1
|
Yan S, Ma P, Zuo C, Zhu Y, Ma X, Zhang Z. Genetic Analysis Based on Mitochondrial nad2 Gene Reveals a Recent Population Expansion of the Invasive Mussel, Mytella strigata, in China. Genes (Basel) 2023; 14:2038. [PMID: 38002981 PMCID: PMC10671778 DOI: 10.3390/genes14112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Mytella strigata is a highly adaptable invasive alien species that has been established in coastal China since 2014. Mitochondrial DNA (mtDNA) is an important tool for studying the evolution and population genetics of invasive species. In this study, the mitochondrial genome of M. strigata from China was sequenced by Illumina high-throughput sequencing and characterized with 13 protein-coding genes (PCGs). By assessing the selective pressure of 13 PCGs, the nad2 gene had the fastest evolutionary rate and was finally selected for population genetic analysis. A total of 285 nad2 sequences from seven M. strigata populations in China were analyzed and showed obviously T-rich and C-rich characteristics. According to population genetic diversity analysis, all the seven populations had haplotype (gene) diversity (Hd) ≥ 0.5 and nucleotide diversity (Pi) < 0.005. Haplotype networks showed a "star" distribution. Population historical dynamic analyses showed that Fu's Fs and Tajima's D values of all populations were negative except the Qukou (QK) and Beihai (BH) populations. The Zhangzhou (ZJ) and Xiamen (XM) populations were unimodal while the other populations were multimodal. These results suggested that the population of M. strigata in China may have passed the bottleneck period and is currently in a state of population expansion.
Collapse
Affiliation(s)
- Shaojing Yan
- Laboratory of Marine Organism Taxonomy & Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Y.)
| | - Peizhen Ma
- Laboratory of Marine Organism Taxonomy & Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Y.)
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Chenxia Zuo
- Laboratory of Marine Organism Taxonomy & Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Y.)
- College of Life Sciences, Qingdao University, Qingdao 266000, China
| | - Yi Zhu
- Laboratory of Marine Organism Taxonomy & Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Ma
- Laboratory of Marine Organism Taxonomy & Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhang
- Laboratory of Marine Organism Taxonomy & Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Gu H, Wen J, Zhao X, Zhang X, Ren X, Cheng H, Qu L. Evolution, Inheritance, and Strata Formation of the W Chromosome in Duck (Anas platyrhynchos). Genome Biol Evol 2023; 15:evad183. [PMID: 37931036 PMCID: PMC10630070 DOI: 10.1093/gbe/evad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/08/2023] Open
Abstract
The nonrecombining female-limited W chromosome is predicted to experience unique evolutionary processes. Difficulties in assembling W chromosome sequences have hindered the identification of duck W-linked sequences and their evolutionary footprint. To address this, we conducted three initial contig-level genome assemblies and developed a rigorous pipeline by which to successfully expand the W-linked data set, including 11 known genes and 24 newly identified genes. Our results indicate that the W chromosome expression may not be subject to female-specific selection; a significant convergent pattern of upregulation associated with increased female-specific selection was not detected. The genetic stability of the W chromosome is also reflected in the strong evolutionary correlation between it and the mitochondria; the complete consistency of the cladogram topology constructed from their gene sequences proves the shared maternal coevolution. By detecting the evolutionary trajectories of W-linked sequences, we have found that recombination suppression started in four distinct strata, of which three were conserved across Neognathae. Taken together, our results have revealed a unique evolutionary pattern and an independent stratum evolutionary pattern for sex chromosomes.
Collapse
Affiliation(s)
- Hongchang Gu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Junhui Wen
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiurong Zhao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinye Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xufang Ren
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huan Cheng
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Martínez-Ríos M, Martín-Torrijos L, Casabella-Herrero G, Tedesco P, Machordom A, Diéguez-Uribeondo J. On the conservation of white-clawed crayfish in the Iberian Peninsula: Unraveling its genetic diversity and structure, and origin. PLoS One 2023; 18:e0292679. [PMID: 37831691 PMCID: PMC10575519 DOI: 10.1371/journal.pone.0292679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
European crayfish species are a clear example of the drastic decline that freshwater species are experiencing. In particular, the native species of the Iberian Peninsula, the white clawed-crayfish (WCC) Austropotamobius pallipes, is listed as "endangered" by the IUCN and included in Annex II of the EU Habitat Directive and requires especially attention. Currently, implemented conservation management strategies require a better understanding of the genetic diversity and phylogeographic patterns, as well as of its evolutionary history. For this purpose, we have generated the largest datasets of two informative ribosomal mitochondrial DNA regions, i.e., cytochrome oxidase subunit I and 16S, from selected populations of the WCC covering its geographical distribution. These datasets allowed us to analyze in detail the (i) genetic diversity and structure of WCC populations, and (ii) divergence times for Iberian populations by testing three evolutionary scenarios with different mtDNA substitution rates (low, intermediate, and high rates). The results indicate high levels of haplotype diversity and a complex geographical structure for WCC in the Iberian Peninsula. The diversity found includes new unique haplotypes from the Iberian Peninsula and reveals that most of the WCC genetic variability is concentrated in the northern and central-eastern regions. Despite the fact that molecular dating analyses provided divergence times that were not statistically supported, the proposed scenarios were congruent with previous studies, which related the origin of these populations with paleogeographic events during the Pleistocene, which suggests an Iberian origin for these WCC. All results generated in this study, indicate that the alternative hypothesis of an introduced origin of the Iberian WCC is highly improbable. The result of this study, therefore, has allowed us to better understand of the genetic diversity, structure patterns, and evolutionary history of the WCC in the Iberian Peninsula, which is crucial for the management and conservation needs of this endangered species.
Collapse
Affiliation(s)
| | | | | | - Perla Tedesco
- Department of Veterinary Medical Sciences Alma Mater Studiorum, University of Bologna, Ozzano dell’Emilia, Italy
| | - Annie Machordom
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | | |
Collapse
|
4
|
Setiaji A, Lestari DA, Pandupuspitasari NS, Agusetyaningsih I, Khan FA. Genetic characteristics of complete mtDNA genome sequence of Indonesian local rabbit (Oryctolagus cuniculus). J Genet Eng Biotechnol 2023; 21:96. [PMID: 37812313 PMCID: PMC10562326 DOI: 10.1186/s43141-023-00546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Indonesian local rabbit (Oryctolagus cuniculus) is a local breed in Indonesia. We reveal the mitochondrial genome sequence of the Indonesian local Rabbit for the first time. A better understanding of the mechanisms underlying these beneficial aspects of local breeds over imported ones requires detailed genetic investigations, of which mtDNA genome sequencing is of particular importance. Such an investigation will solve the major issues of misidentification with Javanese hares (Lepus nigricollis) and maternal lineage. In addition, this information will guide better statistics on the Indonesian local rabbit breed population and strategies for its conservation and breeding plans. This study aimed to identify and explore the characteristics of the mtDNA genomes of Indonesian local rabbits. RESULT This study observed that the length of the mtDNA genome is 17,469 bp, consisting of two ribosomal RNA (12S rRNA, 16S rRNA), 22 transfer RNA genes (trnR, trnG, trnK, trnD, trnS, trnY, trnC, trnN, trnA, trnW, trnM, trnQ, trnl, trnL, trnV, trnF, trnP, trnT, trnE, trnL, trnS, trnH), 13 protein-coding genes (PCGs) (ND4l, ND3, COX3, ATP6, ATP8, COX2, COX1, ND2, ND1, CYTB, ND6, ND5, ND4), a replication origin, and a noncoding control region (D-loop). CONCLUSIONS mtDNA genome of Indonesian local rabbit was the longest and had the most extended D-loop sequence among the other references of Oryctolagus cuniculus. Other specific differences were also found in the percentage of nucleotides and variation in most of the PCGs when they were aligned with Oryctolagus cuniculus references from GenBank. Indonesian local Rabbits strongly suspected brought from Europe during the colonial period in Indonesia.
Collapse
Affiliation(s)
- Asep Setiaji
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Dela Ayu Lestari
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275, Indonesia.
| | | | - Ikania Agusetyaningsih
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), South Tangerang, 15314, Indonesia
- Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
5
|
Porta B, Vosman B, Visser RGF, Galván GA, Scholten OE. Genetic diversity of thrips populations on Allium species around the world. PLoS One 2023; 18:e0289984. [PMID: 37590309 PMCID: PMC10434924 DOI: 10.1371/journal.pone.0289984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023] Open
Abstract
Thrips are a serious pest in many crops. In onion cultivation, Thrips tabaci is the most important, but not the only thrips species causing damage. We investigated which thrips species affects onion and related species worldwide, how much genetic variation there is within T. tabaci populations, and how this evolves. Furthermore, we determined the reproductive mode and the correlation between the genetic and geographic distances. Thrips samples from infested onions or related species were obtained from 14 different locations worldwide. Species and haplotypes were determined through DNA barcoding with the mitochondrial Cytochrome Oxidase subunit I (COI) gene. Thrips tabaci was the most commonly observed species, but Scirtothrips dorsalis, Thrips palmi, Frankliniella intonsa, Frankliniella occidentalis and Frankliniella tenuicornis were also found, especially at the beginning of the growing seasons and depending on the location. The Nei's genetic distance within T. tabaci was less than 5% and the haplotypes were clustered into two phylogenetic groups, each linked to a specific mode of reproduction, thelytokous or arrhenotokous. Thelytokous thrips were more common and more widely distributed than arrhenotokous thrips. A high percentage of heteroplasmy was detected in the arrhenotokous group. Heteroplasmic thrips were only found in populations where thelytokous and arrhenotokous were present in sympatry. Some T. tabaci haplotypes were present in high frequency at several sampled locations. No correlation was found between the genetic and geographic distances, which points to anthropic activities spreading thrips haplotypes throughout the world.
