1
|
Reutemann AV, Honfi AI, Karunarathne P, Eckers F, Hojsgaard DH, Martínez EJ. Comparative analysis of molecular and morphological diversity in two diploid Paspalum species (Poaceae) with contrasting mating systems. PLANT REPRODUCTION 2024; 37:15-32. [PMID: 37566236 DOI: 10.1007/s00497-023-00478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023]
Abstract
KEY MESSAGE Interspecific comparison of two Paspalum species has demonstrated that mating systems (selfing and outcrossing) contribute to variation (genetically and morphologically) within species through similar but mutually exclusive processes. Mating systems play a key role in the genetic dynamics of populations. Studies show that populations of selfing plants have less genetic diversity than outcrossing plants. Yet, many such studies have ignored morphological diversity. Here, we compared the morphological and molecular diversity patterns in populations of two phylogenetically-related sexual diploids that differ in their mating system: self-sterile Paspalum indecorum and self-fertile P. pumilum. We assessed the morphological variation using 16 morpho-phenological characters and the molecular diversity using three combinations of AFLPs. We compared the morphological and molecular diversity within and among populations in each mating system. Contrary to expectations, selfers showed higher morphological variation within populations, mainly in vegetative and phenological traits, compared to outcrossers. The high morphological variation within populations of selfers led to a low differentiation among populations. At molecular level, selfing populations showed lower levels of genotypic and genetic diversity than outcrossing populations. As expected, selfers showed higher population structure than outcrossers (PhiST = 0.301 and PhiST = 0.108, respectively). Increased homozygous combinations for the same trait/locus enhance morphological variation and reduce molecular variation within populations in selfing P. pumilum. Thus, selfing outcomes are opposite when comparing morphological and molecular variation in P. pumilum. Meanwhile, pollen flow in obligate outcrossing populations of P. indecorum increases within-population molecular variation, but tends to homogenize phenotypes within-population. Pollen flow in obligate outcrossers tends to merge geographically closer populations; but isolation by distance can lead to a weak differentiation among distant populations of P. indecorum.
Collapse
Affiliation(s)
- A Verena Reutemann
- Instituto de Botánica del Nordeste (IBONE-CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), 3400, Corrientes, Argentina
| | - Ana I Honfi
- Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (PEFyGV, IBS-UNaM-CONICET), 3300, Posadas, Argentina
| | - Piyal Karunarathne
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-Von-Haller Institute for Plant Sciences, University of Goettingen, 37073, Goettingen, Germany
- Institute for Population Genetics, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Fabiana Eckers
- Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (PEFyGV, IBS-UNaM-CONICET), 3300, Posadas, Argentina
| | - Diego H Hojsgaard
- Taxonomy and Evolutionary Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Eric J Martínez
- Instituto de Botánica del Nordeste (IBONE-CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), 3400, Corrientes, Argentina.
| |
Collapse
|
2
|
Manawaduge CG, Ryan J, Phillips MJ, Fuller S. Conservation genetics of Notelaea lloydii (Oleaceae) in south-eastern Queensland, Australia. Ecol Evol 2024; 14:e10895. [PMID: 38333093 PMCID: PMC10850812 DOI: 10.1002/ece3.10895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 02/10/2024] Open
Abstract
Habitat fragmentation can increase the chance of population bottlenecks and inbreeding, and may ultimately lead to reduced fitness and local extinction. Notelaea lloydii is a native olive species endemic to Australia and listed as vulnerable due to its restricted distribution. A recent molecular systematics study has revealed there might be some geographic structuring among N. lloydii populations. Therefore, we undertook a genome-wide single nucleotide polymorphism (SNP) analysis to determine levels and patterns of genetic diversity, inbreeding and gene flow within and among N. lloydii populations in south-eastern Queensland. Furthermore, as the reproductive phase of a plant's life history has a profound influence on genetic diversity, life history reproductive traits were also studied. Our SNP analysis revealed low genetic diversity, inbreeding and significant genetic structuring even among proximate populations. Results of a flower and fruit bagging experiment in two consecutive seasons revealed that N. lloydii produced many flowers but only a few fruits survived to maturity. There were no differences in bagged and un-bagged flowering and fruiting rates, and therefore, we conclude that the high fruit abortion rate was probably due to inbreeding depression and/or suboptimal conditions, rather than pollinator availability and insect attack. Overall, results of this study indicate that the populations of N. lloydii are small, inbred and genetically isolated and represent unique management units that require local conservation management due to ongoing threats associated with urbanisation.
Collapse
Affiliation(s)
- Chapa G. Manawaduge
- School of Biology and Environmental SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
- Present address:
CSIROHealth and BiosecurityActonACTAustralia
| | - James Ryan
- School of Biology and Environmental SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Matthew J. Phillips
- School of Biology and Environmental SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Susan Fuller
- School of Biology and Environmental SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| |
Collapse
|
3
|
Rushworth CA, Wagner MR, Mitchell-Olds T, Anderson JT. The Boechera model system for evolutionary ecology. AMERICAN JOURNAL OF BOTANY 2022; 109:1939-1961. [PMID: 36371714 DOI: 10.1002/ajb2.16090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Model systems in biology expand the research capacity of individuals and the community. Closely related to Arabidopsis, the genus Boechera has emerged as an important ecological model owing to the ability to integrate across molecular, functional, and eco-evolutionary approaches. Boechera species are broadly distributed in relatively undisturbed habitats predominantly in western North America and provide one of the few experimental systems for identification of ecologically important genes through genome-wide association studies and investigations of selection with plants in their native habitats. The ecologically, evolutionarily, and agriculturally important trait of apomixis (asexual reproduction via seeds) is common in the genus, and field experiments suggest that abiotic and biotic environments shape the evolution of sex. To date, population genetic studies have focused on the widespread species B. stricta, detailing population divergence and demographic history. Molecular and ecological studies show that balancing selection maintains genetic variation in ~10% of the genome, and ecological trade-offs contribute to complex trait variation for herbivore resistance, flowering phenology, and drought tolerance. Microbiome analyses have shown that host genotypes influence leaf and root microbiome composition, and the soil microbiome influences flowering phenology and natural selection. Furthermore, Boechera offers numerous opportunities for investigating biological responses to global change. In B. stricta, climate change has induced a shift of >2 weeks in the timing of first flowering since the 1970s, altered patterns of natural selection, generated maladaptation in previously locally-adapted populations, and disrupted life history trade-offs. Here we review resources and results for this eco-evolutionary model system and discuss future research directions.
Collapse
Affiliation(s)
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA
| | | | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
4
|
Kolis KM, Berg CS, Nelson TC, Fishman L. Population genomic consequences of life-history and mating system adaptation to a geothermal soil mosaic in yellow monkeyflowers. Evolution 2022; 76:765-781. [PMID: 35266558 DOI: 10.1111/evo.14469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 01/21/2023]
Abstract
Local selection can promote phenotypic divergence despite gene flow across habitat mosaics, but adaptation itself may generate substantial barriers to genetic exchange. In plants, life-history, phenology, and mating system divergence have been proposed to promote genetic differentiation in sympatry. In this study, we investigate phenotypic and genetic variation in Mimulus guttatus (yellow monkeyflowers) across a geothermal soil mosaic in Yellowstone National Park (YNP). Plants from thermal annual and nonthermal perennial habitats were heritably differentiated for life-history and mating system traits, consistent with local adaptation to the ephemeral thermal-soil growing season. However, genome-wide genetic variation primarily clustered plants by geographic region, with little variation sorting by habitat. The one exception was an extreme thermal population also isolated by a 200 m geographical gap of no intermediate habitat. Individual inbreeding coefficients (FIS ) were higher (and predicted by trait variation) in annual plants and annual pairs showed greater isolation by distance at local (<1 km) scales. Finally, YNP adaptation does not reuse a widespread inversion that underlies M. guttatus life-history ecotypes range-wide, suggesting a novel genetic mechanism. Overall, this work suggests that life-history and mating system adaptation strong enough to shape individual mating patterns does not necessarily generate incipient speciation without geographical barriers.
