and that genetic architecture plays a fundamental role in the origin and maintenance of local adaptation with gene flow. Thus, in the genomic era it is important to link the selected demographic models with the underlying processes of genomic variation because, if this variation is largely selectively neutral, we cannot assume that a diverse population of crop wild relatives will necessarily exhibit the wide-ranging adaptive diversity required for further crop improvement.
Collapse
Affiliation(s)
- Antonios Kioukis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, 70013, Crete, Greece
| | - Vassiliki A Michalopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Crete, Greece
| | - Laura Briers
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Stergios Pirintsos
- Department of Biology, University of Crete, 714 09, Heraklion, Greece
- Botanical Garden, University of Crete, Gallos Campus, 741 00, Rethymnon, Greece
| | - David J Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| | - Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, 70013, Crete, Greece
| | - Panagiotis F Sarris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Crete, Greece.
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
- Department of Biology, University of Crete, 714 09, Heraklion, Greece.
| |
Collapse
|
11
|
Barazani O, Erez T, Ogran A, Hanin N, Barzilai M, Dag A, Shafir S. Natural Variation in Flower Color and Scent in Populations of Eruca sativa (Brassicaceae) Affects Pollination Behavior of Honey Bees. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5489313. [PMID: 31087084 PMCID: PMC6516435 DOI: 10.1093/jisesa/iez038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Plants of Eruca sativa Mill. (Brassicaceae) from desert and Mediterranean populations in Israel differ in flower color and size. In the desert habitat, the population has higher abundance of flowers with cream color and longer petals, whereas in the Mediterranean habitat, the population has higher abundance of flowers with yellow and shorter petals. Choice experiments with honey bee foragers (Apis mellifera Linn., Apidae, Hymenoptera), the main pollinator in the natural habitat in Israel, confirmed that they are more attracted to the yellow flower morph than to the cream one. A proboscis extension response test indicated that honey bees are able to discriminate between flower scents of the desert and Mediterranean populations. Considering the advantage of plants of the yellow morph in attracting pollinators, we further tested in a common garden experiment whether these possess higher fitness than plants of the desert population. Indeed, a significant association was found between flower color and fruit set, and seed mass. In general, our results provide evidence for ecotypic differentiation between populations imposed by pollinators. The advantage of the yellow color morph in attracting pollinators may explain its dominance among plants of the Mediterranean population. We discuss why the cream color morph may be dominant in the desert habitat, considering the possibility of different pollinators, tradeoffs between traits, or pleiotropy.
Collapse
Affiliation(s)
- Oz Barazani
- Institute of Plant Sciences, Israel Plant Gene Bank, Agricultural Research Organization, Rishon LeZion, Israel
| | - Tal Erez
- Institute of Plant Sciences, Israel Plant Gene Bank, Agricultural Research Organization, Rishon LeZion, Israel
- B. Triwaks Bee Research Center, Department of Entomology, The Hebrew University of Jerusalem, Faculty of Agriculture, Food, and the Environment, Rehovot, Israel
| | - Ariel Ogran
- Institute of Plant Sciences, Israel Plant Gene Bank, Agricultural Research Organization, Rishon LeZion, Israel
| | - Nir Hanin
- Institute of Plant Sciences, Israel Plant Gene Bank, Agricultural Research Organization, Rishon LeZion, Israel
| | - Michal Barzilai
- Institute of Plant Sciences, Israel Plant Gene Bank, Agricultural Research Organization, Rishon LeZion, Israel
| | - Arnon Dag
- Institute of Plant Sciences, Agricultural Research Organization, Gilat Research Station, Israel
| | - Sharoni Shafir
- B. Triwaks Bee Research Center, Department of Entomology, The Hebrew University of Jerusalem, Faculty of Agriculture, Food, and the Environment, Rehovot, Israel
| |
Collapse
|
12
|
Jaros U, Tribsch A, Comes HP. Diversification in continental island archipelagos: new evidence on the roles of fragmentation, colonization and gene flow on the genetic divergence of Aegean Nigella (Ranunculaceae). ANNALS OF BOTANY 2018; 121:241-254. [PMID: 29300817 PMCID: PMC5808797 DOI: 10.1093/aob/mcx150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/16/2017] [Indexed: 05/20/2023]
Abstract
Background and Aims Disentangling the relative roles of past fragmentation (vicariance), colonization (dispersal) and post-divergence gene flow in the genetic divergence of continental island organisms remains a formidable challenge. Amplified fragment length polymorphisms (AFLPs) were used to (1) gain further insights into the biogeographical processes underlying the Pleistocene diversification of the Aegean Nigella arvensis complex; (2) evaluate the role of potential key factors driving patterns of population genetic variability (mating system, geographical isolation and historical contingencies); and (3) test the robustness of conclusions previously drawn from chloroplast (cp) DNA. Methods Genetic diversity was analysed for 235 AFLP markers from 48 populations (497 individuals) representing 11 taxa of the complex using population genetic methods and Bayesian assignment tests. Key Results Most designated taxa are