Collapse
Affiliation(s)
- Bettina Porta
- Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Ben Vosman
- Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Guillermo A. Galván
- Departamento de Producción Vegetal, Centro Regional Sur (CRS), Facultad de Agronomía, Universidad de la República, Progreso, Canelones, Uruguay
| | - Olga E. Scholten
- Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
6
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
7
|
Dowling DK, Wolff JN. Evolutionary genetics of the mitochondrial genome: insights from Drosophila. Genetics 2023; 224:iyad036. [PMID: 37171259 PMCID: PMC10324950 DOI: 10.1093/genetics/iyad036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/05/2023] [Indexed: 05/13/2023] Open
Abstract
Mitochondria are key to energy conversion in virtually all eukaryotes. Intriguingly, despite billions of years of evolution inside the eukaryote, mitochondria have retained their own small set of genes involved in the regulation of oxidative phosphorylation (OXPHOS) and protein translation. Although there was a long-standing assumption that the genetic variation found within the mitochondria would be selectively neutral, research over the past 3 decades has challenged this assumption. This research has provided novel insight into the genetic and evolutionary forces that shape mitochondrial evolution and broader implications for evolutionary ecological processes. Many of the seminal studies in this field, from the inception of the research field to current studies, have been conducted using Drosophila flies, thus establishing the species as a model system for studies in mitochondrial evolutionary biology. In this review, we comprehensively review these studies, from those focusing on genetic processes shaping evolution within the mitochondrial genome, to those examining the evolutionary implications of interactions between genes spanning mitochondrial and nuclear genomes, and to those investigating the dynamics of mitochondrial heteroplasmy. We synthesize the contribution of these studies to shaping our understanding of the evolutionary and ecological implications of mitochondrial genetic variation.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Jonci N Wolff
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
8
|
Alqaisi MHM, Ekka MM, Patel BC. Forensic evaluation of mitochondrial DNA heteroplasmy in Gujarat population, India. Ann Hum Biol 2022; 49:332-341. [PMID: 36343161 DOI: 10.1080/03014460.2022.2144447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Owing to its high copy number and its small size, mtDNA analysis is the most reliable choice when biological materials from crime scenes are degraded or have mixed STR profiles. AIM To examine the occurrence of heteroplasmy along with its frequency and pattern in both HV1 and HV2 regions of the mtDNA among unrelated individuals from India. SUBJECTS AND METHODS Mitochondrial DNA control region [hypervariable region one (HV1) and hypervariable region two (HV2)] were analysed in blood and buccal tissues of 104 unrelated individuals from the Indian state of Gujarat. RESULTS A high frequency of point heteroplasmy (PH) and length heteroplasmy (LH) was revealed. PH was detected in 7.69% of the population, with a higher frequency observed in blood than in buccal samples. However, there were no statistically significant differences in PH between the two tissues (Chi-square = 0.552, p ≥ 0.05). A total of six PH positions were detected: three at HV1, and another three at HV2. The studied population showed 46.15% LH in the HV1 and HV2 regions of both tissues. The LH positions observed in the Gujarat population were the same as those previously reported at HV1 np16184-16193 and HV2 np303-315. CONCLUSIONS Our findings suggest that differences in the pattern of heteroplasmy found in different tissues can complicate the forensic analysis, on the other hand, the probability of a match between the questioned and reference samples increases when the heteroplasmy is identical in both tissues. Variability of PH among persons and even within tissues recommends analysing multiple tissue samples before drawing a conclusion in forensic mtDNA analyses.
Collapse
Affiliation(s)
- Mohammed H M Alqaisi
- Laboratory of Forensic Biology and Biotechnology, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| | - Molina Madhulika Ekka
- Laboratory of Forensic Biology and Biotechnology, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| | - Bhargav C Patel
- Laboratory of Forensic Biology and Biotechnology, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| |
Collapse
|
9
|
Timm VF, Gonçalves LT, Valente V, Deprá M. The efficiency of the COI gene as a DNA barcode and an overview of Orthoptera (Caelifera and Ensifera) sequences in the BOLD System. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orthoptera, among the oldest and most numerous insect lineages, is an excellent model for evolutionary studies but has numerous taxonomic problems. To mitigate these issues, the cytochrome c oxidase subunit I (COI), standardized with the DNA barcode for Metazoa, is increasingly used for specimen identification and species delimitation. We tested the performance of COI as a DNA barcode in Orthoptera, using two analyses based on intra- and interspecific distances, barcode gap and Probability of Correct Identification (PCI); and estimated species richness through Automatic Barcode Gap Discovery (ABGD) and Assemble Species by Automatic Partitioning (ASAP). We filtered all sequences of Orthoptera available in Barcode of Life Data System (BOLD) and used 11,605 COI sequences, covering 1,132 species, 226 genera, and 18 families. The overall average PCI was 73.86%. For 82.2% of genera the barcode gap boxplots were classified as good or intermediate, indicating that COI can be effective as a DNA barcode in Orthoptera, although with varying efficiency depending on the need for more information. ABGD and ASAP inferred species richness similar to labels informed by BOLD for the suborders Caelifera and Ensifera. The representation of Orthoptera in the BOLD database and the results of these analyses are discussed.
Collapse
Affiliation(s)
- Vítor Falchi Timm
- Universidade Federal do Rio Grande do Sul, 28124, Departamento de Genética, Porto Alegre, RS, Brazil
| | | | - V.l.S. Valente
- Universidade Federal do Rio Grande do Sul, 28124, Departamento de Genética, Porto Alegre, RS, Brazil,
| | | |
Collapse
|
10
|
Kao T, Wang T, Ku C. Rampant nuclear-mitochondrial-plastid phylogenomic discordance in globally distributed calcifying microalgae. THE NEW PHYTOLOGIST 2022; 235:1394-1408. [PMID: 35556250 PMCID: PMC9539906 DOI: 10.1111/nph.18219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Incongruent phylogenies have been widely observed between nuclear and plastid or mitochondrial genomes in terrestrial plants and animals. However, few studies have examined these patterns in microalgae or the discordance between the two organelles. Here we investigated the nuclear-mitochondrial-plastid phylogenomic incongruence in Emiliania-Gephyrocapsa, a group of cosmopolitan calcifying phytoplankton with enormous populations and recent speciations. We assembled mitochondrial and plastid genomes of 27 strains from across global oceans and temperature regimes, and analyzed the phylogenomic histories of the three compartments using concatenation and coalescence methods. Six major clades with varying morphology and distribution are well recognized in the nuclear phylogeny, but such relationships are absent in the mitochondrial and plastid phylogenies, which also differ substantially from each other. The rampant phylogenomic discordance is due to a combination of organellar capture (introgression), organellar genome recombination, and incomplete lineage sorting of ancient polymorphic organellar genomes. Hybridization can lead to replacements of whole organellar genomes without introgression of nuclear genes and the two organelles are not inherited as a single cytoplasmic unit. This study illustrates the convoluted evolution and inheritance of organellar genomes in isogamous haplodiplontic microalgae and provides a window into the phylogenomic complexity of marine unicellular eukaryotes.
Collapse
Affiliation(s)
- Tzu‐Tong Kao
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Tzu‐Haw Wang
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Chuan Ku
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| |
Collapse
|
11
|
Lucas T, Vincent B, Eric P. Translocation of mitochondrial DNA into the nuclear genome blurs phylogeographic and conservation genetic studies in seabirds. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211888. [PMID: 35719890 PMCID: PMC9198517 DOI: 10.1098/rsos.211888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/19/2022] [Indexed: 05/03/2023]
Abstract
Mitochondrial DNA (mtDNA) translocated into the nuclear genome (numt), when co-analysed with genuine mtDNA, could plague phylogeographic studies. To evaluate numt-related biases in population genetics parameters in birds, which are prone to accumulating numts, we targeted the mitochondrial mt-cytb gene. We looked at 13 populations of Audubon's shearwater (Puffinus lherminieri), including five mitochondrial lineages. mt-cytb homologue and paralogue (numt) sequences were determined by Sanger sequencing with and without prior exonuclease digestion of nuclear DNA. Numts formed monophyletic clades corresponding to three of the five mitochondrial lineages tested (the remaining two forming a paraphyletic group). Nineteen percent of numt alleles fell outside of their expected mitochondrial clade, a pattern consistent with multiple translocation events, incomplete lineage sorting (ILS), and/or introgression. When co-analysing mt-cytb paralogues and homologues, excluding individuals with ambiguities underestimates genetic diversity (4%) and differentiation (11%) among least-sampled populations. Removing ambiguous sites drops the proportion of inter-lineage genetic variance by 63%. While co-analysing numts with mitochondrial sequences can lead to severe bias and information loss in bird phylogeographic studies, the separate analysis of genuine mitochondrial loci and their nuclear paralogues can shed light on numt molecular evolution, as well as evolutionary processes such as ILS and introgression.
Collapse
Affiliation(s)
- Torres Lucas
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS - La Rochelle Universite, Villiers en Bois, France
- Littoral, Environnement et Sociétés, UMR 7266 CNRS - La Rochelle Université, La Rochelle, France
| | - Bretagnolle Vincent
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS - La Rochelle Universite, Villiers en Bois, France
| | - Pante Eric
- Littoral, Environnement et Sociétés, UMR 7266 CNRS - La Rochelle Université, La Rochelle, France
| |
Collapse
|
12
|
Lee J, Willett CS. Frequent Paternal Mitochondrial Inheritance and Rapid Haplotype Frequency Shifts in Copepod Hybrids. J Hered 2022; 113:171-183. [PMID: 35575078 DOI: 10.1093/jhered/esab068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are assumed to be maternally inherited in most animal species, and this foundational concept has fostered advances in phylogenetics, conservation, and population genetics. Like other animals, mitochondria were thought to be solely maternally inherited in the marine copepod Tigriopus californicus, which has served as a useful model for studying mitonuclear interactions, hybrid breakdown, and environmental tolerance. However, we present PCR, Sanger sequencing, and Illumina Nextera sequencing evidence that extensive paternal mitochondrial DNA (mtDNA) transmission is occurring in inter-population hybrids of T. californicus. PCR on four types of crosses between three populations (total sample size of 376 F1 individuals) with 20% genome-wide mitochondrial divergence showed 2% to 59% of F1 hybrids with both paternal and maternal mtDNA, where low and high paternal leakage values were found in different cross directions of the same population pairs. Sequencing methods further verified nucleotide similarities between F1 mtDNA and paternal mtDNA sequences. Interestingly, the paternal mtDNA in F1s from some crosses inherited haplotypes that were uncommon in the paternal population. Compared to some previous research on paternal leakage, we employed more rigorous methods to rule out contamination and false detection of paternal mtDNA due to non-functional nuclear mitochondrial DNA fragments. Our results raise the potential that other animal systems thought to only inherit maternal mitochondria may also have paternal leakage, which would then affect the interpretation of past and future population genetics or phylogenetic studies that rely on mitochondria as uniparental markers.