Collapse
Affiliation(s)
- Kory M Kolis
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812.,Current Address: O'Connor Center for the Rocky Mountain West, University of Montana, Missoula, MT, 59812
| | - Colette S Berg
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Thomas C Nelson
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812.,Current Address: Embark Veterinary, Inc., Boston, Massachusetts, 02210
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| |
Collapse
|
5
|
Dittberner H, Tellier A, de Meaux J. Approximate Bayesian computation untangles signatures of contemporary and historical hybridization between two endangered species. Mol Biol Evol 2022; 39:6516021. [PMID: 35084503 PMCID: PMC8826969 DOI: 10.1093/molbev/msac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Contemporary gene flow, when resumed after a period of isolation, can have crucial consequences for endangered species, as it can both increase the supply of adaptive alleles and erode local adaptation. Determining the history of gene flow and thus the importance of contemporary hybridization, however, is notoriously difficult. Here, we focus on two endangered plant species, Arabis nemorensis and A. sagittata, which hybridize naturally in a sympatric population located on the banks of the Rhine. Using reduced genome sequencing, we determined the phylogeography of the two taxa but report only a unique sympatric population. Molecular variation in chloroplast DNA indicated that A. sagittata is the principal receiver of gene flow. Applying classical D-statistics and its derivatives to whole-genome data of 35 accessions, we detect gene flow not only in the sympatric population but also among allopatric populations. Using an Approximate Bayesian computation approach, we identify the model that best describes the history of gene flow between these taxa. This model shows that low levels of gene flow have persisted long after speciation. Around 10 000 years ago, gene flow stopped and a period of complete isolation began. Eventually, a hotspot of contemporary hybridization was formed in the unique sympatric population. Occasional sympatry may have helped protect these lineages from extinction in spite of their extremely low diversity.
Collapse
Affiliation(s)
- Hannes Dittberner
- Institute of Plant Sciences,University of Cologne, Zülpicher str. 47b, Germany
| | - Aurelien Tellier
- Department of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Juliette de Meaux
- Institute of Plant Sciences,University of Cologne, Zülpicher str. 47b, Germany
| |
Collapse
|
6
|
Horvath R, Josephs EB, Pesquet E, Stinchcombe JR, Wright SI, Scofield D, Slotte T. Selection on Accessible Chromatin Regions in Capsella grandiflora. Mol Biol Evol 2021; 38:5563-5575. [PMID: 34498072 PMCID: PMC8662636 DOI: 10.1093/molbev/msab270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Accurate estimates of genome-wide rates and fitness effects of new mutations are essential for an improved understanding of molecular evolutionary processes. Although eukaryotic genomes generally contain a large noncoding fraction, functional noncoding regions and fitness effects of mutations in such regions are still incompletely characterized. A promising approach to characterize functional noncoding regions relies on identifying accessible chromatin regions (ACRs) tightly associated with regulatory DNA. Here, we applied this approach to identify and estimate selection on ACRs in Capsella grandiflora, a crucifer species ideal for population genomic quantification of selection due to its favorable population demography. We describe a population-wide ACR distribution based on ATAC-seq data for leaf samples of 16 individuals from a natural population. We use population genomic methods to estimate fitness effects and proportions of positively selected fixations (α) in ACRs and find that intergenic ACRs harbor a considerable fraction of weakly deleterious new mutations, as well as a significantly higher proportion of strongly deleterious mutations than comparable inaccessible intergenic regions. ACRs are enriched for expression quantitative trait loci (eQTL) and depleted of transposable element insertions, as expected if intergenic ACRs are under selection because they harbor regulatory regions. By integrating empirical identification of intergenic ACRs with analyses of eQTL and population genomic analyses of selection, we demonstrate that intergenic regulatory regions are an important source of nearly neutral mutations. These results improve our understanding of selection on noncoding regions and the role of nearly neutral mutations for evolutionary processes in outcrossing Brassicaceae species.
Collapse
Affiliation(s)
- Robert Horvath
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, Lansing, MI, USA
| | - Edouard Pesquet
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Douglas Scofield
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Fu Q, Deng J, Chen M, Zhong Y, Lu GH, Wang YQ. Population genetic structure and connectivity of a riparian selfing herb Caulokaempferia coenobialis at a fine-scale geographic level in subtropical monsoon forest. BMC PLANT BIOLOGY 2021; 21:329. [PMID: 34238223 PMCID: PMC8265151 DOI: 10.1186/s12870-021-03101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rivers and streams facilitate movement of individuals and their genes across the landscape and are generally recognized as dispersal corridors for riparian plants. Nevertheless, some authors have reported directly contrasting results, which may be attributed to a complex mixture of factors, such as the mating system and dispersal mechanisms of propagules (seed and pollen), that make it difficult to predict the genetic diversity and population structure of riparian species. Here, we investigated a riparian self-fertilizing herb Caulokaempferia coenobialis, which does not use anemochory or zoochory for seed dispersal; such studies could contribute to an improved understanding of the effect of rivers or streams on population genetic diversity and structure in riparian plants. Using polymorphic ISSR and cpDNA loci, we studied the effect at a microgeographic scale of different stream systems (a linear stream, a dendritic stream, and complex transverse hydrological system) in subtropical monsoon forest on the genetic structure and connectivity of C. coenobialis populations across Dinghu Mountain (DH) and Nankun Mountain (NK). RESULTS The results indicate that the most recent haplotypes (DH: H7, H8; NK: h6, h7, h11, h12) are not shared among local populations of C. coenobialis within each stream system. Furthermore, downstream local populations do not accumulate genetic diversity, whether in the linear streamside local populations across DH (H: 0.091 vs 0.136) or the dendritic streamside local populations across NK (H: 0.079 vs 0.112, 0.110). Our results show that the connectivity of local C. coenobialis populations across DH and NK can be attributed to historical gene flows, resulting in a lack of spatial genetic structure, despite self-fertilization. Selfing C. coenobialis can maintain high genetic diversity (H = 0.251; I = 0.382) through genetic differentiation (GST = 0.5915; FST = 0.663), which is intensified by local adaptation and neutral mutation and/or genetic drift in local populations at a microgeographic scale. CONCLUSION We suggest that streams are not acting as corridors for dispersal of C. coenobialis, and conservation strategies for maintaining genetic diversity of selfing species should be focused on the protection of all habitat types, especially isolated fragments in ecosystem processes.