identifiable as genetically distinct units. Both fragmentation and dispersal-driven diversification processes occurred at different geological time scales, from Early to Late Pleistocene, specifically (1) sea barrier-induced vicariant speciation in the Cyclades, the Western Cretan Strait and Ikaria; and (2) bi-regional colonizations of the 'Southern Aegean Island Arc' from the Western vs. Eastern Aegean mainland, followed by allopatric divergences in Crete vs. Rhodos and Karpathos/Kasos. Outcrossing island taxa experienced drift-related demographic processes that are magnified in the two insular selfing species. Population genetic differentiation on the mainland seems largely driven by dispersal limitation, while in the Central Aegean it may still be influenced by historical events (island fragmentation and sporadic long-distance colonization). Conclusions The biogeographical history of Aegean Nigella is more complex than expected for a strictly allopatric vicariant model of divergence. Nonetheless, the major phylogeographical boundaries of this radiation are largely congruent with the geography and history of islands, with little evidence for ongoing gene exchange between divergent taxa. The present results emphasize the need to investigate further biological and landscape features and contemporary vs. historical processes in driving population divergence and taxon diversification in Aegean plant radiations.
Collapse
Affiliation(s)
- Ursula Jaros
- Department of Ecology and Evolution, University of Salzburg, Salzburg, Austria
| | - Andreas Tribsch
- Department of Ecology and Evolution, University of Salzburg, Salzburg, Austria
| | - Hans Peter Comes
- Department of Ecology and Evolution, University of Salzburg, Salzburg, Austria
| |
Collapse
|
13
|
Chloroplast genomes of Byrsonima species (Malpighiaceae): comparative analysis and screening of high divergence sequences. Sci Rep 2018; 8:2210. [PMID: 29396532 PMCID: PMC5797077 DOI: 10.1038/s41598-018-20189-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/15/2018] [Indexed: 11/09/2022] Open
Abstract
Byrsonima is the third largest genus (about 200 species) in the Malpighiaceae family, and one of the most common in Brazilian savannas. However, there is no molecular phylogeny available for the genus and taxonomic uncertainties at the generic and family level still remain. Herein, we sequenced the complete chloroplast genome of B. coccolobifolia and B. crassifolia, the first ones described for Malpighiaceae, and performed comparative analyses with sequences previously published for other families in the order Malpighiales. The chloroplast genomes assembled had a similar structure, gene content and organization, even when compared with species from other families. Chloroplast genomes ranged between 160,212 bp in B. crassifolia and 160,329 bp in B. coccolobifolia, both containing 115 genes (four ribosomal RNA genes, 28 tRNA genes and 83 protein-coding genes). We also identified sequences with high divergence that might be informative for phylogenetic inferences in the Malpighiales order, Malpighiaceae family and within the genus Byrsonima. The phylogenetic reconstruction of Malpighiales with these regions highlighted their utility for phylogenetic studies. The comparative analyses among species in Malpighiales provided insights into the chloroplast genome evolution in this order, including the presence/absence of three genes (infA, rpl32 and rps16) and two pseudogenes (ycf1 and rps19).
Collapse
|
14
|
De Vitis M, Mattioni C, Mattana E, Pritchard HW, Seal CE, Ulian T, Cherubini M, Magrini S. Integration of genetic and seed fitness data to the conservation of isolated subpopulations of the Mediterranean plant Malcolmia littorea. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:203-213. [PMID: 28950440 DOI: 10.1111/plb.12637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
Plant autoecology and population genetics provide a perspective on the likelihood of natural regeneration, which is critical when designing conservation strategies for endangered species. The threatened coastal plant Malcolmia littorea (Brassicaceae) was sampled across its European distribution and studied for genetic diversity and seed fitness, with the aim of providing information for the conservation of isolated and declining populations. Nine microsatellite markers (five chloroplast and four nuclear) were analysed to assess population genetic diversity and structure and to conduct a spatial analysis using the software DIVA-GIS. Germination percentages and rates were assessed by incubating the seeds under eight constant temperatures (0-27 °C). The genetic diversity was found to be similar among subpopulations (chloroplast H = 0.04-0.17; nuclear Ho = 0.20-0.37), with no correlation between subpopulation diversity and the area of occupancy (AOO). The subpopulations were found to be clustered in three genetic groups, and three of them were identified as conservation priorities due to their unique genetic composition. The germination study revealed a significant influence of the maternal environment and AOO on seed germination, with the smaller subpopulations showing lower germination percentages (P < 0.05). These results highlight the importance of obtaining information on isolated subpopulations through different experimental approaches (e.g. seed germination plus population genetics) to enable planning of effective conservation actions. For M. littorea, seed collection for both in situ and ex situ conservation should take into account the local adaptation of the subpopulation and the genetic structure of the species.