Collapse
Affiliation(s)
- Jeeyun Lee
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher S Willett
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Li H, Xu J, Wang S, Wang P, Rao W, Hou B, Zhang Y. Genetic Differentiation and Widespread Mitochondrial Heteroplasmy among Geographic Populations of the Gourmet Mushroom Thelephora ganbajun from Yunnan, China. Genes (Basel) 2022; 13:genes13050854. [PMID: 35627240 PMCID: PMC9141859 DOI: 10.3390/genes13050854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/30/2022] Open
Abstract
The mitochondrial genomes are generally considered non-recombining and homoplasmic in nature. However, our previous study provided the first evidence of extensive and stable mitochondrial heteroplasmy in natural populations of the basidiomycete fungus Thelephora ganbajun from Yunnan province, China. The heteroplasmy was characterized by the presence of two types of introns residing at adjacent but different sites in the cytochrome oxidase subunits I (cox1) gene within an individual strain. However, the frequencies of these two introns among isolates from different geographical populations and the implications for the genetic structure in natural populations have not been investigated. In this study, we analyzed DNA sequence variation at the internal transcribed spacer (ITS) regions of the nuclear ribosomal RNA gene cluster among 489 specimens from 30 geographic locations from Yunnan and compared that variation with distribution patterns of the two signature introns in the cox1 gene that are indicative of heteroplasmy in this species. In our samples, evidence for gene flow, abundant genetic diversity, and genotypic uniqueness among geographic samples in Yunnan were revealed by ITS sequence variation. While there was insignificant positive correlation between geographic distance and genetic differentiation among the geographic samples based on ITS sequences, a moderate significant correlation was found between ITS sequence variation, geographical distance of sampling sites, and distribution patterns of the two heteroplasmic introns in the cox1 gene. Interestingly, there was a significantly negative correlation between the copy numbers of the two co-existing introns. We discussed the implications of our results for a better understanding of the spread of stable mitochondrial heteroplasmy, mito-nuclear interactions, and conservation of this important gourmet mushroom.
Collapse
Affiliation(s)
- Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shaojuan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Pengfei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
| | - Wanqin Rao
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Bin Hou
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- Correspondence:
| |
Collapse
|
14
|
Balakirev ES. Recombinant Mitochondrial Genomes Reveal Recent Interspecific Hybridization between Invasive Salangid Fishes. Life (Basel) 2022; 12:661. [PMID: 35629328 PMCID: PMC9144084 DOI: 10.3390/life12050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The interspecific recombination of the mitochondrial (mt) genome, if not an experimental artifact, may result from interbreeding of species with broken reproductive barriers, which, in turn, is a frequent consequence of human activities including species translocations, habitat modifications, and climate change. This issue, however, has not been addressed for Protosalanx chinensis and other commercially important and, simultaneously, invasive salangid fishes that were the product of successful aquaculture in China. To assess the probability of interspecific hybridization, we analyzed the patterns of diversity and recombination in the complete mitochondrial (mt) genomes of these fishes using the GenBank resources. A sliding window analysis revealed a non-uniform distribution of the intraspecific differences in P. chinensis with four highly pronounced peaks of divergence centered at the COI, ND4L-ND4, and ND5 genes, and also at the control region. The corresponding divergent regions in P. chinensis show a high sequence similarity (99−100%) to the related salangid fishes, Neosalanx tangkahkeii and N. anderssoni. This observation suggests that the divergent regions of P. chinensis may represent a recombinant mitochondrial DNA (mtDNA) containing mt genome fragments belonging to different salangid species. Indeed, four, highly significant (pairwise homoplasy index test, P < 0.00001) signals of recombination have been revealed at coordinates closely corresponding to the divergent regions. The recombinant fragments are, however, not fixed, and different mt genomes of P. chinensis are mosaic, containing different numbers of recombinant events. These facts, along with the high similarity or full identity of the recombinant fragments between the donor and the recipient sequences, indicate a recent interspecific hybridization between P. chinensis and two Neosalanx species. Alternative hypotheses, including taxonomical misidentifications, sequence misalignments, DNA contamination, and/or artificial PCR recombinants, are not supported by the data. The recombinant fragments revealed in our study represent diagnostic genetic markers for the identification and distinguishing of hybrids, which can be used to control the invasive dynamics of hybrid salangid fishes.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
15
|
Ban XC, Shao ZK, Wu LJ, Sun JT, Xue XF. Highly diversified mitochondrial genomes provide new evidence for interordinal relationships in the Arachnida. Cladistics 2022; 38:452-464. [PMID: 35349189 DOI: 10.1111/cla.12504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2022] [Indexed: 12/11/2022] Open
Abstract
Arachnida is an exceptionally diverse class in the Arthropoda, consisting of 20 orders and playing crucial roles in the terrestrial ecosystems. However, their interordinal relationships have been debated for over a century. Rearranged or highly rearranged mitochondrial genomes (mitogenomes) were consistently found in this class, but their various extent in different lineages and efficiency for resolving arachnid phylogenies are unclear. Here, we reconstructed phylogenetic trees using mitogenome sequences of 290 arachnid species to decipher interordinal relationships as well as diversification through time. Our results recovered monophyly of ten orders (i.e. Amblypygi, Araneae, Ixodida, Mesostigmata, Opiliones, Pseudoscorpiones, Ricinulei, Sarcoptiformes, Scorpiones and Solifugae), while rejecting monophyly of the Trombidiformes due to the unstable position of the Eriophyoidea. The monophyly of Acari (subclass) was rejected, possibly due to the long-branch attraction of the Pseudoscorpiones. The monophyly of Arachnida was further rejected because the Xiphosura nested within arachnid orders with unstable positions. Mitogenomes that are highly rearranged in mites but less rearranged or conserved in the remaining lineages point to their exceptional diversification in mite orders; however, shared derived mitochondrial (mt) gene clusters were found within superfamilies rather than interorders, confusing phylogenetic signals in arachnid interordinal relationships. Molecular dating results show that arachnid orders have ancient origins, ranging from the Ordovician to the Carboniferous, yet have significantly diversified since the Cretaceous in orders Araneae, Mesostigmata, Sarcoptiformes, and Trombidiformes. By summarizing previously resolved key positions of some orders, we propose a plausible arachnid tree of life. Our results underline a more precise framework for interordinal phylogeny in the Arachnida and provide new insights into their ancient evolution.
Collapse
Affiliation(s)
- Xin-Chao Ban
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zi-Kai Shao
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Li-Jun Wu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiao-Feng Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
16
|
Meza‐Lázaro RN, Peña‐Carrillo KI, Poteaux C, Lorenzi MC, Wetterer JK, Zaldívar‐Riverón A. Genome and cuticular hydrocarbon-based species delimitation shed light on potential drivers of speciation in a Neotropical ant species complex. Ecol Evol 2022; 12:e8704. [PMID: 35342602 PMCID: PMC8928884 DOI: 10.1002/ece3.8704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Geographic separation that leads to the evolution of reproductive isolation between populations generally is considered the most common form of speciation. However, speciation may also occur in the absence of geographic barriers due to phenotypic and genotypic factors such as chemical cue divergence, mating signal divergence, and mitonuclear conflict. Here, we performed an integrative study based on two genome-wide techniques (3RAD and ultraconserved elements) coupled with cuticular hydrocarbon (CHC) and mitochondrial (mt) DNA sequence data, to assess the species limits within the Ectatomma ruidum species complex, a widespread and conspicuous group of Neotropical ants for which heteroplasmy (i.e., presence of multiple mtDNA variants in an individual) has been recently discovered in some populations from southeast Mexico. Our analyses indicate the existence of at least five distinct species in this complex: two widely distributed across the Neotropics, and three that are restricted to southeast Mexico and that apparently have high levels of heteroplasmy. We found that species boundaries in the complex did not coincide with geographic barriers. We therefore consider possible roles of alternative drivers that may have promoted the observed patterns of speciation, including mitonuclear incompatibility, CHC differentiation, and colony structure. Our study highlights the importance of simultaneously assessing different sources of evidence to disentangle the species limits of taxa with complicated evolutionary histories.
Collapse
Affiliation(s)
- Rubi N. Meza‐Lázaro
- Colección Nacional de InsectosInstituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Kenzy I. Peña‐Carrillo
- Laboratoire d’Ethologie Expérimentale et ComparéeUR 4443LEECUniversité Sorbonne Paris NordClémentFrance
- INIFAPCampo Experimental General TeránGeneral TeránMexico
| | - Chantal Poteaux
- Laboratoire d’Ethologie Expérimentale et ComparéeUR 4443LEECUniversité Sorbonne Paris NordClémentFrance
| | - Maria Cristina Lorenzi
- Laboratoire d’Ethologie Expérimentale et ComparéeUR 4443LEECUniversité Sorbonne Paris NordClémentFrance
| | - James K. Wetterer
- Harriet L. Wilkes Honors CollegeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Alejandro Zaldívar‐Riverón
- Colección Nacional de InsectosInstituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
17
|
Mishra A, Forche A, Anderson MZ. Parasexuality of Candida Species. Front Cell Infect Microbiol 2021; 11:796929. [PMID: 34966696 PMCID: PMC8711763 DOI: 10.3389/fcimb.2021.796929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/19/2021] [Indexed: 12/03/2022] Open
Abstract
While most fungi have the ability to reproduce sexually, multiple independent lineages have lost meiosis and developed parasexual cycles in its place. Emergence of parasexual cycles is particularly prominent in medically relevant fungi from the CUG paraphyletic group of Candida species. Since the discovery of parasex in C. albicans roughly two decades ago, it has served as the model for Candida species. Importantly, parasex in C. albicans retains hallmarks of meiosis including genetic recombination and chromosome segregation, making it a potential driver of genetic diversity. Furthermore, key meiotic genes play similar roles in C. albicans parasex and highlights parallels between these processes. Yet, the evolutionary role of parasex in Candida adaptation and the extent of resulting genotypic and phenotypic diversity remain as key knowledge gaps in this facultative reproductive program. Here, we present our current understanding of parasex, the mechanisms governing its regulation, and its relevance to Candida biology.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, ME, United States
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Emser SV, Schaschl H, Millesi E, Steinborn R. Extension of Mitogenome Enrichment Based on Single Long-Range PCR: mtDNAs and Putative Mitochondrial-Derived Peptides of Five Rodent Hibernators. Front Genet 2021; 12:685806. [PMID: 35027919 PMCID: PMC8749263 DOI: 10.3389/fgene.2021.685806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Enriching mitochondrial DNA (mtDNA) for sequencing entire mitochondrial genomes (mitogenomes) can be achieved by single long-range PCR. This avoids interference from the omnipresent nuclear mtDNA sequences (NUMTs). The approach is currently restricted to the use of samples collected from humans and ray-finned fishes. Here, we extended the use of single long-range PCR by introducing back-to-back oligonucleotides that target a sequence of extraordinary homology across vertebrates. The assay was applied to five hibernating rodents, namely alpine marmot, Arctic and European ground squirrels, and common and garden dormice, four of which have not been fully sequenced before. Analysis of the novel mitogenomes focussed on the prediction of mitochondrial-derived peptides (MDPs) providing another level of information encoded by mtDNA. The comparison of MOTS-c, SHLP4 and SHLP6 sequences across vertebrate species identified segments of high homology that argue for future experimentation. In addition, we evaluated four candidate polymorphisms replacing an amino acid in mitochondrially encoded subunits of the oxidative phosphorylation (OXPHOS) system that were reported in relation to cold-adaptation. No obvious pattern was found for the diverse sets of mammalian species that either apply daily or multiday torpor or otherwise cope with cold. In summary, our single long-range PCR assay applying a pair of back-to-back primers that target a consensus sequence motif of Vertebrata has potential to amplify (intact) mitochondrial rings present in templates from a taxonomically diverse range of vertebrates. It could be promising for studying novel mitogenomes, mitotypes of a population and mitochondrial heteroplasmy in a sensitive, straightforward and flexible manner.