Collapse
Affiliation(s)
- Qiong Fu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jie Deng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yan Zhong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Guo-Hui Lu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ying-Qiang Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
8
|
Abdallah D, Baraket G, Perez V, Salhi Hannachi A, Hormaza JI. Self-compatibility in peach [ Prunus persica (L.) Batsch]: patterns of diversity surrounding the S-locus and analysis of SFB alleles. HORTICULTURE RESEARCH 2020; 7:170. [PMID: 33082976 PMCID: PMC7527504 DOI: 10.1038/s41438-020-00392-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 05/07/2023]
Abstract
Self-incompatibility (SI) to self-compatibility (SC) transition is one of the most frequent and prevalent evolutionary shifts in flowering plants. Prunus L. (Rosaceae) is a genus of over 200 species most of which exhibit a Gametophytic SI system. Peach [Prunus persica (L.) Batsch; 2n = 16] is one of the few exceptions in the genus known to be a fully self-compatible species. However, the evolutionary process of the complete and irreversible loss of SI in peach is not well understood and, in order to fill that gap, in this study 24 peach accessions were analyzed. Pollen tube growth was controlled in self-pollinated flowers to verify their self-compatible phenotypes. The linkage disequilibrium association between alleles at the S-locus and linked markers at the end of the sixth linkage group was not significant (P > 0.05), except with the closest markers suggesting the absence of a signature of negative frequency dependent selection at the S-locus. Analysis of SFB1 and SFB2 protein sequences allowed identifying the absence of some variable and hypervariable domains and the presence of additional α-helices at the C-termini. Molecular and evolutionary analysis of SFB nucleotide sequences showed a signature of purifying selection in SFB2, while the SFB1 seemed to evolve neutrally. Thus, our results show that the SFB2 allele diversified after P. persica and P. dulcis (almond) divergence, a period which is characterized by an important bottleneck, while SFB1 diversified at a transition time between the bottleneck and population expansion.
Collapse
Affiliation(s)
- Donia Abdallah
- Faculté des Sciences de Tunis, Département Biologie, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Ghada Baraket
- Faculté des Sciences de Tunis, Département Biologie, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Veronica Perez
- Laboratorio de Agrobiología Juan José Bravo Rodríguez (Cabildo Insular de La Palma), Unidad Técnica del Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38700 S/C La Palma, Canary Islands, Spain
| | - Amel Salhi Hannachi
- Faculté des Sciences de Tunis, Département Biologie, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Jose I. Hormaza
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM La Mayora-UMA-CSIC), 29750 Algarrobo-Costa, Malaga Spain
| |
Collapse
|
9
|
Uzunović J, Josephs EB, Stinchcombe JR, Wright SI. Transposable Elements Are Important Contributors to Standing Variation in Gene Expression in Capsella Grandiflora. Mol Biol Evol 2020; 36:1734-1745. [PMID: 31028401 DOI: 10.1093/molbev/msz098] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) make up a significant portion of eukaryotic genomes and are important drivers of genome evolution. However, the extent to which TEs affect gene expression variation on a genome-wide scale in comparison with other types of variants is still unclear. We characterized TE insertion polymorphisms and their association with gene expression in 124 whole-genome sequences from a single population of Capsella grandiflora, and contrasted this with the effects of single nucleotide polymorphisms (SNPs). Population frequency of insertions was negatively correlated with distance to genes, as well as density of conserved noncoding elements, suggesting that the negative effects of TEs on gene regulation are important in limiting their abundance. Rare TE variants strongly influence gene expression variation, predominantly through downregulation. In contrast, rare SNPs contribute equally to up- and down-regulation, but have a weaker individual effect than TEs. An expression quantitative trait loci (eQTL) analysis shows that a greater proportion of common TEs are eQTLs as opposed to common SNPs, and a third of the genes with TE eQTLs do not have SNP eQTLs. In contrast with rare TE insertions, common insertions are more likely to increase expression, consistent with recent models of cis-regulatory evolution favoring enhancer alleles. Taken together, these results imply that TEs are a significant contributor to gene expression variation and are individually more likely than rare SNPs to cause extreme changes in gene expression.
Collapse
Affiliation(s)
- Jasmina Uzunović
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Koffler Scientific Reserve, University of Toronto, Toronto, Ontario, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Mattila TM, Laenen B, Slotte T. Population Genomics of Transitions to Selfing in Brassicaceae Model Systems. Methods Mol Biol 2020; 2090:269-287. [PMID: 31975171 DOI: 10.1007/978-1-0716-0199-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many plants harbor complex mechanisms that promote outcrossing and efficient pollen transfer. These include floral adaptations as well as genetic mechanisms, such as molecular self-incompatibility (SI) systems. The maintenance of such systems over long evolutionary timescales suggests that outcrossing is favorable over a broad range of conditions. Conversely, SI has repeatedly been lost, often in association with transitions to self-fertilization (selfing). This transition is favored when the short-term advantages of selfing outweigh the costs, primarily inbreeding depression. The transition to selfing is expected to have major effects on population genetic variation and adaptive potential, as well as on genome evolution. In the Brassicaceae, many studies on the population genetic, gene regulatory, and genomic effects of selfing have centered on the model plant Arabidopsis thaliana and the crucifer genus Capsella. The accumulation of population genomics datasets have allowed detailed investigation of where, when and how the transition to selfing occurred. Future studies will take advantage of the development of population genetics theory on the impact of selfing, especially regarding positive selection. Furthermore, investigation of systems including recent transitions to selfing, mixed mating populations and/or multiple independent replicates of the same transition will facilitate dissecting the effects of mating system variation from processes driven by demography.
Collapse
Affiliation(s)
- Tiina M Mattila
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Benjamin Laenen
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
11
|
Comparative studies on population genetic structure of two closely related selfing and outcrossing Zingiber species in Hainan Island. Sci Rep 2019; 9:17997. [PMID: 31784623 PMCID: PMC6884562 DOI: 10.1038/s41598-019-54526-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/15/2019] [Indexed: 02/04/2023] Open
Abstract
How mating system impacts the genetic diversity of plants has long fascinated and puzzled evolutionary biologists. Numerous studies have shown that self-fertilising plants have less genetic diversity at both the population and species levels than outcrossers. However, the phylogenetic relationships between species and correlated ecological traits have not been accounted for in these previous studies. Here, we conduct a comparative population genetic study of two closely related selfing and outcrossing Zingiber species, with sympatric distribution in Hainan Island, and obtain a result contrary to previous studies. The results indicate that selfing Z. corallinum can maintain high genetic diversity through differentiation intensified by local adaptation in populations across the species’ range. In contrast, outcrossing Z. nudicarpum preserves high genetic diversity through gene exchange by frequent export of pollen within or among populations. Contrary to expectations, the major portion of genetic variation of outcrossing Z. nudicarpum may exist among populations, depending on the dispersal ability of pollen and seed. Our results also reveal that the main factor affecting population structure of selfing Z. corallinum is mountain ranges, followed by a moist climate, while that of outcrossing Z. nudicarpum is likely moisture, but not mountain ranges, due to gene flow via pollen.