Collapse
Affiliation(s)
- M De Vitis
- Tuscia Germplasm Bank, Tuscia University, Viterbo, Italy
| | - C Mattioni
- Institute of Agro-environmental and Forest Biology, National Research Council, Porano, TR, Italy
| | - E Mattana
- Department of Natural Capital and Plant Health, Royal Botanic Gardens Kew, Ardingly, UK
| | - H W Pritchard
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens Kew, Ardingly, UK
| | - C E Seal
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens Kew, Ardingly, UK
| | - T Ulian
- Department of Natural Capital and Plant Health, Royal Botanic Gardens Kew, Ardingly, UK
| | - M Cherubini
- Institute of Agro-environmental and Forest Biology, National Research Council, Porano, TR, Italy
| | - S Magrini
- Tuscia Germplasm Bank, Tuscia University, Viterbo, Italy
| |
Collapse
|
15
|
Nattero J, Pita S, Calleros L, Crocco L, Panzera Y, Rodríguez CS, Panzera F. Morphological and Genetic Differentiation within the Southernmost Vector of Chagas Disease: Triatoma patagonica (Hemiptera - Reduviidae). PLoS One 2016; 11:e0168853. [PMID: 28005972 PMCID: PMC5179239 DOI: 10.1371/journal.pone.0168853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 12/07/2016] [Indexed: 11/18/2022] Open
Abstract
The epidemiological importance of Chagas disease vectors largely depends on their spreading ability and adaptation to domestic habitats. Triatoma patagonica is a secondary vector of Chagas disease endemic of Argentina, and it has been found colonizing domiciles and most commonly peridomiciliary structures in several Argentine provinces and morphological variation along its distribution range have been described. To asses if population differentiation represents geographic variants or true biological species, multiple genetic and phenotypic approaches and laboratory cross-breeding were performed in T. patagonica peridomestic populations. Analyses of chromatic variation of forewings, their size and the content of C-heterochromatin on chromosomes revealed that populations are structured following a North-South latitudinal variation. Cytochrome c oxidase I mitochondrial gene (COI) nucleotide analysis showed a mean genetic distance of 5.2% between the most distant populations. The cross-breeding experiments suggest a partial reproductive isolation between some populations with 40% of couples not laying eggs and low hatching efficiency. Our findings reveal phenotypic and genetic variations that suggest an incipient differentiation processes among T. patagonica populations with a pronounced phenotypic and genetic divergence between the most distant populations. The population differentiation here reported is probably related to differential environmental conditions and it could reflect the occurrence of an incipient speciation process in T. patagonica.
Collapse
Affiliation(s)
- Julieta Nattero
- Cátedra de Introducción a la Biología, Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas -IIByT (CONICET—Universidad Nacional de Córdoba). Avda. Vélez Sarsfield, piso 2, Córdoba, Argentina
- Present address: Laboratorio de Eco-Epidemiología, Instituto de Ecología, Genética y Evolución de Buenos Aires, CONICET, EGE, FCEyN, UBA, Intendente Güiraldes 2160—Ciudad Universitaria—Pabellón 2, Buenos Aires, Argentina
- * E-mail: (JN); (FP)
| | - Sebastián Pita
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República. Iguá, Montevideo, Uruguay
| | - Lucía Calleros
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República. Iguá, Montevideo, Uruguay
| | - Liliana Crocco
- Cátedra de Introducción a la Biología, Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas -IIByT (CONICET—Universidad Nacional de Córdoba). Avda. Vélez Sarsfield, piso 2, Córdoba, Argentina
| | - Yanina Panzera
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República. Iguá, Montevideo, Uruguay
| | - Claudia S. Rodríguez
- Cátedra de Introducción a la Biología, Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas -IIByT (CONICET—Universidad Nacional de Córdoba). Avda. Vélez Sarsfield, piso 2, Córdoba, Argentina
| | - Francisco Panzera
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República. Iguá, Montevideo, Uruguay
- * E-mail: (JN); (FP)
| |
Collapse
|
16
|
Bobo-Pinilla J, Barrios de León SB, Seguí Colomar J, Fenu G, Bacchetta G, Peñas de Giles J, Martínez-Ortega MM. Phylogeography of Arenaria balearica L. (Caryophyllaceae): evolutionary history of a disjunct endemic from the Western Mediterranean continental islands. PeerJ 2016; 4:e2618. [PMID: 27833802 PMCID: PMC5101623 DOI: 10.7717/peerj.2618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 09/27/2016] [Indexed: 11/20/2022] Open
Abstract
Although it has been traditionally accepted that Arenaria balearica (Caryophyllaceae) could be a relict Tertiary plant species, this has never been experimentally tested. Nor have the palaeohistorical reasons underlying the highly fragmented distribution of the species in the Western Mediterranean region been investigated. We have analysed AFLP data (213) and plastid DNA sequences (226) from a total of 250 plants from 29 populations sampled throughout the entire distribution range of the species in Majorca, Corsica, Sardinia, and the Tuscan Archipelago. The AFLP data analyses indicate very low geographic structure and population differentiation. Based on plastid DNA data, six alternative phylogeographic hypotheses were tested using Approximate Bayesian Computation (ABC). These analyses revealed ancient area fragmentation as the most probable scenario, which is in accordance with the star-like topology of the parsimony network that suggests a pattern of long term survival and subsequent in situ differentiation. Overall low levels of genetic diversity and plastid DNA variation were found, reflecting evolutionary stasis of a species preserved in locally long-term stable habitats.