Collapse
Affiliation(s)
- Sarah V. Emser
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Helmut Schaschl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
19
|
Chow S, Yanagimoto T, Takeyama H. Detection of heteroplasmy and nuclear mitochondrial pseudogenes in the Japanese spiny lobster Panulirus japonicus. Sci Rep 2021; 11:21780. [PMID: 34741113 PMCID: PMC8571370 DOI: 10.1038/s41598-021-01346-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
Partial mtDNA cytochrome oxidase subunit I (COI) fragments and near entire stretch of 12S rDNA (12S) and control region (Dloop) of the Japanese spiny lobster (Panulirus japonicus) (n = 3) were amplified by PCR and used for direct nucleotide sequencing and for clone library-based nucleotide sequence analysis. Nucleotide sequences of a total of 75 clones in COI, 77 in 12S and 92 in Dloop were determined. Haplotypes of the clones matched with those obtained by direct sequencing were determined to be genuine mtDNA sequence of the individual. Phylogenetic analysis revealed several distinct groups of haplotypes in all three regions. Genuine mtDNA sequences were observed to form a group with their closely related variables, and most of these variables may be due to amplification error but a few to be heteroplasmy. Haplotypes determined as nuclear mitochondrial pseudogenes (NUMTs) formed distinct groups. Nucleotide sequence divergence (K2P distance) between genuine haplotypes and NUMTs were substantial (7.169-23.880% for COI, 1.336-23.434% for 12S, and 7.897-71.862% for Dloop). These values were comparable to or smaller than those between species of the genus Panulirus, indicating that integration of mtDNA into the nuclear genome is a continuous and dynamic process throughout pre- and post-speciation events. Double peaks in electropherograms obtained by direct nucleotide sequencing were attributed to common nucleotides shared by multiple NUMTs. Information on the heteroplasmy and NUMTs would be very important for addressing their impact on direct nucleotide sequencing and for quality control of nucleotide sequences obtained.
Collapse
Affiliation(s)
- Seinen Chow
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
| | - Takashi Yanagimoto
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Fukuura 2-12-4, Yokohama, Kanagawa, 236-8648, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan. .,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu cho, Shinjuku, Tokyo, 162-8480, Japan. .,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-0072, Japan.
| |
Collapse
|
20
|
Complete Mitochondrial Genomes of Metcalfa pruinosa and Salurnis marginella (Hemiptera: Flatidae): Genomic Comparison and Phylogenetic Inference in Fulgoroidea. Curr Issues Mol Biol 2021; 43:1391-1418. [PMID: 34698117 PMCID: PMC8929015 DOI: 10.3390/cimb43030099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022] Open
Abstract
The complete mitochondrial genomes (mitogenomes) of two DNA barcode-defined haplotypes of Metcalfa pruinosa and one of Salurnis marginella (Hemiptera: Flatidae) were sequenced and compared to those of other Fulgoroidea species. Furthermore, the mitogenome sequences were used to reconstruct phylogenetic relationships among fulgoroid families. The three mitogenomes, including that of the available species of Flatidae, commonly possessed distinctive structures in the 1702-1836 bp A+T-rich region, such as two repeat regions at each end and a large centered nonrepeat region. All members of the superfamily Fulgoroidea, including the Flatidae, consistently possessed a motiflike sequence (TAGTA) at the ND1 and trnS2 junction. The phylogenetic analyses consistently recovered the familial relationships of (((((Ricaniidae + Issidae) + Flatidae) + Fulgoridae) + Achilidae) + Derbidae) in the amino acid-based analysis, with the placement of Cixiidae and Delphacidae as the earliest-derived lineages of fulgoroid families, whereas the monophyly of Delphacidae was not congruent between tree-constructing algorithms.
Collapse
|
21
|
Dégletagne C, Abele D, Glöckner G, Alric B, Gruber H, Held C. Presence of male mitochondria in somatic tissues and their functional importance at the whole animal level in the marine bivalve Arctica islandica. Commun Biol 2021; 4:1104. [PMID: 34545198 PMCID: PMC8452683 DOI: 10.1038/s42003-021-02593-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/16/2021] [Indexed: 02/08/2023] Open
Abstract
Metazoans normally possess a single lineage of mitochondria inherited from the mother (♀-type mitochondria) while paternal mitochondria are absent or eliminated in fertilized eggs. In doubly uniparental inheritance (DUI), which is specific to the bivalve clade including the ocean quahog, Arctica islandica, ♂-type mitochondria are retained in male gonads and, in a few species, small proportions of ♂-type mitochondria co-exist with ♀-type in somatic tissues. To the best of our knowledge, we report, for the first time in metazoan, the natural occurrence of male and female individuals with exclusively ♂-type mitochondria in somatic tissues of the bivalve A. islandica. Mitochondrial genomes differ by ~5.5% at DNA sequence level. Exclusive presence of ♂-type mitochondria affects mitochondrial complexes partially encoded by mitochondrial genes and leads to a sharp drop in respiratory capacity. Through a combination of whole mitochondrial genome sequencing and molecular assays (gene presence and expression), we demonstrate that 1) 11% of individuals of an Icelandic population appear homoplasmic for ♂-type mitochondria in somatic tissues, 2) ♂-type mitochondrial genes are transcribed and 3) individuals with ♂-type mitochondria in somatic cells lose 30% of their wild-type respiratory capacity. This mitochondrial pattern in A. islandica is a special case of DUI, highlighted in individuals from both sexes with functional consequences at cellular and conceivably whole animal level.
Collapse
Affiliation(s)
- Cyril Dégletagne
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany ,grid.7849.20000 0001 2150 7757Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Doris Abele
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Gernot Glöckner
- grid.6190.e0000 0000 8580 3777Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Benjamin Alric
- grid.7849.20000 0001 2150 7757Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Heike Gruber
- grid.419520.b0000 0001 2222 4708Max Planck Institute for Evolutionary Biology, Department of Evolutionary Theory, Plön, Germany
| | - Christoph Held
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| |
Collapse
|
22
|
DNA Multi-Marker Genotyping and CIAS Morphometric Phenotyping of Fasciola gigantica-Sized Flukes from Ecuador, with an Analysis of the Radix Absence in the New World and the Evolutionary Lymnaeid Snail Vector Filter. Animals (Basel) 2021; 11:ani11092495. [PMID: 34573461 PMCID: PMC8472080 DOI: 10.3390/ani11092495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Fasciolid flukes collected from sheep and cattle in Ecuador showed a high diversity in DNA sequences whose analyses indicated introductions from South America, European and North American countries. These results agree with the numerous livestock importations performed by Ecuador. Abnormally big-sized liver flukes were found in Ecuadorian sheep. The morphometric phenotypic CIAS study showed that its size maximum and mean very pronouncedly and significantly surpassed those of the Fasciola hepatica populations from South America and Spain and proved to be intermediate between standard F. hepatica and F. gigantica populations. Such a feature is only known in intermediate fasciolid forms in Old World areas where the two species and their specific lymnaeid snail vectors overlap. This argues about a past hybridization after F. gigantica importation from Pakistan and/or introduction of intermediate hybrids previously generated in USA. The lack of heterozygotic rDNA ITS positions differentiating the two species, and of introgressed fragments and heteroplasmic positions in mtDNA genes, indicate a post-hybridization period sufficiently long as for rDNA concerted evolution to complete homogenization and mtDNA to return to homoplasmy. The vector specificity filter due to Radix absence should act as a driving force in accelerating such lineage evolution. Public health implications are finally emphasized. Abstract Fascioliasis is a disease caused by Fasciola hepatica worldwide transmitted by lymnaeid snails mainly of the Galba/Fossaria group and F. gigantica restricted to parts of Africa and Asia and transmitted by Radix lymnaeids. Concern has recently risen regarding the high pathogenicity and human infection capacity of F. gigantica. Abnormally big-sized fasciolids were found infecting sheep in Ecuador, the only South American country where F. gigantica has been reported. Their phenotypic comparison with F. hepatica infecting sheep from Peru, Bolivia and Spain, and F. gigantica from Egypt and Vietnam demonstrated the Ecuadorian fasciolids to have size-linked parameters of F. gigantica. Genotyping of these big-sized fasciolids by rDNA ITS-2 and ITS-1 and mtDNA cox1 and nad1 and their comparison with other countries proved the big-sized fasciolids to belong to F. hepatica. Neither heterozygotic ITS position differentiated the two species, and no introgressed fragments and heteroplasmic positions in mtDNA were found. The haplotype diversity indicates introductions mainly from other South American countries, Europe and North America. Big-sized fasciolids from Ecuador and USA are considered to be consequences of F.gigantica introductions by past livestock importations. The vector specificity filter due to Radix absence should act as driving force in the evolution in such lineages.
Collapse
|
23
|
Schwartz JH. Evolution, systematics, and the unnatural history of mitochondrial DNA. Mitochondrial DNA A DNA Mapp Seq Anal 2021; 32:126-151. [PMID: 33818247 DOI: 10.1080/24701394.2021.1899165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The tenets underlying the use of mtDNA in phylogenetic and systematic analyses are strict maternal inheritance, clonality, homoplasmy, and difference due to mutation: that is, there are species-specific mtDNA sequences and phylogenetic reconstruction is a matter of comparing these sequences and inferring closeness of relatedness from the degree of sequence similarity. Yet, how mtDNA behavior became so defined is mysterious. Even though early studies of fertilization demonstrated for most animals that not only the head, but the sperm's tail and mitochondria-bearing midpiece penetrate the egg, the opposite - only the head enters the egg - became fact, and mtDNA conceived as maternally transmitted. When midpiece/tail penetration was realized as true, the conceptions 'strict maternal inheritance', etc., and their application to evolutionary endeavors, did not change. Yet there is mounting evidence of paternal mtDNA transmission, paternal and maternal combination, intracellular recombination, and intra- and intercellular heteroplasmy. Clearly, these phenomena impact the systematic and phylogenetic analysis of mtDNA sequences.