Collapse
|
12
|
Dittberner H, Becker C, Jiao WB, Schneeberger K, Hölzel N, Tellier A, de Meaux J. Strengths and potential pitfalls of hay transfer for ecological restoration revealed by RAD-seq analysis in floodplain Arabis species. Mol Ecol 2019; 28:3887-3901. [PMID: 31338892 DOI: 10.1111/mec.15194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022]
Abstract
Achieving high intraspecific genetic diversity is a critical goal in ecological restoration as it increases the adaptive potential and long-term resilience of populations. Thus, we investigated genetic diversity within and between pristine sites in a fossil floodplain and compared it to sites restored by hay transfer between 1997 and 2014. RAD-seq genotyping revealed that the stenoecious floodplain species Arabis nemorensis is co-occurring with individuals that, based on ploidy, ITS-sequencing and morphology, probably belong to the close relative Arabis sagittata, which has a documented preference for dry calcareous grasslands but has not been reported in floodplain meadows. We show that hay transfer maintains genetic diversity for both species. Additionally, in A. sagittata, transfer from multiple genetically isolated pristine sites resulted in restored sites with increased diversity and admixed local genotypes. In A. nemorensis, transfer did not create novel admixture dynamics because genetic diversity between pristine sites was less differentiated. Thus, the effects of hay transfer on genetic diversity also depend on the genetic make-up of the donor communities of each species, especially when local material is mixed. Our results demonstrate the efficiency of hay transfer for habitat restoration and emphasize the importance of prerestoration characterization of microgeographic patterns of intraspecific diversity of the community to guarantee that restoration practices reach their goal, that is maximize the adaptive potential of the entire restored plant community. Overlooking these patterns may alter the balance between species in the community. Additionally, our comparison of summary statistics obtained from de novo- and reference-based RAD-seq pipelines shows that the genomic impact of restoration can be reliably monitored in species lacking prior genomic knowledge.
Collapse
Affiliation(s)
| | - Christian Becker
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Wen-Biao Jiao
- Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | | | - Norbert Hölzel
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Aurélien Tellier
- Center of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | | |
Collapse
|
13
|
Mattila TM, Laenen B, Horvath R, Hämälä T, Savolainen O, Slotte T. Impact of demography on linked selection in two outcrossing Brassicaceae species. Ecol Evol 2019; 9:9532-9545. [PMID: 31534673 PMCID: PMC6745670 DOI: 10.1002/ece3.5463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Genetic diversity is shaped by mutation, genetic drift, gene flow, recombination, and selection. The dynamics and interactions of these forces shape genetic diversity across different parts of the genome, between populations and species. Here, we have studied the effects of linked selection on nucleotide diversity in outcrossing populations of two Brassicaceae species, Arabidopsis lyrata and Capsella grandiflora, with contrasting demographic history. In agreement with previous estimates, we found evidence for a modest population size expansion thousands of generations ago, as well as efficient purifying selection in C. grandiflora. In contrast, the A. lyrata population exhibited evidence for very recent strong population size decline and weaker efficacy of purifying selection. Using multiple regression analyses with recombination rate and other genomic covariates as explanatory variables, we can explain 47% of the variance in neutral diversity in the C. grandiflora population, while in the A. lyrata population, only 11% of the variance was explained by the model. Recombination rate had a significant positive effect on neutral diversity in both species, suggesting that selection at linked sites has an effect on patterns of neutral variation. In line with this finding, we also found reduced neutral diversity in the vicinity of genes in the C. grandiflora population. However, in A. lyrata no such reduction in diversity was evident, a finding that is consistent with expectations of the impact of a recent bottleneck on patterns of neutral diversity near genes. This study thus empirically demonstrates how differences in demographic history modulate the impact of selection at linked sites in natural populations.
Collapse
Affiliation(s)
- Tiina M. Mattila
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Present address:
Department of Organismal BiologyUppsala UniversityUppsalaSweden
| | - Benjamin Laenen
- Science for Life Laboratory, Department of Ecology, Environment, and Plant SciencesStockholm UniversityStockholmSweden
| | - Robert Horvath
- Science for Life Laboratory, Department of Ecology, Environment, and Plant SciencesStockholm UniversityStockholmSweden
| | - Tuomas Hämälä
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
- Present address:
Department of Plant and Microbial BiologyUniversity of Minnesota Twin CitiesSt. PaulMNUSA
| | - Outi Savolainen
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
| | - Tanja Slotte
- Science for Life Laboratory, Department of Ecology, Environment, and Plant SciencesStockholm UniversityStockholmSweden
| |
Collapse
|
14
|
Burrell AM, Goddard JHR, Greer PJ, Williams RJ, Pepper AE. Sporadic Genetic Connectivity among Small Insular Populations of the Rare Geoendemic Plant Caulanthus amplexicaulis var. barbarae (Santa Barbara Jewelflower). J Hered 2019; 110:587-600. [PMID: 31062855 DOI: 10.1093/jhered/esz029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Abstract
Globally, a small number of plants have adapted to terrestrial outcroppings of serpentine geology, which are characterized by soils with low levels of essential mineral nutrients (N, P, K, Ca, Mo) and toxic levels of heavy metals (Ni, Cr, Co). Paradoxically, many of these plants are restricted to this harsh environment. Caulanthus ampexlicaulis var. barbarae (Brassicaceae) is a rare annual plant that is strictly endemic to a small set of isolated serpentine outcrops in the coastal mountains of central California. The goals of the work presented here were to 1) determine the patterns of genetic connectivity among all known populations of C. ampexlicaulis var. barbarae, and 2) estimate contemporary effective population sizes (Ne), to inform ongoing genomic analyses of the evolutionary history of this taxon, and to provide a foundation upon which to model its future evolutionary potential and long-term viability in a changing environment. Eleven populations of this taxon were sampled, and population-genetic parameters were estimated using 11 nuclear microsatellite markers. Contemporary effective population sizes were estimated using multiple methods and found to be strikingly small (typically Ne < 10). Further, our data showed that a substantial component of genetic connectivity of this taxon is not at equilibrium, and instead showed sporadic gene flow. Several lines of evidence indicate that gene flow between isolated populations is maintained through long-distance seed dispersal (e.g., >1 km), possibly via zoochory.
Collapse
Affiliation(s)
- A Millie Burrell
- Department of Biology, Texas A&M University, College Station, TX
| | | | | | - Ryan J Williams
- Department of Biology, Texas A&M University, College Station, TX
| | - Alan E Pepper
- Department of Biology, Texas A&M University, College Station, TX
| |
Collapse
|
15
|
Koenig D, Hagmann J, Li R, Bemm F, Slotte T, Neuffer B, Wright SI, Weigel D. Long-term balancing selection drives evolution of immunity genes in Capsella. eLife 2019; 8:e43606. [PMID: 30806624 PMCID: PMC6426441 DOI: 10.7554/elife.43606] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic drift is expected to remove polymorphism from populations over long periods of time, with the rate of polymorphism loss being accelerated when species experience strong reductions in population size. Adaptive forces that maintain genetic variation in populations, or balancing selection, might counteract this process. To understand the extent to which natural selection can drive the retention of genetic diversity, we document genomic variability after two parallel species-wide bottlenecks in the genus Capsella. We find that ancestral variation preferentially persists at immunity related loci, and that the same collection of alleles has been maintained in different lineages that have been separated for several million years. By reconstructing the evolution of the disease-related locus MLO2b, we find that divergence between ancient haplotypes can be obscured by referenced based re-sequencing methods, and that trans-specific alleles can encode substantially diverged protein sequences. Our data point to long-term balancing selection as an important factor shaping the genetics of immune systems in plants and as the predominant driver of genomic variability after a population bottleneck.