Collapse
Affiliation(s)
- Javier Bobo-Pinilla
- Department of Botany, University of Salamanca, Salamanca, Spain
- Biobanco de ADN Vegetal, Banco Nacional de ADN, University of Salamanca, Salamanca, Spain
| | | | - Jaume Seguí Colomar
- Department of Terrestrial Ecology, Instituto Mediterráneo de Estudios Avanzados (IMEDEA), Esporles, Spain
| | - Giuseppe Fenu
- Dipartimento di Biologia Ambientale, University of Roma “La Sapienza”, Roma, Italy
| | - Gianluigi Bacchetta
- Centro Conservazione Biodiversità (CCB), Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, Cagliari, Italy
| | | | - María Montserrat Martínez-Ortega
- Department of Botany, University of Salamanca, Salamanca, Spain
- Biobanco de ADN Vegetal, Banco Nacional de ADN, University of Salamanca, Salamanca, Spain
| |
Collapse
|
17
|
Wang H, Talavera M, Min Y, Flaven E, Imbert E. Neutral processes contribute to patterns of spatial variation for flower colour in the Mediterranean Iris lutescens (Iridaceae). ANNALS OF BOTANY 2016; 117:995-1007. [PMID: 27084922 PMCID: PMC4866319 DOI: 10.1093/aob/mcw036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/28/2015] [Accepted: 01/17/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Flower colour polymorphism in plants has been used as a classic model for understanding the importance of neutral processes vs. natural selection in population differentiation. However, current explanations for the maintenance of flower colour polymorphism mainly rely on balancing selection, while neutral processes have seldom been championed. Iris lutescens (Iridaceae) is a widespread species in the northern Mediterranean basin, which shows a stable and striking purple-yellow flower colour polymorphism. To evaluate the roles of neutral processes in the spatial variation for flower colour in this species, patterns of neutral genetic variation across its distribution range were quantified, and phenotypic differentiation was compared with neutral genetic differentiation. METHODS Genetic diversity levels and population genetic structure were investigated through the genotyping of a collection of 1120 individuals in 41 populations ranging from Spain to France, using a set of eight newly developed microsatellite markers. In addition, phenotypic differentiation for flower colour was also quantified by counting colour morph frequency in each population, and measuring the reflectance spectra of sampled individuals. KEY RESULTS Populations in Spain present a sharp colour transition from solely purple to solely yellow. The results provide evidence that genetic drift through limited gene flow is important in the evolution of monomorphic populations. In contrast, most populations in France are polymorphic with both phenotypes, and the colour frequencies vary geographically without any spatial gradients observed. A pattern of isolation by distance is detected in France, and gene flow between adjacent populations seems to be an important factor maintaining populations polymorphic. CONCLUSIONS Overall, neutral processes contribute to patterns of spatial variation for flower colour in I. lutescens, but it cannot be excluded that natural selection is also operating. An interaction between neutral processes and natural selection is suggested to explain the spatial variation for flower colour in I. lutescens.