Collapse
Affiliation(s)
- Jeffrey H Schwartz
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Delgado-Cano D, Mariño-Ramírez L, Hernández-Fernández J. Detection of high heteroplasmy in complete loggerhead and hawksbill sea turtles mitochondrial genomes using RNAseq. Mitochondrial DNA A DNA Mapp Seq Anal 2021; 32:106-114. [PMID: 33629889 DOI: 10.1080/24701394.2021.1885389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sea turtle populations around the world face rapid decline due to the effect of anthropogenic and environmental factors. Among the affected populations are those of hawksbill turtles (Eretmochelys imbricata) and loggerhead turtles (Caretta caretta), which is why a greater effort is currently being made in their monitoring and tracing. The intragenic degree of heteroplasmic mutations, commonly associated with diseases of variable symptoms, has not been analyzed in these species. In this study, heteroplasmy in the complete mitogenome (mtDNA) of three loggerhead turtles and one hawksbill turtle was identified from data obtained by RNAseq. Individuals Cc3, Ei1, Cc1 and Cc2 presented 0.3, 1.7, 1.8 and 7.1% of heteroplasmic mutations in all their mtDNA, respectively. The protein-coding genes that presented the highest percentage of heteroplasmy were ND4 and ND5 in individual Cc2 with 16 and 38.6%, respectively. Of the tRNA genes, only tRNATyr was heteroplasmic in the four individuals with 5.63% (Cc1), 25.35% (Ei1 and Cc2) and 49.3% (Cc3). In this study, we identified the critical sites of heteroplasmy in each individual and the genetic variability of their mitogenomes. The data obtained represents the baseline for future projects that evaluate the population status of these species.
Collapse
Affiliation(s)
- David Delgado-Cano
- Department of Natural and Environmental Sciences, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group -GENBIMOL, Jorge Tadeo Lozano University, Bogotá, South America
| | | | - Javier Hernández-Fernández
- Department of Natural and Environmental Sciences, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group -GENBIMOL, Jorge Tadeo Lozano University, Bogotá, South America
| |
Collapse
|
25
|
Iketani G, Pimentel L, Torres EDS, Rêgo PSD, Sampaio I. Mitochondrial heteroplasmy and pseudogenes in the freshwater prawn, Macrobrachium amazonicum (Heller, 1862): DNA barcoding and phylogeographic implications. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 32:1-11. [PMID: 33164622 DOI: 10.1080/24701394.2020.1844677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mitochondrial cytochrome oxidase c subunit 1 (COI) gene has been widely used in phylogenetic studies of crustaceans and analyses in population genetics. As COI studies have become more popular, there has been an increase in the number of reports of the presence of nuclear insertions of mitochondrial DNA (Numts) and mitochondrial heteroplasmy. Here, we provide evidence of both types of event in the COI sequences of Macrobrachium amazonicum, an economically important freshwater prawn, which is widespread in South America. Heteroplasmy and Numts were confirmed by different methods of DNA extraction (genomic, mitochondrial, and nuclear-enriched DNA), cloning, and sequencing, and were observed in 11 of the 14 populations sampled, primarily in the Amazon region. We discuss how the occurrence of these events affects the interpretation of the genetic relationships among the M. amazonicum populations, and we recommend caution when using COI for genetic inferences in prawns of the genus Macrobrachium, and in particular that any analysis should include nuclear markers.
Collapse
Affiliation(s)
- Gabriel Iketani
- Laboratório de Educação e Evolução Prof. Horacio Schneider, Instituto de Ciências da Educação, Universidade Federal do Oeste do Pará, Santarém, Brasil
| | - Luciana Pimentel
- Laboratório de Educação e Evolução Prof. Horacio Schneider, Instituto de Ciências da Educação, Universidade Federal do Oeste do Pará, Santarém, Brasil
| | - Ezequias Dos Santos Torres
- Laboratório de Educação e Evolução Prof. Horacio Schneider, Instituto de Ciências da Educação, Universidade Federal do Oeste do Pará, Santarém, Brasil
| | - Péricles Sena do Rêgo
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Brasil.,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Iracilda Sampaio
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Brasil
| |
Collapse
|
26
|
Gueuning M, Frey JE, Praz C. Ultraconserved yet informative for species delimitation: Ultraconserved elements resolve long-standing systematic enigma in Central European bees. Mol Ecol 2020; 29:4203-4220. [PMID: 32916006 DOI: 10.1111/mec.15629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
Accurate and testable species hypotheses are essential for measuring, surveying and managing biodiversity. Taxonomists often rely on mitochondrial DNA barcoding to complement morphological species delimitations. Although COI-barcoding has largely proven successful in assisting identifications for most animal taxa, there are nevertheless numerous cases where mitochondrial barcodes do not reflect species hypotheses. For instance, what is regarded as a single species can be associated with two distinct DNA barcodes, which can point either to cryptic diversity or to within-species mitochondrial divergences without reproductive isolation. In contrast, two or more species can share barcodes, for instance due to mitochondrial introgression. These intrinsic limitations of DNA barcoding are commonly addressed with nuclear genomic markers, which are expensive, may have low repeatability and often require high-quality DNA. To overcome these limitations, we examined the use of ultraconserved elements (UCEs) as a quick and robust genomic approach to address such problematic cases of species delimitation in bees. This genomic method was assessed using six different species complexes suspected to harbour cryptic diversity, mitochondrial introgression or mitochondrial paraphyly. The sequencing of UCEs recovered between 686 and 1,860 homologous nuclear loci and provided explicit species delimitation in all investigated species complexes. These results provide strong evidence for the suitability of UCEs as a fast method for species delimitation even in recently diverged lineages. Furthermore, we provide the first evidence for both mitochondrial introgression among distinct bee species, and mitochondrial paraphyly within a single bee species.
Collapse
Affiliation(s)
- Morgan Gueuning
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Wädenswil, Switzerland.,Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Juerg E Frey
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Wädenswil, Switzerland
| | - Christophe Praz
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| |
Collapse
|
27
|
Hill GE. Genetic hitchhiking, mitonuclear coadaptation, and the origins of mt DNA barcode gaps. Ecol Evol 2020; 10:9048-9059. [PMID: 32953045 PMCID: PMC7487244 DOI: 10.1002/ece3.6640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/02/2023] Open
Abstract
DNA barcoding based on mitochondrial (mt) nucleotide sequences is an enigma. Neutral models of mt evolution predict DNA barcoding cannot work for recently diverged taxa, and yet, mt DNA barcoding accurately delimits species for many bilaterian animals. Meanwhile, mt DNA barcoding often fails for plants and fungi. I propose that because mt gene products must cofunction with nuclear gene products, the evolution of mt genomes is best understood with full consideration of the two environments that impose selective pressure on mt genes: the external environment and the internal genomic environment. Moreover, it is critical to fully consider the potential for adaptive evolution of not just protein products of mt genes but also of mt transfer RNAs and mt ribosomal RNAs. The tight linkage of genes on mt genomes that do not engage in recombination could facilitate selective sweeps whenever there is positive selection on any element in the mt genome, leading to the purging of mt genetic diversity within a population and to the rapid fixation of novel mt DNA sequences. Accordingly, the most important factor determining whether or not mt DNA sequences diagnose species boundaries may be the extent to which the mt chromosomes engage in recombination.
Collapse
|
28
|
Wilson RE, Sonsthagen SA, Smé N, Gharrett AJ, Majewski AR, Wedemeyer K, Nelson RJ, Talbot SL. Mitochondrial genome diversity and population mitogenomics of polar cod (Boreogadus saida) and Arctic dwelling gadoids. Polar Biol 2020. [DOI: 10.1007/s00300-020-02703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Ricardo PC, Françoso E, Arias MC. Mitochondrial DNA intra-individual variation in a bumblebee species: A challenge for evolutionary studies and molecular identification. Mitochondrion 2020; 53:243-254. [PMID: 32569843 DOI: 10.1016/j.mito.2020.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/28/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Mitochondrial DNA (mtDNA) regions have been widely used as molecular markers in evolutionary studies and species identification. However, the presence of heteroplasmy and NUMTs may represent obstacles. Heteroplasmy is a state where an organism has different mitochondrial haplotypes. NUMTs are nuclear pseudogenes originating from mtDNA sequences transferred to nuclear DNA. Evidences of heteroplasmy were already verified in the bumblebee Bombus morio in an earlier study. The present work investigated in more detail the presence of intra-individual haplotypes variation in this species. Heteroplasmy was detected in individuals from all the ten sampled locations, with an average of six heteroplasmic haplotypes per individual. In addition, some of these heteroplasmic haplotypes were shared among individuals from different locations, suggesting the existence of stable heteroplasmy in B. morio. These results demonstrated that heteroplasmy is likely to affect inferences based on mtDNA analysis, especially in phylogenetic, phylogeographic and population genetics studies. In addition, NUMTs were also detected. These sequences showed divergence of 2.7% to 12% in relation to the mitochondrial haplotypes. These levels of divergence could mislead conclusions in evolutionary studies and affect species identification through DNA barcoding.
Collapse
Affiliation(s)
- Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Elaine Françoso
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Missing the mark(er): pseudogenes identified through whole mitochondrial genome sequencing provide new insight into invasive lionfish genetics. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01263-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Kannan A, Rama Rao S, Ratnayeke S, Yow YY. The efficiency of universal mitochondrial DNA barcodes for species discrimination of Pomacea canaliculata and Pomacea maculata. PeerJ 2020; 8:e8755. [PMID: 32274263 PMCID: PMC7127494 DOI: 10.7717/peerj.8755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/16/2020] [Indexed: 12/05/2022] Open
Abstract
Invasive apple snails, Pomacea canaliculata and P. maculata, have a widespread distribution globally and are regarded as devastating pests of agricultural wetlands. The two species are morphologically similar, which hinders species identification via morphological approaches and species-specific management efforts. Advances in molecular genetics may contribute effective diagnostic tools to potentially resolve morphological ambiguity. DNA barcoding has revolutionized the field of taxonomy by providing an alternative, simple approach for species discrimination, where short sections of DNA, the cytochrome c oxidase subunit I (COI) gene in particular, are used as ‘barcodes’ to delineate species boundaries. In our study, we aimed to assess the effectiveness of two mitochondrial markers, the COI and 16S ribosomal deoxyribonucleic acid (16S rDNA) markers for DNA barcoding of P. canaliculata and P. maculata. The COI and 16S rDNA sequences of 40 Pomacea specimens collected from six localities in Peninsular Malaysia were analyzed to assess their barcoding performance using phylogenetic methods and distance-based assessments. The results confirmed both markers were suitable for barcoding P. canaliculata and P. maculata. The phylogenies of the COI and 16S rDNA markers demonstrated species-specific monophyly and were largely congruent with the exception of one individual. The COI marker exhibited a larger barcoding gap (6.06–6.58%) than the 16S rDNA marker (1.54%); however, the magnitude of barcoding gap generated within the barcoding region of the 16S rDNA marker (12-fold) was bigger than the COI counterpart (approximately 9-fold). Both markers were generally successful in identifying P. canaliculata and P. maculata in the similarity-based DNA identifications. The COI + 16S rDNA concatenated dataset successfully recovered monophylies of P. canaliculata and P. maculata but concatenation did not improve individual datasets in distance-based analyses. Overall, although both markers were successful for the identification of apple snails, the COI molecular marker is a better barcoding marker and could be utilized in various population genetic studies of P. canaliculata and P. maculata.