Collapse
Affiliation(s)
- Daniel Koenig
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Jörg Hagmann
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Rachel Li
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Felix Bemm
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Tanja Slotte
- Department of Ecology,Environment, and Plant SciencesStockholm UniversityStockholmSweden
| | - Barbara Neuffer
- Department of BiologyUniversity of OsnabrückOsnabrückGermany
| | - Stephen I Wright
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoCanada
| | - Detlef Weigel
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| |
Collapse
|
16
|
Hu XS, Zhang XX, Zhou W, Hu Y, Wang X, Chen XY. Mating system shifts a species' range. Evolution 2018; 73:158-174. [PMID: 30592527 DOI: 10.1111/evo.13663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/05/2018] [Indexed: 01/20/2023]
Abstract
Understanding the ecological and evolutionary mechanisms that shape a species' range is an important goal in evolutionary biology. Evidence indicates that mating system is an effective predictor of the global range of native species or naturalized alien plants, but the mechanisms underlying this predictability are not elaborated. Here, we develop a theoretical model to account for the ranges of plants under different mating systems based on migration-selection processes (an idea proposed by Haldane). The model includes alternation of gametophyte and sporophyte generations in one life cycle and the dispersal of haploid pollen and diploid seeds as vectors for gene flow. We show that the interaction between selfing rates and gametophytic selection determines the role of mating system in shaping a species' range. Selfing restricts the species' range under gametophytic selection in nonrandom mating systems, but expands the species' range under the absence of gametophytic selection in any mating system. Gametophytic selection slightly restricts the species' range in random mating. Both logarithmic and logistic models of population demography yield similar conclusions in the case of fixed or evolving genetic variance. The theory also helps to explain a broader relationship between mating system and range size following biological invasion or plant naturalization.
Collapse
Affiliation(s)
- Xin-Sheng Hu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Xin-Xin Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Wei Zhou
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Ying Hu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Xi Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Xiao-Yang Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| |
Collapse
|
17
|
Yoshida T, Kawanabe T, Bo Y, Fujimoto R, Kawabe A. Genome-Wide Analysis of Parent-of-Origin Allelic Expression in Endosperms of Brassicaceae Species, Brassica rapa. PLANT & CELL PHYSIOLOGY 2018; 59:2590-2601. [PMID: 30165552 DOI: 10.1093/pcp/pcy178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 05/06/2023]
Abstract
Uniparental gene expression, observed in both animals and plants, is termed genomic imprinting. Genomic imprinting is a well-known epigenetic phenomenon regulated through epigenetic modifications such as DNA methylation and histone modifications. Recent genome-wide studies of endosperm transcription have revealed the rapid change of imprinted genes between species, suggesting the flexibility of this phenomenon. Although the functional significance and evolutionary trends of imprinted genes are still obscure, it can be clarified by inter-species comparisons. In this study, we analyzed the pattern of genomic imprinting in Brassica rapa, a species related to Arabidopsis thaliana. Compared with the ancient karyotype of A. thaliana and B. rapa, B. rapa has a triplicated genome. Many imprinted genes, beyond the estimated number previously reported in other species, were observed. Several imprinted genes have been conserved among species in Brassicaceae. We also observed rapid molecular evolution of imprinted genes compared to non-imprinted genes in B. rapa. Especially, imprinted gene overlapping between species showed more rapid molecular evolution and preferential expression in endosperms. It may imply that a small number of imprinted genes have retained functional roles among diverged species and have been the target of natural selection.
Collapse
Affiliation(s)
| | - Takahiro Kawanabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yina Bo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Akira Kawabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
18
|
Lafon-Placette C, Hatorangan MR, Steige KA, Cornille A, Lascoux M, Slotte T, Köhler C. Paternally expressed imprinted genes associate with hybridization barriers in Capsella. NATURE PLANTS 2018; 4:352-357. [PMID: 29808019 DOI: 10.1038/s41477-018-0161-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 04/27/2018] [Indexed: 05/22/2023]
Abstract
Hybrid seed lethality is a widespread type of reproductive barrier among angiosperm taxa1,2 that contributes to species divergence by preventing gene flow between natural populations3,4. Besides its ecological importance, it is an important obstacle to plant breeding strategies 5 . Hybrid seed lethality is mostly due to a failure of the nourishing endosperm tissue, resulting in embryo arrest3,6,7. The cause of this failure is a parental dosage imbalance in the endosperm that can be a consequence of either differences in parental ploidy levels or differences in the 'effective ploidy', also known as the endosperm balance number (EBN)8,9. Hybrid seed defects exhibit a parent-of-origin pattern3,6,7, suggesting that differences in number or expression strength of parent-of-origin-specific imprinted genes underpin, as the primary or the secondary cause, the molecular basis of the EBN7,10. Here, we have tested this concept in the genus Capsella and show that the effective ploidy of three Capsella species correlates with the number and expression level of paternally expressed genes (PEGs). Importantly, the number of PEGs and the effective ploidy decrease with the selfing history of a species: the obligate outbreeder Capsella grandiflora had the highest effective ploidy, followed by the recent selfer Capsella rubella and the ancient selfer Capsella orientalis. PEGs were associated with the presence of transposable elements and their silencing mark, DNA methylation in CHH context (where H denotes any base except C). This suggests that transposable elements have driven the imprintome divergence between Capsella species. Together, we propose that variation in transposable element insertions, the resulting differences in PEG number and divergence in their expression level form one component of the effective ploidy variation between species of different breeding system histories, and, as a consequence, allow the establishment of endosperm-based hybridization barriers.
Collapse
Affiliation(s)
- Clément Lafon-Placette
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Department of Botany, Charles University, Prague, Czech Republic
| | - Marcelinus R Hatorangan
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Kim A Steige
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
- Institute of Botany, Biocenter, University of Cologne, Cologne, Germany
| | - Amandine Cornille
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| |
Collapse
|
19
|
Petrone Mendoza S, Lascoux M, Glémin S. Competitive ability of Capsella species with different mating systems and ploidy levels. ANNALS OF BOTANY 2018; 121:1257-1264. [PMID: 29471370 PMCID: PMC5946883 DOI: 10.1093/aob/mcy014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/19/2018] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Capsella is a model genus for studying the transition from outcrossing to selfing, with or without change in ploidy levels. The genomic consequences and changes in reproductive traits (selfing syndrome) associated with these shifts have been studied in depth. However, potential ecological divergence among species of the genus has not been determined. Among ecological traits, competitive ability could be relevant for selfing evolution, as selfing has been shown to be statistically associated with reduced competitiveness in a recent meta-analysis. METHODS We assessed the effect of competition on three Capsella species differing in their mating system and ploidy level. We used an experimental design where fitness related traits were measured in focal individuals with and without competitors. KEY RESULTS The diploid selfer (C. rubella) was most sensitive to competition, whereas the tetraploid selfer (C. bursa-pastoris) performed the best, with the diploid outcrosser (C. grandiflora) being intermediate. CONCLUSIONS These results add to the detailed characterization of Capsella species and highlight the possible roles of ecological context and ploidy in the evolutionary trajectories of selfing species.
Collapse
Affiliation(s)
- Sandra Petrone Mendoza
- Department of Ecology and Genetics, Evolutionary Biology Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sylvain Glémin
- Department of Ecology and Genetics, Evolutionary Biology Center and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Institut des Sciences de l’Evolution (ISEM - UMR 5554 Université de Montpellier-CNRS-IRD-EPHE), France
| |
Collapse
|
20
|
López-Villalobos A, Eckert CG. Consequences of multiple mating-system shifts for population and range-wide genetic structure in a coastal dune plant. Mol Ecol 2018; 27:675-693. [PMID: 29319906 DOI: 10.1111/mec.14484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 12/24/2022]
Abstract
Evolutionary transitions from outcrossing to selfing can strongly affect the genetic diversity and structure of species at multiple spatial scales. We investigated the genetic consequences of mating-system shifts in the North American, Pacific coast dune endemic plant Camissoniopsis cheiranthifolia (Onagraceae) by assaying variation at 13 nuclear (n) and six chloroplast (cp) microsatellite (SSR) loci for 38 populations across the species range. As predicted from the expected reduction in effective population size (Ne ) caused by selfing, small-flowered, predominantly selfing (SF) populations had much lower nSSR diversity (but not cpSSR) than large-flowered, predominantly outcrossing (LF) populations. The reduction in nSSR diversity was greater than expected from the effects of selfing on Ne alone, but could not be accounted for by indirect effects of selfing on population density. Although selfing should reduce gene flow, SF populations were not more genetically differentiated than LF populations. We detected five clusters of nSSR genotypes and three groups of cpSSR haplotypes across the species range consisting of parapatric groups of populations that usually (but not always) differed in mating system, suggesting that selfing may often initiate ecogeographic isolation. However, lineage-wide genetic variation was not lower for selfing clusters, failing to support the hypothesis that selection for reproductive assurance spurred the evolution of selfing in this species. Within three populations where LF and SF plants coexist, we detected genetic differentiation among diverged floral phenotypes suggesting that reproductive isolation (probably postzygotic) may help maintain the striking mating-system differentiation observed across the range of this species.