Collapse
Affiliation(s)
- Hui Wang
- Institut des Sciences de l'Évolution de Montpellier (ISEM), UMR 5554, Université de Montpellier, Montpellier, France and
| | - María Talavera
- Institut des Sciences de l'Évolution de Montpellier (ISEM), UMR 5554, Université de Montpellier, Montpellier, France and
| | - Ya Min
- Institut des Sciences de l'Évolution de Montpellier (ISEM), UMR 5554, Université de Montpellier, Montpellier, France and
| | - Elodie Flaven
- Institut des Sciences de l'Évolution de Montpellier (ISEM), UMR 5554, Université de Montpellier, Montpellier, France and
| | - Eric Imbert
- Institut des Sciences de l'Évolution de Montpellier (ISEM), UMR 5554, Université de Montpellier, Montpellier, France and
| |
Collapse
|
18
|
Sarin B, Martín JP, Kaula BC, Mohanty A. Chloroplast DNA Variations in Wild Brassicas and Their Implication in Breeding and Population Genetics Studies. SCIENTIFICA 2015; 2015:952395. [PMID: 26347851 PMCID: PMC4546986 DOI: 10.1155/2015/952395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/22/2015] [Indexed: 06/05/2023]
Abstract
Evaluation of chloroplast DNA (cpDNA) diversity in wild relatives of crop brassicas is important for characterization of cytoplasm and also for population genetics/phylogeographic analyses. The former is useful for breeding programs involving wide hybridization and synthesis of alloplasmic lines, while the latter is important for formulating conservation strategies. Therefore, PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism) technique was applied to study cpDNA diversity in 14 wild brassicas (including 31 accessions) which revealed a total of 219 polymorphic fragments. The combination of polymorphisms obtained by using only two primer pair-restriction enzyme combinations was sufficient to distinguish all 14 wild brassicas. Moreover, 11 primer pairs-restriction enzyme combinations revealed intraspecific polymorphisms in eight wild brassicas (including endemic and endangered species, B. cretica and B. insularis, resp.). Thus, even within a small number of accessions that were screened, intraspecific polymorphisms were observed, which is important for population genetics analyses in wild brassicas and consequently for conservation studies.
Collapse
Affiliation(s)
- Bharti Sarin
- Department of Botany, Gargi College, University of Delhi, Sirifort Road, New Delhi 110049, India
| | - Juan Pedro Martín
- Departamento de Biología Vegetal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Babeeta Chrungu Kaula
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Jawaharlal Nehru Marg, New Delhi 110002, India
| | - Aparajita Mohanty
- Department of Botany, Gargi College, University of Delhi, Sirifort Road, New Delhi 110049, India
| |
Collapse
|
19
|
Nazareno AG, Carlsen M, Lohmann LG. Complete Chloroplast Genome of Tanaecium tetragonolobum: The First Bignoniaceae Plastome. PLoS One 2015; 10:e0129930. [PMID: 26103589 PMCID: PMC4478014 DOI: 10.1371/journal.pone.0129930] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
Bignoniaceae is a Pantropical plant family that is especially abundant in the Neotropics. Members of the Bignoniaceae are diverse in many ecosystems and represent key components of the Tropical flora. Despite the ecological importance of the Bignoniaceae and all the efforts to reconstruct the phylogeny of this group, whole chloroplast genome information has not yet been reported for any members of the family. Here, we report the complete chloroplast genome sequence of Tanaecium tetragonolobum (Jacq.) L.G. Lohmann, which was reconstructed using de novo and referenced-based assembly of single-end reads generated by shotgun sequencing of total genomic DNA in an Illumina platform. The gene order and organization of the chloroplast genome of T. tetragonolobum exhibits the general structure of flowering plants, and is similar to other Lamiales chloroplast genomes. The chloroplast genome of T. tetragonolobum is a circular molecule of 153,776 base pairs (bp) with a quadripartite structure containing two single copy regions, a large single copy region (LSC, 84,612 bp) and a small single copy region (SSC, 17,586 bp) separated by inverted repeat regions (IRs, 25,789 bp). In addition, the chloroplast genome of T. tetragonolobum has 38.3% GC content and includes 121 genes, of which 86 are protein-coding, 31 are transfer RNA, and four are ribosomal RNA. The chloroplast genome of T. tetragonolobum presents a total of 47 tandem repeats and 347 simple sequence repeats (SSRs) with mononucleotides being the most common and di-, tri-, tetra-, and hexanucleotides occurring with less frequency. The results obtained here were compared to other chloroplast genomes of Lamiales available to date, providing new insight into the evolution of chloroplast genomes within Lamiales. Overall, the evolutionary rates of genes in Lamiales are lineage-, locus-, and region-specific, indicating that the evolutionary pattern of nucleotide substitution in chloroplast genomes of flowering plants is complex. The discovery of tandem repeats within T. tetragonolobum and the presence of divergent regions between chloroplast genomes of Lamiales provides the basis for the development of markers at various taxonomic levels. The newly developed markers have the potential to greatly improve the resolution of molecular phylogenies.