Collapse
Affiliation(s)
- Adrian Kannan
- Department of Biological Sciences, School of Science & Technology, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Suganiya Rama Rao
- Department of Biological Sciences, School of Science & Technology, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Shyamala Ratnayeke
- Department of Biological Sciences, School of Science & Technology, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Yoon-Yen Yow
- Department of Biological Sciences, School of Science & Technology, Sunway University, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
32
|
Rodríguez-Pena E, Verísimo P, Fernández L, González-Tizón A, Bárcena C, Martínez-Lage A. High incidence of heteroplasmy in the mtDNA of a natural population of the spider crab Maja brachydactyla. PLoS One 2020; 15:e0230243. [PMID: 32191743 PMCID: PMC7082002 DOI: 10.1371/journal.pone.0230243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are mostly inherited by maternal via, that is, only mitochondria from eggs are retained in the embryos. However, this general assumption of uniparentally transmitted, homoplasmic and non-recombining mitochondrial genomes is becoming more and more controversial. The presence of different sequences of mtDNA within a cell or individual, known as heteroplasmy, is increasingly reported in several taxon of animals, such as molluscs, arthropods and vertebrates. In this work, a considerable frequency of heteroplasmy were detected in the COI and 16S genes of the spider crab Maja brachydactyla, possibly associated to hybridisation with the congeneric species Maja squinado. This finding is a fact to keep in mind before addressing molecular analyses based on mitochondrial markers, since the assumption of maternal inheritance could lead to erroneous results. As M. brachydactyla is a commercial species, heteroplasmy is an important aspect to take into account for the fisheries management of this resource, since effective population size could be overestimated.
Collapse
Affiliation(s)
- Elba Rodríguez-Pena
- Dpto. de Biología, Facultad de Ciencias, Centro de Investigaciones Científicas Avazadas, Universidade da Coruña, A Coruña, Spain
| | - Patricia Verísimo
- Dpto. de Biología, Facultad de Ciencias, Centro de Investigaciones Científicas Avazadas, Universidade da Coruña, A Coruña, Spain
| | - Luis Fernández
- Dpto. de Biología, Facultad de Ciencias, Centro de Investigaciones Científicas Avazadas, Universidade da Coruña, A Coruña, Spain
| | - Ana González-Tizón
- Dpto. de Biología, Facultad de Ciencias, Centro de Investigaciones Científicas Avazadas, Universidade da Coruña, A Coruña, Spain
| | - Covadonga Bárcena
- Dpto. de Biología, Facultad de Ciencias, Centro de Investigaciones Científicas Avazadas, Universidade da Coruña, A Coruña, Spain
| | - Andrés Martínez-Lage
- Dpto. de Biología, Facultad de Ciencias, Centro de Investigaciones Científicas Avazadas, Universidade da Coruña, A Coruña, Spain
- * E-mail:
| |
Collapse
|
33
|
Evolving mtDNA populations within cells. Biochem Soc Trans 2020; 47:1367-1382. [PMID: 31484687 PMCID: PMC6824680 DOI: 10.1042/bst20190238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes vital respiratory machinery. Populations of mtDNA molecules exist in most eukaryotic cells, subject to replication, degradation, mutation, and other population processes. These processes affect the genetic makeup of cellular mtDNA populations, changing cell-to-cell distributions, means, and variances of mutant mtDNA load over time. As mtDNA mutant load has nonlinear effects on cell functionality, and cell functionality has nonlinear effects on tissue performance, these statistics of cellular mtDNA populations play vital roles in health, disease, and inheritance. This mini review will describe some of the better-known ways in which these populations change over time in different organisms, highlighting the importance of quantitatively understanding both mutant load mean and variance. Due to length constraints, we cannot attempt to be comprehensive but hope to provide useful links to some of the many excellent studies on these topics.
Collapse
|
34
|
Ghiselli F, Maurizii MG, Reunov A, Ariño-Bassols H, Cifaldi C, Pecci A, Alexandrova Y, Bettini S, Passamonti M, Franceschini V, Milani L. Natural Heteroplasmy and Mitochondrial Inheritance in Bivalve Molluscs. Integr Comp Biol 2020; 59:1016-1032. [PMID: 31120503 DOI: 10.1093/icb/icz061] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heteroplasmy is the presence of more than one type of mitochondrial genome within an individual, a condition commonly reported as unfavorable and affecting mitonuclear interactions. So far, no study has investigated heteroplasmy at protein level, and whether it occurs within tissues, cells, or even organelles. The only known evolutionarily stable and natural heteroplasmic system in Metazoa is the Doubly Uniparental Inheritance (DUI)-reported so far in ∼100 bivalve species-in which two mitochondrial lineages are present: one transmitted through eggs (F-type) and the other through sperm (M-type). Because of such segregation, mitochondrial oxidative phosphorylation proteins reach a high amino acid sequence divergence (up to 52%) between the two lineages in the same species. Natural heteroplasmy coupled with high sequence divergence between F- and M-type proteins provides a unique opportunity to study their expression and assess the level and extent of heteroplasmy. Here, for the first time, we immunolocalized F- and M-type variants of three mitochondrially-encoded proteins in the DUI species Ruditapes philippinarum, in germline and somatic tissues at different developmental stages. We found heteroplasmy at organelle level in undifferentiated germ cells of both sexes, and in male soma, whereas gametes were homoplasmic: eggs for the F-type and sperm for the M-type. Thus, during gametogenesis, only the sex-specific mitochondrial variant is maintained, likely due to a process of meiotic drive. We examine the implications of our results for DUI proposing a revised model, and we discuss interactions of mitochondria with germ plasm and their role in germline development. Molecular and phylogenetic evidence suggests that DUI evolved from the common Strictly Maternal Inheritance, so the two systems likely share the same underlying molecular mechanism, making DUI a useful system for studying mitochondrial biology.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Arkadiy Reunov
- National Scientific Centre of Marine Biology, Russian Academy of Sciences Far Eastern Branch, Vladivostok 690041, Russia.,Department of Biology, St. Francis Xavier University, Antigonish N.S. B2G 2W5, Canada
| | - Helena Ariño-Bassols
- Departamento de Fisiología e Inmunología, Universitat de Barcelona, Barcelona 08028, Spain
| | - Carmine Cifaldi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Andrea Pecci
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Yana Alexandrova
- National Scientific Centre of Marine Biology, Russian Academy of Sciences Far Eastern Branch, Vladivostok 690041, Russia
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna 40126, Italy
| |
Collapse
|
35
|
Tikochinski Y, Carreras C, Tikochinski G, Vilaça ST. Population-specific signatures of intra-individual mitochondrial DNA heteroplasmy and their potential evolutionary advantages. Sci Rep 2020; 10:211. [PMID: 31937820 PMCID: PMC6959243 DOI: 10.1038/s41598-019-56918-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/03/2019] [Indexed: 01/16/2023] Open
Abstract
Heteroplasmy is the existence of more than one mitochondrial DNA (mtDNA) variant within a cell. The evolutionary mechanisms of heteroplasmy are not fully understood, despite being a very common phenomenon. Here we combined heteroplasmy measurements using high throughput sequencing on green turtles (Chelonia mydas) with simulations to understand how heteroplasmy modulates population diversity across generations and under different demographic scenarios. We found heteroplasmy to be widespread in all individuals analysed, with consistent signal in individuals across time and tissue. Significant shifts in haplotype composition were found from mother to offspring, signalling the effect of the cellular bottleneck during oogenesis as included in the model. Our model of mtDNA inheritance indicated that heteroplasmy favoured the increase of population diversity through time and buffered against population bottlenecks, thus indicating the importance of this phenomenon in species with reduced population sizes and frequent population bottlenecks like marine turtles. Individuals with recent haplotypes showed higher levels of heteroplasmy than the individuals with ancient haplotypes, suggesting a potential advantage of maintaining established copies when new mutations arise. We recommend using heteroplasmy through high throughput sequencing in marine turtles, as well as other wildlife populations, for diversity assessment, population genetics, and mixed stock analysis.
Collapse
Affiliation(s)
- Yaron Tikochinski
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
| | - Carlos Carreras
- Department of Genetics, Microbiology and Statistics and IRBio, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | | | - Sibelle T Vilaça
- Leibniz Institute for Zoo and Wildlife Research, Department of Evolutionary Genetics, Berlin, Germany. .,Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany. .,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
36
|
Wagner JT, Howe DK, Estes S, Denver DR. Mitochondrial DNA Variation and Selfish Propagation Following Experimental Bottlenecking in Two Distantly Related Caenorhabditis briggsae Isolates. Genes (Basel) 2020; 11:genes11010077. [PMID: 31936803 PMCID: PMC7016712 DOI: 10.3390/genes11010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding mitochondrial DNA (mtDNA) evolution and inheritance has broad implications for animal speciation and human disease models. However, few natural models exist that can simultaneously represent mtDNA transmission bias, mutation, and copy number variation. Certain isolates of the nematode Caenorhabditis briggsae harbor large, naturally-occurring mtDNA deletions of several hundred basepairs affecting the NADH dehydrogenase subunit 5 (nduo-5) gene that can be functionally detrimental. These deletion variants can behave as selfish DNA elements under genetic drift conditions, but whether all of these large deletion variants are transmitted in the same preferential manner remains unclear. In addition, the degree to which transgenerational mtDNA evolution profiles are shared between isolates that differ in their propensity to accumulate the nduo-5 deletion is also unclear. We address these knowledge gaps by experimentally bottlenecking two isolates of C. briggsae with different nduo-5 deletion frequencies for up to 50 generations and performing total DNA sequencing to identify mtDNA variation. We observed multiple mutation profile differences and similarities between C. briggsae isolates, a potentially species-specific pattern of copy number dysregulation, and some evidence for genetic hitchhiking in the deletion-bearing isolate. Our results further support C. briggsae as a practical model for characterizing naturally-occurring mtgenome variation and contribute to the understanding of how mtgenome variation persists in animal populations and how it presents in mitochondrial disease states.