Collapse
Affiliation(s)
| | - C G Eckert
- Department of Biology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
21
|
Meirmans PG, Liu S, van Tienderen PH. The Analysis of Polyploid Genetic Data. J Hered 2018; 109:283-296. [DOI: 10.1093/jhered/esy006] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/20/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Shenglin Liu
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Peter H van Tienderen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Turner KG, Huang DI, Cronk QCB, Rieseberg LH. Homogenization of Populations in the Wildflower, Texas Bluebonnet (Lupinus texensis). J Hered 2017; 109:152-161. [DOI: 10.1093/jhered/esx094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/26/2017] [Indexed: 11/13/2022] Open
|
23
|
Hawkins AK, Garza ER, Dietz VA, Hernandez OJ, Hawkins WD, Burrell AM, Pepper AE. Transcriptome Signatures of Selection, Drift, Introgression, and Gene Duplication in the Evolution of an Extremophile Endemic Plant. Genome Biol Evol 2017; 9:3478-3494. [PMID: 29220486 PMCID: PMC5751042 DOI: 10.1093/gbe/evx259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2017] [Indexed: 12/26/2022] Open
Abstract
Plants on serpentine soils provide extreme examples of adaptation to environment, and thus offer excellent models for the study of evolution at the molecular and genomic level. Serpentine outcrops are derived from ultramafic rock and have extremely low levels of essential plant nutrients (e.g., N, P, K, and Ca), as well as toxic levels of heavy metals (e.g., Ni, Cr, and Co) and low moisture availability. These outcrops provide habitat to a number of endemic plant species, including the annual mustard Caulanthus amplexicaulis var. barbarae (Cab) (Brassicaceae). Its sister taxon, C. amplexicaulis var. amplexicaulis (Caa), is intolerant to serpentine soils. Here, we assembled and annotated comprehensive reference transcriptomes of both Caa and Cab for use in protein coding sequence comparisons. A set of 29,443 reciprocal best Blast hit (RBH) orthologs between Caa and Cab was compared with identify coding sequence variants, revealing a high genome-wide dN/dS ratio between the two taxa (mean = 0.346). We show that elevated dN/dS likely results from the composite effects of genetic drift, positive selection, and the relaxation of negative selection. Further, analysis of paralogs within each taxon revealed the signature of a period of elevated gene duplication (∼10 Ma) that is shared with other species of the tribe Thelypodieae, and may have played a role in the striking morphological and ecological diversity of this tribe. In addition, distribution of the synonymous substitution rate, dS, is strongly bimodal, indicating a history of reticulate evolution that may have contributed to serpentine adaptation.
Collapse
|
24
|
Josephs EB, Wright SI, Stinchcombe JR, Schoen DJ. The Relationship between Selection, Network Connectivity, and Regulatory Variation within a Population of Capsella grandiflora. Genome Biol Evol 2017; 9:1099-1109. [PMID: 28402527 PMCID: PMC5408089 DOI: 10.1093/gbe/evx068] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 12/12/2022] Open
Abstract
Interactions between genes can have important consequences for how selection shapes sequence variation at these genes. Specifically, genes that have pleiotropic effects by affecting the expression level of many other genes may be under stronger selective constraint. We used coexpression networks to measure connectivity between genes and investigated the relationship between gene connectivity and selection in a natural population of the plant Capsella grandiflora. We observed that network connectivity was negatively correlated with genetic divergence due to stronger negative selection on highly-connected genes even when controlling for variation in gene expression level. However, the presence of local regulatory variation for a gene's expression level was also associated with reduced negative selection and lower gene connectivity. While it is difficult to disentangle the causal relationships between these factors, our results show that both connectivity and local regulatory variation are important factors for explaining variation in selection between genes.
Collapse
Affiliation(s)
- Emily B. Josephs
- Department of Evolution and Ecology, University of California, Davis
| | - Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - John R. Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Daniel J. Schoen
- Department of Biology, McGill University, Stewart Biology Building, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Genomic analysis reveals major determinants of cis-regulatory variation in Capsella grandiflora. Proc Natl Acad Sci U S A 2017; 114:1087-1092. [PMID: 28096395 DOI: 10.1073/pnas.1612561114] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Understanding the causes of cis-regulatory variation is a long-standing aim in evolutionary biology. Although cis-regulatory variation has long been considered important for adaptation, we still have a limited understanding of the selective importance and genomic determinants of standing cis-regulatory variation. To address these questions, we studied the prevalence, genomic determinants, and selective forces shaping cis-regulatory variation in the outcrossing plant Capsella grandiflora We first identified a set of 1,010 genes with common cis-regulatory variation using analyses of allele-specific expression (ASE). Population genomic analyses of whole-genome sequences from 32 individuals showed that genes with common cis-regulatory variation (i) are under weaker purifying selection and (ii) undergo less frequent positive selection than other genes. We further identified genomic determinants of cis-regulatory variation. Gene body methylation (gbM) was a major factor constraining cis-regulatory variation, whereas presence of nearby transposable elements (TEs) and tissue specificity of expression increased the odds of ASE. Our results suggest that most common cis-regulatory variation in C. grandiflora is under weak purifying selection, and that gene-specific functional constraints are more important for the maintenance of cis-regulatory variation than genome-scale variation in the intensity of selection. Our results agree with previous findings that suggest TE silencing affects nearby gene expression, and provide evidence for a link between gbM and cis-regulatory constraint, possibly reflecting greater dosage sensitivity of body-methylated genes. Given the extensive conservation of gbM in flowering plants, this suggests that gbM could be an important predictor of cis-regulatory variation in a wide range of plant species.
Collapse
|
26
|
Pettengill JB, Briscoe Runquist RD, Moeller DA. Mating system divergence affects the distribution of sequence diversity within and among populations of recently diverged subspecies of Clarkia xantiana (Onagraceae). AMERICAN JOURNAL OF BOTANY 2016; 103:99-109. [PMID: 26643885 DOI: 10.3732/ajb.1500147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/14/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY The population biology of outcrossing and self-fertilizing taxa is thought to differ because of the advantage that selfers have in colonizing unoccupied sites where mates and pollinators may be limiting (Baker's Law). This reduced tendency for outcrossers to colonize new sites, along with their greater dependence on pollinators to disperse pollen, has the potential to differently influence the genetic diversity and structure of outcrossing and selfing populations. METHODS We conducted a comparative population genetic study of two sister outcrossing and selfing subspecies of Clarkia xantiana that have very recently diverged. We used DNA sequence variation (>40 kb from eight nuclear loci) from large samples of individuals from 14 populations to assess geographic patterns of genetic diversity and make inferences about the demographic and colonization histories of each subspecies. KEY RESULTS We show that sequence variation is strongly reduced across all selfing populations. The demographic history of selfing populations exhibits recent colonization bottlenecks, whereas such bottlenecks are rarely observed for the outcrosser. The greater effect of genetic drift in the selfer has resulted in strong population genetic structure, but with no pattern of isolation by distance. By contrast, the stronger effect of gene flow in the outcrosser has resulted in considerably less structure, but a significant pattern of isolation by distance. CONCLUSIONS Taken together, our results suggest that selfing populations are not at migration-drift equilibrium, are affected by strong episodes of genetic drift during colonization, and experience little or no subsequent gene flow from other populations after those founder events.