Collapse
Affiliation(s)
- Alison Gonçalves Nazareno
- Universidade de São Paulo, Instituto de Biociências, Departamento de Botânica, São Paulo, São Paulo, Brazil
- * E-mail: (AGN); (LGL)
| | - Monica Carlsen
- University of Missouri-St. Louis, Biology Department, St. Louis, Missouri, United States of America
| | - Lúcia Garcez Lohmann
- Universidade de São Paulo, Instituto de Biociências, Departamento de Botânica, São Paulo, São Paulo, Brazil
- * E-mail: (AGN); (LGL)
| |
Collapse
|
20
|
Maggioni L, von Bothmer R, Poulsen G, Branca F, Bagger Jørgensen R. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy. Hereditas 2015; 151:145-58. [PMID: 25588302 DOI: 10.1111/hrd2.00058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/23/2014] [Indexed: 11/26/2022] Open
Abstract
Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population structure of ten wild and 22 cultivated populations, as well as of a hybrid population and of four commercial cultivars of different B. oleracea crops. The level of genetic diversity was higher in leafy kales than in wild populations and this diversity was mainly distributed within populations. Wild populations remained distinct from cultivated material. Additionally, most wild populations were distinctively isolated from each other. On the other hand, it was not possible to molecularly distinguish even geographically distant leafy kale populations from each other or from different B. oleracea crops. It was possible to detect inter-crossing between leafy kales and B. rupestris. Findings from this study illustrate the existing level of genetic diversity in the B. oleracea gene pool. Individual populations (either wild or leafy kales) with higher levels of genetic diversity have been identified and suggestions are given for an informed conservation strategy. Domestication hypotheses are also discussed.
Collapse
Affiliation(s)
- Lorenzo Maggioni
- Bioversity International, Maccarese (Fiumicino), Roma, Italy; Dept. of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | | | | | | | | |
Collapse
|
21
|
Steinbauer MJ, Irl SD, Beierkuhnlein C. Elevation-driven ecological isolation promotes diversification on Mediterranean islands. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2013. [DOI: 10.1016/j.actao.2012.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Yu H, Nason JD. Nuclear and chloroplast DNA phylogeography of Ficus hirta: obligate pollination mutualism and constraints on range expansion in response to climate change. THE NEW PHYTOLOGIST 2013; 197:276-289. [PMID: 23127195 DOI: 10.1111/j.1469-8137.2012.04383.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/12/2012] [Indexed: 06/01/2023]
Abstract
This study uses a phylogeographic approach to investigate how interspecific interactions in an obligate pollination mutualism enhance or constrain dispersal and the range distributions of species through time. Fifteen populations of Ficus hirta, a bird-dispersed fig pollinated by a species-specific fig wasp, were sampled from Thailand to the northern limits of the tropical forest in China. These populations were assayed for six nuclear microsatellite loci and two intergenic chloroplast DNA sequences. Analyses of range expansion and genetic clustering indicated a relatively slow rate of range expansion from two or more southern glacial refugia. Low nuclear differentiation, combined with high interpopulation differentiation, and phylogeographic structuring of chloroplast variation indicated that seed dispersal has had a greater constraint than obligate interactions with fig wasps on the rate of post-glacial range expansion. This study is the first to investigate the phylogeographic history of a widely distributed southeast Asian tropical plant whose distribution extends to the northern limits of tropical forest habitat in China. It is also the first study of Ficus utilizing molecular data to evaluate whether species-specific pollination is a limitation or an aid to range expansion in response to climate change.