Collapse
Affiliation(s)
- Josiah T. Wagner
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Correspondence:
| | - Dana K. Howe
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA; (D.K.H.); (D.R.D.)
| | - Suzanne Estes
- Department of Biology, Portland State University, Portland, OR 97201, USA;
| | - Dee R. Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA; (D.K.H.); (D.R.D.)
| |
Collapse
|
37
|
Muntaabski I, Russo RM, Liendo MC, Palacio MA, Cladera JL, Lanzavecchia SB, Scannapieco AC. Genetic variation and heteroplasmy of Varroa destructor inferred from ND4 mtDNA sequences. Parasitol Res 2020; 119:411-421. [PMID: 31915912 DOI: 10.1007/s00436-019-06591-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/22/2019] [Indexed: 02/01/2023]
Abstract
Varroa destructor, a parasitic mite of the western honey bee, Apis mellifera L., is a serious threat to colonies and beekeeping worldwide. Population genetics studies of the mite have provided information on two mitochondrial haplotypes infecting honey bee colonies, named K and J (after Korea and Japan, respectively, where they were originally identified). On the American continent, the K haplotype is much more prevalent, with the J haplotype only detected in some areas of Brazil. The aims of the present study were to assess the genetic diversity of V. destructor populations in the major beekeeping region of Argentina and to evaluate the presence of heteroplasmy at the nucleotide level. Phoretic mites were collected from managed A. mellifera colonies in ten localities, and four mitochondrial DNA (mtDNA) regions (COXI, ND4, ND4L, and ND5) were analyzed. Based on cytochrome oxidase subunit I (COXI) sequencing, exclusively the K haplotype of V. destructor was detected. Furthermore, two sub-haplotypes (KArg-N1 and KArg-N2) were identified from a variation in ND4 sequences and the frequency of these sub-haplotypes was found to significantly correlate with geographical latitude. The occurrence of site heteroplasmy was also evident for this gene. Therefore, ND4 appears to be a sensitive marker for detecting genetic variability in mite populations. Site heteroplasmy emerges as a phenomenon that could be relatively frequent in V. destructor.
Collapse
Affiliation(s)
- Irina Muntaabski
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina.,Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Romina M Russo
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina
| | - María C Liendo
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina.,Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María A Palacio
- Unidad Integrada INTA - Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina
| | - Jorge L Cladera
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina
| | - Silvia B Lanzavecchia
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina
| | - Alejandra C Scannapieco
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina. .,Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
38
|
Ancient hybridization and mtDNA introgression behind current paternal leakage and heteroplasmy in hybrid zones. Sci Rep 2019; 9:19177. [PMID: 31844110 PMCID: PMC6914795 DOI: 10.1038/s41598-019-55764-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/29/2019] [Indexed: 01/18/2023] Open
Abstract
Hybridization between heterospecific individuals has been documented as playing a direct role in promoting paternal leakage and mitochondrial heteroplasmy in both natural populations and laboratory conditions, by relaxing the egg-sperm recognition mechanisms. Here, we tested the hypothesis that hybridization can lead to mtDNA heteroplasmy also indirectly via mtDNA introgression. By using a phylogenetic approach, we showed in two reproductively isolated beetle species, Ochthebius quadricollis and O. urbanelliae, that past mtDNA introgression occurred between them in sympatric populations. Then, by developing a multiplex allele-specific PCR assay, we showed the presence of heteroplasmic individuals and argue that their origin was through paternal leakage following mating between mtDNA-introgressed and pure conspecific individuals. Our results highlight that mtDNA introgression can contribute to promote paternal leakage, generating genetic novelty in a way that has been overlooked to date. Furthermore, they highlight that the frequency and distribution of mtDNA heteroplasmy can be deeply underestimated in natural populations, as i) the commonly used PCR-Sanger sequencing approach can fail to detect mitochondrial heteroplasmy, and ii) specific studies aimed at searching for it in populations where mtDNA-introgressed and pure individuals co-occur remain scarce, despite the fact that mtDNA introgression has been widely documented in several taxa and populations.
Collapse
|
39
|
Du LN, Chen J, Yu GH, Yang JX. Systematic relationships of Chinese freshwater semisulcospirids (Gastropoda, Cerithioidea) revealed by mitochondrial sequences. Zool Res 2019; 40:541-551. [PMID: 31502425 PMCID: PMC6822936 DOI: 10.24272/j.issn.2095-8137.2019.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The systematics of Semisulcospiridae in China is revised here based on morphological characters and mitochondrial phylogenetics. Phylogenetic relationships within the Chinese semisulcospirids were assessed via DNA sequences from mitochondrial analysis (cytochrome c oxidase I and 16S rRNA). This research contains most morphospecies of semisulcospirids previously recorded in China. Based on these results, the family of Chinese Semisulcospiridae is represented by three genera: i.e., viviparous Semisulcospira Böttger, 1886, oviparous Hua Chen, 1943 and Koreoleptoxis Burch and Jung, 1988. These genera can be distinguished from each other by reproductive anatomy, reproductive mode, and radula features. Species of Hua are mainly distributed in southwest China and Guangxi, whereas Koreoleptoxis and Semisulcospira are mainly distributed in south and northeast China.
Collapse
Affiliation(s)
- Li-Na Du
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541004, China.,Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Chen
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guo-Hua Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541004, China, E-mail:yugh2018@ 126.com
| | - Jun-Xing Yang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China, E-mail:.,Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| |
Collapse
|
40
|
Koolkarnkhai P, Intakham C, Sangthong P, Surat W, Wonnapinij P. Portunus pelagicus mtDNA heteroplasmy inheritance and its effect on the use of mtCR and mtCOI sequence data. Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:848-860. [PMID: 31766903 DOI: 10.1080/24701394.2019.1693549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mitochondrial DNA (mtDNA) sequences, especially mitochondrial control region (mtCR) and mitochondrial cytochrome c oxidase subunit I (mtCOI), have been widely used in population and evolutionary genetic analyses of metazoan. The presence of mtDNA heteroplasmy - a mixture of mtDNA haplotypes - possibly affects these analyses. This study aimed to reveal mtDNA heteroplasmy in mtCR, mtCOI, and mtND2 (mitochondrial NADH dehydrogenase subunit 2) of Portunus pelagicus, and examine its effect on the use of mtCR and mtCOI sequences. The screening result showed that the probability of observing mtDNA heteroplasmy was approximately 8%. Across the three targeted regions, 92 heteroplasmic variants were observed from seven samples comprising three mothers and four offspring. Most inherited heteroplasmy presented transition and silence mutation. By comparing the proportion of shared variants among maternal relatives to that among non-relatives, the result suggested that most heteroplasmic variants observed in an individual are inherited. Statistical analyses carried out on the inter-generational differences suggested that random drift and purifying selection play roles in determining the offspring's heteroplasmy level. The size of the random shift varies according to the location of variants and the mothers. The phylogenetic analysis showed that the presence of mtDNA heteroplasmy in mtCR and mtCOI does not affect familial and species identification, respectively. This study firstly reported the mtDNA heteroplasmy in P. pelagicus, its inheritance pattern, and its effect on the use of mtDNA sequence data. This basic knowledge would be useful for the study based on mtDNA sequence data, especially in other invertebrates.
Collapse
Affiliation(s)
| | - Chidchanok Intakham
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pradit Sangthong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
| | - Wunrada Surat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
41
|
Harumoto T, Shigi N, Tsumoto K, Komiyama M. Site-specific Manipulation of Mitochondrial DNA by Artificial Restriction DNA Cutter. CHEM LETT 2019. [DOI: 10.1246/cl.190572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshimasa Harumoto
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Narumi Shigi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
42
|
Walker JF, Walker-Hale N, Vargas OM, Larson DA, Stull GW. Characterizing gene tree conflict in plastome-inferred phylogenies. PeerJ 2019; 7:e7747. [PMID: 31579615 PMCID: PMC6764362 DOI: 10.7717/peerj.7747] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/25/2019] [Indexed: 11/20/2022] Open
Abstract
Evolutionary relationships among plants have been inferred primarily using chloroplast data. To date, no study has comprehensively examined the plastome for gene tree conflict. Using a broad sampling of angiosperm plastomes, we characterize gene tree conflict among plastid genes at various time scales and explore correlates to conflict (e.g., evolutionary rate, gene length, molecule type). We uncover notable gene tree conflict against a backdrop of largely uninformative genes. We find alignment length and tree length are strong predictors of concordance, and that nucleotides outperform amino acids. Of the most commonly used markers, matK, greatly outperforms rbcL; however, the rarely used gene rpoC2 is the top-performing gene in every analysis. We find that rpoC2 reconstructs angiosperm phylogeny as well as the entire concatenated set of protein-coding chloroplast genes. Our results suggest that longer genes are superior for phylogeny reconstruction. The alleviation of some conflict through the use of nucleotides suggests that stochastic and systematic error is likely the root of most of the observed conflict, but further research on biological conflict within plastome is warranted given documented cases of heteroplasmic recombination. We suggest that researchers should filter genes for topological concordance when performing downstream comparative analyses on phylogenetic data, even when using chloroplast genomes.
Collapse
Affiliation(s)
- Joseph F. Walker
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| | - Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - Oscar M. Vargas
- University of California, Santa Cruz, Santa Cruz, United States of America
| | - Drew A. Larson
- University of Michigan—Ann Arbor, Ann Arbor, MI, United States of America
| | - Gregory W. Stull
- Department of Botany, Smithsonian Institution, Washington, United States of America
| |
Collapse
|
43
|
Mastrantonio V, Latrofa MS, Porretta D, Lia RP, Parisi A, Iatta R, Dantas-Torres F, Otranto D, Urbanelli S. Paternal leakage and mtDNA heteroplasmy in Rhipicephalus spp. ticks. Sci Rep 2019; 9:1460. [PMID: 30728407 PMCID: PMC6365633 DOI: 10.1038/s41598-018-38001-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 12/13/2018] [Indexed: 12/27/2022] Open
Abstract
Paternal leakage of mitochondrial DNA (mtDNA) and heteroplasmy have been recently described in several animal species. In arthropods, by searching in the Scopus database, we found only 23 documented cases of paternal leakage. Therefore, although arthropods represent a large fraction of animal biodiversity, this phenomenon has been investigated only in a paucity of species in this phylum, thus preventing a reliable estimate of its frequency. Here, we investigated the occurrence of paternal leakage and mtDNA heteroplasmy in ticks belonging to one of the most significant tick species complexes, the so-called Rhipicephalus sanguineussensu lato. By developing a multiplex allele-specific PCR assay targeting a fragment of the 12S rRNA ribosomal region of the mtDNA, we showed the occurrence of paternal leakage and mtDNA heteroplasmy in R. sanguineuss.l. ticks originated from experimental crosses, as well as in individuals collected from the field. Our results add a new evidence of paternal leakage in arthropods and document for the first time this phenomenon in ticks. Furthermore, they suggest the importance of using allele-specific assays when searching for paternal leakage and/or heteroplasmy, as standard sequencing methods may fail to detect the rare mtDNA molecules.