Collapse
Affiliation(s)
- James B Pettengill
- Department of Plant Biology, 1445 Gortner Avenue, University of Minnesota, Saint Paul, Minnesota 55108 USA
| | - Ryan D Briscoe Runquist
- Department of Plant Biology, 1445 Gortner Avenue, University of Minnesota, Saint Paul, Minnesota 55108 USA
| | - David A Moeller
- Department of Plant Biology, 1445 Gortner Avenue, University of Minnesota, Saint Paul, Minnesota 55108 USA
| |
Collapse
|
27
|
Association mapping reveals the role of purifying selection in the maintenance of genomic variation in gene expression. Proc Natl Acad Sci U S A 2015; 112:15390-5. [PMID: 26604315 DOI: 10.1073/pnas.1503027112] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolutionary forces that maintain genetic variation in quantitative traits within populations remain poorly understood. One hypothesis suggests that variation is under purifying selection, resulting in an excess of low-frequency variants and a negative correlation between minor allele frequency and selection coefficients. Here, we test these predictions using the genetic loci associated with total expression variation (eQTLs) and allele-specific expression variation (aseQTLs) mapped within a single population of the plant Capsella grandiflora. In addition to finding eQTLs and aseQTLs for a large fraction of genes, we show that alleles at these loci are rarer than expected and exhibit a negative correlation between phenotypic effect size and frequency. Overall, our results show that the distribution of frequencies and effect sizes of the loci responsible for local expression variation within a single outcrossing population are consistent with the effects of purifying selection.
Collapse
|
28
|
Liu R, Zheng XM, Zhou L, Zhou HF, Ge S. Population genetic structure of Oryza rufipogon and Oryza nivara: implications for the origin of O. nivara. Mol Ecol 2015; 24:5211-28. [PMID: 26340227 DOI: 10.1111/mec.13375] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 08/30/2015] [Accepted: 09/01/2015] [Indexed: 12/25/2022]
Abstract
Ecological speciation plays a primary role in driving species divergence and adaptation. Oryza rufipogon and Oryza nivara are two incipient species at the early stage of speciation with distinct differences in morphology, life history traits and habitat preference, and therefore provide a unique model for the study of ecological speciation. However, the population genetic structure of the ancestral O. rufipogon has been controversial despite substantial study, and the origin of the derivative O. nivara remains unclear. Here, based on sequences of 10 nuclear and two chloroplast loci from 26 wild populations across the entire geographic ranges of the two species, we conducted comprehensive analyses using population genetics, phylogeography and species distribution modelling (SDM) approaches. In addition to supporting the two previously reported major subdivisions, we detected four genetically distinct groups within O. rufipogon and found no correlation between the genetic groups and either species identity or geographical regions. The SDM clearly showed substantial change in the distribution range of O. rufipogon in history, demonstrating that the repeated extinction and colonization of local populations due to multiple glacial-interglacial cycles during the Quaternary was most likely the main factor shaping the confounding population genetic structure of O. rufipogon. Moreover, we found significant differences between the two species in climate preferences, suggestive of an important role for climatic factors in the adaptation, persistence and expansion of O. nivara. Finally, based on the genetic pattern and dynamics of the O. nivara populations, we hypothesize that O. nivara might have independently originated multiple times from different O. rufipogon populations.
Collapse
Affiliation(s)
- Rong Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ming Zheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lian Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Fei Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Steige KA, Reimegård J, Koenig D, Scofield DG, Slotte T. Cis-Regulatory Changes Associated with a Recent Mating System Shift and Floral Adaptation in Capsella. Mol Biol Evol 2015; 32:2501-14. [PMID: 26318184 PMCID: PMC4576713 DOI: 10.1093/molbev/msv169] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The selfing syndrome constitutes a suite of floral and reproductive trait changes that have evolved repeatedly across many evolutionary lineages in response to the shift to selfing. Convergent evolution of the selfing syndrome suggests that these changes are adaptive, yet our understanding of the detailed molecular genetic basis of the selfing syndrome remains limited. Here, we investigate the role of cis-regulatory changes during the recent evolution of the selfing syndrome in Capsella rubella, which split from the outcrosser Capsella grandiflora less than 200 ka. We assess allele-specific expression (ASE) in leaves and flower buds at a total of 18,452 genes in three interspecific F1 C. grandiflora x C. rubella hybrids. Using a hierarchical Bayesian approach that accounts for technical variation using genomic reads, we find evidence for extensive cis-regulatory changes. On average, 44% of the assayed genes show evidence of ASE; however, only 6% show strong allelic expression biases. Flower buds, but not leaves, show an enrichment of cis-regulatory changes in genomic regions responsible for floral and reproductive trait divergence between C. rubella and C. grandiflora. We further detected an excess of heterozygous transposable element (TE) insertions near genes with ASE, and TE insertions targeted by uniquely mapping 24-nt small RNAs were associated with reduced expression of nearby genes. Our results suggest that cis-regulatory changes have been important during the recent adaptive floral evolution in Capsella and that differences in TE dynamics between selfing and outcrossing species could be important for rapid regulatory divergence in association with mating system shifts.
Collapse
Affiliation(s)
- Kim A Steige
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Johan Reimegård
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Daniel Koenig
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Douglas G Scofield
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala Sweden
| | - Tanja Slotte
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
30
|
Ometto L, Li M, Bresadola L, Barbaro E, Neteler M, Varotto C. Demographic History, Population Structure, and Local Adaptation in Alpine Populations of Cardamine impatiens and Cardamine resedifolia. PLoS One 2015; 10:e0125199. [PMID: 25933225 PMCID: PMC4416911 DOI: 10.1371/journal.pone.0125199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/21/2015] [Indexed: 01/22/2023] Open
Abstract
Species evolution depends on numerous and distinct forces, including demography and natural selection. For example, local adaptation and population structure affect the evolutionary history of species living along environmental clines. This is particularly relevant in plants, which are often characterized by limited dispersal ability and the need to respond to abiotic and biotic stress factors specific to the local environment. Here we study the demographic history and the possible existence of local adaptation in two related species of Brassicaceae, Cardamine impatiens and Cardamine resedifolia, which occupy separate habitats along the elevation gradient. Previous genome-wide analyses revealed the occurrence of distinct selective pressures in the two species, with genes involved in cold response evolving particularly fast in C. resedifolia. In this study we surveyed patterns of molecular evolution and genetic variability in a set of 19 genes, including neutral and candidate genes involved in cold response, across 10 populations each of C. resedifolia and C. impatiens from the Italian Alps (Trentino). We inferred the population structure and demographic history of the two species, and tested the occurrence of signatures of local adaptation in these genes. The results indicate that, despite a slightly higher population differentiation in C. resedifolia than in C. impatiens, both species are only weakly structured and that populations sampled at high altitude experience less gene flow than low-altitude ones. None of the genes showed signatures of positive selection, suggesting that they do not seem to play relevant roles in the current evolutionary processes of adaptation to alpine environments of these species.