Collapse
Affiliation(s)
- Hui Yu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - John D Nason
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
23
|
Garrido JL, Fenu G, Mattana E, Bacchetta G. Spatial genetic structure of Aquilegia taxa endemic to the island of Sardinia. ANNALS OF BOTANY 2012; 109:953-64. [PMID: 22351486 PMCID: PMC3310493 DOI: 10.1093/aob/mcs011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS The Mediterranean Basin is one of the most important regions for the Earth's plant biodiversity; however, the scarcity of studies on fine scale patterns of genetic variation in this region is striking. Here, an assessment is made of the spatial genetic structure of all known locations of the three Sardinian endemic species of Aquilegia in order to determine the relative roles of gene flow and genetic drift as underlying evolutionary forces canalizing the divergence of Sardinian Aquilegia taxa, and to see if the spatial genetic structure found fits the current taxonomic differentiation of these taxa. METHODS DNA from 89 individuals from all known locations of Aquilegia across Sardinia was analysed by means of amplified fragment length polymorphism (AFLP) markers. Both principal co-ordinates analysis (PCoA) and Bayesian clustering analyses were used to determine the spatial genetic structure irrespective of any taxonomic affiliation. Historical effects of gene flow and genetic drift were assessed by checking for the existence of isolation-by-distance patterns. KEY RESULTS STRUCTURE and PCoA analyses revealed a pattern of genetic variation geographically structured into four spatial genetic groups. No migration-drift equilibrium was detected for Aquilegia in Sardinia, when analysed either as a whole or in individual groups. The scenario approached a Case III pattern sensu Hutchinson and Templeton, which is associated with extreme isolation conditions where genetic drift has historically played a dominant role over gene flow. CONCLUSIONS The pattern of genetic variation of Sardinian taxa of Aquilegia indicates that genetic drift has been historically more influential than gene flow on population structure of Sardinian species of Aquilegia. Limited seed dispersal and divergent selection imposed by habitat conditions have been probably the main causes reinforcing post-Pleistocene geographical isolation of Aquilegia populations. The spatial genetic structure found here is not fully compatible with current taxonomic affiliations of Sardinian Aquilegia taxa. This is probably a consequence of the uncoupling between morphological and genetic patterns of differentiation frequently found in recently radiated taxa.
Collapse
Affiliation(s)
- J L Garrido
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio s/n, Seville, Spain.
| | | | | | | |
Collapse
|
24
|
Mayol M, Palau C, Rosselló JA, González-Martínez SC, Molins A, Riba M. Patterns of genetic variability and habitat occupancy in Crepis triasii (Asteraceae) at different spatial scales: insights on evolutionary processes leading to diversification in continental islands. ANNALS OF BOTANY 2012; 109:429-41. [PMID: 22167790 PMCID: PMC3268543 DOI: 10.1093/aob/mcr298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 10/24/2011] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Archipelagos are unique systems for studying evolutionary processes promoting diversification and speciation. The islands of the Mediterranean basin are major areas of plant richness, including a high proportion of narrow endemics. Many endemic plants are currently found in rocky habitats, showing varying patterns of habitat occupancy at different spatial scales throughout their range. The aim of the present study was to understand the impact of varying patterns of population distribution on genetic diversity and structure to shed light on demographic and evolutionary processes leading to population diversification in Crepis triasii, an endemic plant from the eastern Balearic Islands. METHODS Using allozyme and chloroplast markers, we related patterns of genetic structure and diversity to those of habitat occupancy at a regional (between islands and among populations within islands) and landscape (population size and connectivity) scale. KEY RESULTS Genetic diversity was highly structured both at the regional and at the landscape level, and was positively correlated with population connectivity in the landscape. Populations located in small isolated mountains and coastal areas, with restricted patterns of regional occupancy, were genetically less diverse and much more differentiated. In addition, more isolated populations had stronger fine-scale genetic structure than well-connected ones. Changes in habitat availability and quality arising from marine transgressions during the Quaternary, as well as progressive fragmentation associated with the aridification of the climate since the last glaciation, are the most plausible factors leading to the observed patterns of genetic diversity and structure. CONCLUSIONS Our results emphasize the importance of gene flow in preventing genetic erosion and maintaining the evolutionary potential of populations. They also agree with recent studies highlighting the importance of restricted gene flow and genetic drift as drivers of plant evolution in Mediterranean continental islands.
Collapse
Affiliation(s)
- Maria Mayol
- Center for Ecological Research and Forestry Applications, Autonomous University of Barcelona, Bellaterra, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Examining the relationship between total species richness and single island palaeo- and neo-endemics. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2011. [DOI: 10.1016/j.actao.2010.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Bai WN, Liao WJ, Zhang DY. Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia. THE NEW PHYTOLOGIST 2010; 188:892-901. [PMID: 20723077 DOI: 10.1111/j.1469-8137.2010.03407.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Recently, there has been a debate about whether the temperate forests of East Asia merged or fragmented during glacial periods in the Pleistocene. Here, we tested these two opposing views through phylogeographical studies of the temperate-deciduous walnut tree, Juglans mandshurica (Juglandaceae) in northern and northeastern China, as well as Japan and Korea. • We assessed the genetic structure of 33 natural populations using 10 nuclear microsatellite loci and seven chloroplast DNA (cpDNA) fragments. • The cpDNA data showed the complete fixation of two different haplotype lineages in northeastern vs northern populations. This pronounced phylogeographic break was also indicated by nuclear microsatellite data, but there were disparities regarding individual populations. Among those populations fixed for haplotype A (the northeastern group), three were clustered in the northern group and four showed evidence of mixed ancestry based on microsatellite data. • Our results support the hypothesis that two independent refugia were maintained across the range of J. mandshurica in the north of China during the last glacial maximum, contrary to the inference that all temperate forests migrated to the south (25-30°N). The discordance between the patterns revealed by cpDNA and microsatellite data indicate that asymmetrical gene flow has occurred between the two refugia.