Collapse
Affiliation(s)
| | | | - Daniele Porretta
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
| | - Riccardo Paolo Lia
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Bari, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Contrada S. Pietro Piturno, 70017 Putignano, Bari, Italy
| | - Roberta Iatta
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Bari, Italy
| | - Filipe Dantas-Torres
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Bari, Italy.,Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50740465, Recife, Pernambuco, Brazil
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Bari, Italy
| | - Sandra Urbanelli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
44
|
Doubly Uniparental Inheritance of mtDNA: An Unappreciated Defiance of a General Rule. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2019; 231:25-49. [DOI: 10.1007/102_2018_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
45
|
Zhang Y, Meng F, Yang L, Wang R, Shi G. The complete mitochondrial genome of the hybrid fish Salvelinus fontinalis (♀) × Salvelinus malma sp. (♂). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1574636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Yuanyuan Zhang
- College of Marine Science, Zhejiang Ocean University, Zhoushan, China
| | - Fanxing Meng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Liguo Yang
- College of Marine Science, Zhejiang Ocean University, Zhoushan, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ge Shi
- College of Marine Science, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
46
|
Walker JF, Walker-Hale N, Vargas OM, Larson DA, Stull GW. Characterizing gene tree conflict in plastome-inferred phylogenies. PeerJ 2019. [PMID: 31579615 DOI: 10.1101/512079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Evolutionary relationships among plants have been inferred primarily using chloroplast data. To date, no study has comprehensively examined the plastome for gene tree conflict. Using a broad sampling of angiosperm plastomes, we characterize gene tree conflict among plastid genes at various time scales and explore correlates to conflict (e.g., evolutionary rate, gene length, molecule type). We uncover notable gene tree conflict against a backdrop of largely uninformative genes. We find alignment length and tree length are strong predictors of concordance, and that nucleotides outperform amino acids. Of the most commonly used markers, matK, greatly outperforms rbcL; however, the rarely used gene rpoC2 is the top-performing gene in every analysis. We find that rpoC2 reconstructs angiosperm phylogeny as well as the entire concatenated set of protein-coding chloroplast genes. Our results suggest that longer genes are superior for phylogeny reconstruction. The alleviation of some conflict through the use of nucleotides suggests that stochastic and systematic error is likely the root of most of the observed conflict, but further research on biological conflict within plastome is warranted given documented cases of heteroplasmic recombination. We suggest that researchers should filter genes for topological concordance when performing downstream comparative analyses on phylogenetic data, even when using chloroplast genomes.
Collapse
Affiliation(s)
- Joseph F Walker
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| | - Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - Oscar M Vargas
- University of California, Santa Cruz, Santa Cruz, United States of America
| | - Drew A Larson
- University of Michigan-Ann Arbor, Ann Arbor, MI, United States of America
| | - Gregory W Stull
- Department of Botany, Smithsonian Institution, Washington, United States of America
| |
Collapse
|
47
|
Katju V, Bergthorsson U. Old Trade, New Tricks: Insights into the Spontaneous Mutation Process from the Partnering of Classical Mutation Accumulation Experiments with High-Throughput Genomic Approaches. Genome Biol Evol 2019; 11:136-165. [PMID: 30476040 PMCID: PMC6330053 DOI: 10.1093/gbe/evy252] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 12/17/2022] Open
Abstract
Mutations spawn genetic variation which, in turn, fuels evolution. Hence, experimental investigations into the rate and fitness effects of spontaneous mutations are central to the study of evolution. Mutation accumulation (MA) experiments have served as a cornerstone for furthering our understanding of spontaneous mutations for four decades. In the pregenomic era, phenotypic measurements of fitness-related traits in MA lines were used to indirectly estimate key mutational parameters, such as the genomic mutation rate, new mutational variance per generation, and the average fitness effect of mutations. Rapidly emerging next-generating sequencing technology has supplanted this phenotype-dependent approach, enabling direct empirical estimates of the mutation rate and a more nuanced understanding of the relative contributions of different classes of mutations to the standing genetic variation. Whole-genome sequencing of MA lines bears immense potential to provide a unified account of the evolutionary process at multiple levels-the genetic basis of variation, and the evolutionary dynamics of mutations under the forces of selection and drift. In this review, we have attempted to synthesize key insights into the spontaneous mutation process that are rapidly emerging from the partnering of classical MA experiments with high-throughput sequencing, with particular emphasis on the spontaneous rates and molecular properties of different mutational classes in nuclear and mitochondrial genomes of diverse taxa, the contribution of mutations to the evolution of gene expression, and the rate and stability of transgenerational epigenetic modifications. Future advances in sequencing technologies will enable greater species representation to further refine our understanding of mutational parameters and their functional consequences.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458
| |
Collapse
|
48
|
Kaya S, Çıplak B. Possibility of numt co-amplification from gigantic genome of Orthoptera: testing efficiency of standard PCR protocol in producing orthologous COI sequences. Heliyon 2018; 4:e00929. [PMID: 30519651 PMCID: PMC6260432 DOI: 10.1016/j.heliyon.2018.e00929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/06/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial DNA has been the preferential genome biodiversity studies. However, several factors contribute to its inadequacy. Numts constitute one of the main complications that prevent obtaining orthologous mitochondrial sequences. Orthoptera have been a model group in numt studies because of their huge genome size. In this study we aimed to; (i) test efficiency of standard PCR protocol in producing orthologous sequences of cytochrome C oxidase, (ii) study presence/absence of numts in several unstudied Orthoptera species, (iii) test if there is a threshold between the length of mtDNA targeted for amplification and possibility of encountering numts, and (iv) estimate reliability of the sequences in databases in light of these findings. For these aims we studied 38 species of Orthoptera representing different sublineages and genome sizes. DNA extracted from each sample was used to amplify five different fragments of COI region by standard PCR protocol. Sequenced PCR amplicons were checked for numt possibility by several different numt criteria. No sequences without numt signs were obtained for the first fragment. The number of samples with numt signs for the other four fragments differed between the suborders Ensifera and Caelifera. The percentage of samples with numt signs was higher in Caelifera than Ensifera for all fragments. The numt percentage considerably decreased for the longest two fragments. Numts are more prevalent in families with larger genome size. We arrived at the following conclusions: (i) numts are common in all members of Orthoptera, but, their prevalence differs among intra-lineages, especially more prevalent in Caelifera, (ii) there seems a correlation between numt rate and genome size, (iii) there is no threshold to avoid numt co-amplification, but, a 1,000 bp length may be a threshold for Ensifera, (iv) Folmer region of COI doesn't seem an appropriate marker for animal barcoding. Additionally, a phylogenetic tree produced from the numt sequences of fragment four detected in genus Anterastes suggested a paleonumt gained in generic ancestor a 3.5-4 times slower divergence rate for numt sequences.
Collapse
Affiliation(s)
- Sarp Kaya
- Mehmet Akif Ersoy Üniversitesi, Burdur Vocational School of Healt Services, Burdur, Turkey
| | - Battal Çıplak
- Department of Biology, Faculty of Science, Akdeniz University, 07058, Antalya, Turkey
| |
Collapse
|
49
|
Eyer PA, Hefetz A. Cytonuclear incongruences hamper species delimitation in the socially polymorphic desert ants of the Cataglyphis albicans group in Israel. J Evol Biol 2018; 31:1828-1842. [PMID: 30240036 DOI: 10.1111/jeb.13378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 08/01/2018] [Accepted: 09/13/2018] [Indexed: 11/27/2022]
Abstract
Assessing whether behavioural, ecological or geographical factors trigger population divergence provides key insights into the biological processes driving speciation. Recent speciation in restricted geographic area without obvious ecological barriers prompts the question of the behavioural mechanisms underlying species divergence. In this context, we investigated phylogenetic relationships in the Cataglyphis albicans desert ant complex in Israel. We first determined accurate species delimitation using two mitochondrial and six nuclear genes, as well as 11 microsatellite markers to investigate cryptic species in this group, assessing reduction in gene flow between populations. We then investigated whether different species in this group exhibit distinct reproductive strategies, inferring social structure and queen-mating frequency in each species uncovered. Our findings highlight the presence of at least six distinct Cataglyphis albicans species in the restricted range of Israel; four of them co-occur in a 50 × 50 km area in North Negev, while two are endemic from there. However, our results reveal incongruences between nuclear and mitochondrial clustering, which complicate species identification and preclude the exclusive use of mtDNA to confidently delimit species in this group. Finally, we show that the different species of the C. albicans group in Israel exhibit quite similar reproductive strategies with most of them having colonies headed by a single queen mated with several males; colonies of one species were, however, headed by several queens. Overall, this weak variation across species thereby unlikely represents the main evolutionary force behind speciation of these sympatric species. We then discuss the potential evolutionary processes that underlie speciation in this group in the absence of clear geographical or ecological barriers.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Abraham Hefetz
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
50
|
Richards EJ, Brown JM, Barley AJ, Chong RA, Thomson RC. Variation Across Mitochondrial Gene Trees Provides Evidence for Systematic Error: How Much Gene Tree Variation Is Biological? Syst Biol 2018; 67:847-860. [PMID: 29471536 DOI: 10.1093/sysbio/syy013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/15/2018] [Indexed: 12/28/2022] Open
Abstract
The use of large genomic data sets in phylogenetics has highlighted extensive topological variation across genes. Much of this discordance is assumed to result from biological processes. However, variation among gene trees can also be a consequence of systematic error driven by poor model fit, and the relative importance of biological vs. methodological factors in explaining gene tree variation is a major unresolved question. Using mitochondrial genomes to control for biological causes of gene tree variation, we estimate the extent of gene tree discordance driven by systematic error and employ posterior prediction to highlight the role of model fit in producing this discordance. We find that the amount of discordance among mitochondrial gene trees is similar to the amount of discordance found in other studies that assume only biological causes of variation. This similarity suggests that the role of systematic error in generating gene tree variation is underappreciated and critical evaluation of fit between assumed models and the data used for inference is important for the resolution of unresolved phylogenetic questions.
Collapse
Affiliation(s)
- Emilie J Richards
- Department of Biology, University of Hawai'i, 2538 McCarthy Mall, Edmondson Hall 2016, Honolulu, HI 96822, USA.,Department of Biology, University of North Carolina, 120 South Road, Coker Hall CB 3280 Chapel Hill, NC 27599, USA
| | - Jeremy M Brown
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Anthony J Barley
- Department of Biology, University of Hawai'i, 2538 McCarthy Mall, Edmondson Hall 2016, Honolulu, HI 96822, USA
| | - Rebecca A Chong
- Department of Biology, University of Hawai'i, 2538 McCarthy Mall, Edmondson Hall 2016, Honolulu, HI 96822, USA
| | - Robert C Thomson
- Department of Biology, University of Hawai'i, 2538 McCarthy Mall, Edmondson Hall 2016, Honolulu, HI 96822, USA
| |
Collapse
|