Collapse
Affiliation(s)
- Wei-Ning Bai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | | | | |
Collapse
|
27
|
King MG, Horning ME, Roalson EH. Range persistence during the last glacial maximum: Carex macrocephala was not restricted to glacial refugia. Mol Ecol 2009; 18:4256-69. [PMID: 19754517 DOI: 10.1111/j.1365-294x.2009.04280.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The distribution of many species inhabiting northwestern North America has been heavily influenced by the climatic changes during the late Pleistocene. Several studies have suggested that species were restricted to glacial refugia north and/or south of the continental ice sheet front. It is also hypothesized that the coast of northwestern North America could have been a prime location for glacial refugia because of the lowering of the eustatic sea level and the concomitant rise of the continental shelf because of tectonic rebound. Alternatively, some coastal species distributions and demographics may have been unaffected in the long-term by the last glacial maximum (LGM). We tested the glacial refugium hypothesis on an obligate coastal plant species, Carex macrocephala by sampling 600 individuals from 41 populations with 11 nuclear microsatellite loci and the rpL16 plastid intragenic spacer region. The microsatellite data sets suggest a low level of population differentiation with a standardized G'(ST) = 0.032 and inbreeding was high with an F = 0.969. The homogenization of the populations along the coast was supported by a principal coordinate analysis, amovas and samova analyses. Analyses using the rpL16 data set support the results of the microsatellite analyses, with a low F(ST) of 0.042. Coalescent and mismatch analyses using rpL16 suggest that C. macrocephala has not gone through a significant bottleneck within the past 100,000 years, although a much earlier population expansion was indicated by the mismatch analysis. Carex macrocephala exhibits the characteristics of metapopulation dynamics and on the basis of these results, we concluded that it was not restricted to glacial refugia during the LGM, but that it existed as a large metapopulation.
Collapse
Affiliation(s)
- Matthew G King
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
28
|
OHMER MICHELE, ROBERTSON JEANNEM, ZAMUDIO KELLYR. Discordance in body size, colour pattern, and advertisement call across genetically distinct populations in a Neotropical anuran (Dendropsophus ebraccatus). Biol J Linn Soc Lond 2009. [DOI: 10.1111/j.1095-8312.2009.01210.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Molecular population genetics of the SRK and SCR self-incompatibility genes in the wild plant species Brassica cretica (Brassicaceae). Genetics 2008; 181:985-95. [PMID: 19087967 DOI: 10.1534/genetics.108.090829] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Self-incompatibility (SI) in plants is a classic example of a trait evolving under strong frequency-dependent selection. As a consequence, population genetic theory predicts that the S locus, which controls SI, should maintain numerous alleles, display a high level of nucleotide diversity, and, in structured populations, show a lower level of among-population differentiation compared to neutral loci. Population-level investigations of DNA sequence variation at the S locus have recently been carried out in the genus Arabidopsis, largely confirming results from theoretical models of S-locus evolutionary dynamics, but no comparable studies have been done in wild Brassica species. In this study, we sequenced parts of the S-locus genes SRK and SCR, two tightly linked genes that are directly involved in the determination of SI specificity in samples from four natural populations of the wild species Brassica cretica. The amount and distribution of nucleotide diversity, as well as the frequency spectrum of putative functional haplotypes, observed at the S locus in B. cretica fit very well with expectations from theoretical models, providing strong evidence for frequency-dependent selection acting on the S locus in a wild Brassica species.
Collapse
|
30
|
Abstract
Self-incompatibility (SI) in the Brassicaceae plant family is controlled by the SRK and SCR genes situated at the S locus. A large number of S haplotypes have been identified, mainly in cultivated species of the Brassica and Raphanus genera, but recently also in wild Arabidopsis species. Here, we used DNA sequences from the SRK and SCR genes of the wild Brassica species Brassica cretica, together with publicly available sequence data from other Brassicaceae species, to investigate the evolutionary relationships among S haplotypes in the Brassicaceae family. The results reveal that wild and cultivated Brassica species have similar levels of SRK diversity, indicating that domestication has had but a minor effect on S-locus diversity in Brassica. Our results also show that a common set of S haplotypes was present in the ancestor of the Brassica and Arabidopsis genera, that only a small number of haplotypes survived in the Brassica lineage after its separation from Arabidopsis, and that diversification within the two Brassica dominance classes occurred after the split between the two lineages. We also found indications that recombination may have occurred between the kinase domain of SRK and the SCR gene in Brassica.
Collapse
|