Collapse
Affiliation(s)
- Lino Ometto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all′Adige (TN), Italy
| | - Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all′Adige (TN), Italy
| | - Luisa Bresadola
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all′Adige (TN), Italy
| | - Enrico Barbaro
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all′Adige (TN), Italy
| | - Markus Neteler
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all′Adige (TN), Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all′Adige (TN), Italy
| |
Collapse
|
31
|
Koenig D, Weigel D. Beyond the thale: comparative genomics and genetics of Arabidopsis relatives. Nat Rev Genet 2015; 16:285-98. [DOI: 10.1038/nrg3883] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Han TS, Wu Q, Hou XH, Li ZW, Zou YP, Ge S, Guo YL. Frequent introgressions from diploid species contribute to the adaptation of the tetraploid Shepherd's purse (Capsella bursa-pastoris). MOLECULAR PLANT 2015; 8:427-438. [PMID: 25661060 DOI: 10.1016/j.molp.2014.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/19/2014] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
Adaptation is the most important ability for organisms to survive in diverse habitats. Animals have the option to escape from stressful environments, but plants do not. In plants, polyploids consist of about 30%-70% angiosperms and 95% ferns, of which some are important crops such as cotton and wheat. How polyploid plants adapt to various habitats has been a fundamental question remained largely unanswered. The tetraploid Shepherd's purse (Capsella bursa-pastoris) is one of the most successful plants on earth and has been distributed across the world, thus being an ideal model system for studying the adaptation of polyploids. We found that there are frequent introgressions from congeneric diploids to Shepherd's purse. Ecological niche modeling suggests that ecological differentiation is evident between the introgressed and non-introgressed C. bursa-pastoris, and the introgressions are a source of adaptation. This result links an evolutionary process to the adaptation of polyploids, and sheds light on the breeding strategy of polyploids as well. We conclude that frequent introgressions from congeneric diploids contributed to the acquisition of adequate genetic variations, thereby allowing C. bursa-pastoris to adapt to various habitats across the world. Our results highlight how a polyploid could have successfully established after it originated.
Collapse
Affiliation(s)
- Ting-Shen Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Wen Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yu-Pan Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
33
|
Shafer ABA, Gattepaille LM, Stewart REA, Wolf JBW. Demographic inferences using short-read genomic data in an approximate Bayesian computation framework: in silico evaluation of power, biases and proof of concept in Atlantic walrus. Mol Ecol 2015; 24:328-45. [DOI: 10.1111/mec.13034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 11/29/2014] [Accepted: 12/03/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Aaron B. A. Shafer
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala SE-75236 Sweden
| | - Lucie M. Gattepaille
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala SE-75236 Sweden
| | - Robert E. A. Stewart
- Fisheries and Oceans Canada; Freshwater Institute; 501 University Crescent Winnipeg Manitoba R3T 2N6 Canada
| | - Jochen B. W. Wolf
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala SE-75236 Sweden
| |
Collapse
|
34
|
Williamson RJ, Josephs EB, Platts AE, Hazzouri KM, Haudry A, Blanchette M, Wright SI. Evidence for widespread positive and negative selection in coding and conserved noncoding regions of Capsella grandiflora. PLoS Genet 2014; 10:e1004622. [PMID: 25255320 PMCID: PMC4178662 DOI: 10.1371/journal.pgen.1004622] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/21/2014] [Indexed: 12/30/2022] Open
Abstract
The extent that both positive and negative selection vary across different portions of plant genomes remains poorly understood. Here, we sequence whole genomes of 13 Capsella grandiflora individuals and quantify the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we show that selection is strong in coding regions, but weak in most noncoding regions, with the exception of 5' and 3' untranslated regions (UTRs). However, estimates of selection on noncoding regions conserved across the Brassicaceae family show strong signals of selection. Additionally, we see reductions in neutral diversity around functional substitutions in both coding and conserved noncoding regions, indicating recent selective sweeps at these sites. Finally, using expression data from leaf tissue we show that genes that are more highly expressed experience stronger negative selection but comparable levels of positive selection to lowly expressed genes. Overall, we observe widespread positive and negative selection in coding and regulatory regions, but our results also suggest that both positive and negative selection on plant noncoding sequence are considerably rarer than in animal genomes.
Collapse
Affiliation(s)
- Robert J. Williamson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Emily B. Josephs
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| | - Adrian E. Platts
- Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
- School for Computer Science, McGill University, Montreal, Quebec, Canada
| | - Khaled M. Hazzouri
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Annabelle Haudry
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Université Lyon 1, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Mathieu Blanchette
- Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
- School for Computer Science, McGill University, Montreal, Quebec, Canada
| | - Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Agren JÅ, Wang W, Koenig D, Neuffer B, Weigel D, Wright SI. Mating system shifts and transposable element evolution in the plant genus Capsella. BMC Genomics 2014; 15:602. [PMID: 25030755 PMCID: PMC4112209 DOI: 10.1186/1471-2164-15-602] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 07/10/2014] [Indexed: 11/11/2022] Open
Abstract
Background Despite having predominately deleterious fitness effects, transposable elements (TEs) are major constituents of eukaryote genomes in general and of plant genomes in particular. Although the proportion of the genome made up of TEs varies at least four-fold across plants, the relative importance of the evolutionary forces shaping variation in TE abundance and distributions across taxa remains unclear. Under several theoretical models, mating system plays an important role in governing the evolutionary dynamics of TEs. Here, we use the recently sequenced Capsella rubella reference genome and short-read whole genome sequencing of multiple individuals to quantify abundance, genome distributions, and population frequencies of TEs in three recently diverged species of differing mating system, two self-compatible species (C. rubella and C. orientalis) and their self-incompatible outcrossing relative, C. grandiflora. Results We detect different dynamics of TE evolution in our two self-compatible species; C. rubella shows a small increase in transposon copy number, while C. orientalis shows a substantial decrease relative to C. grandiflora. The direction of this change in copy number is genome wide and consistent across transposon classes. For insertions near genes, however, we detect the highest abundances in C. grandiflora. Finally, we also find differences in the population frequency distributions across the three species. Conclusion Overall, our results suggest that the evolution of selfing may have different effects on TE evolution on a short and on a long timescale. Moreover, cross-species comparisons of transposon abundance are sensitive to reference genome bias, and efforts to control for this bias are key when making comparisons across species. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-602) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Ågren Agren
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | | | | | | | | | | |
Collapse
|
36
|
Patterns of nucleotide diversity at photoperiod related genes in Norway spruce [Picea abies (L.) Karst]. PLoS One 2014; 9:e95306. [PMID: 24810273 PMCID: PMC4014479 DOI: 10.1371/journal.pone.0095306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/26/2014] [Indexed: 11/20/2022] Open
Abstract
The ability of plants to track seasonal changes is largely dependent on genes assigned to the photoperiod pathway, and variation in those genes is thereby important for adaptation to local day length conditions. Extensive physiological data in several temperate conifer species suggest that populations are adapted to local light conditions, but data on the genes underlying this adaptation are more limited. Here we present nucleotide diversity data from 19 genes putatively involved in photoperiodic response in Norway spruce (Picea abies). Based on similarity to model plants the genes were grouped into three categories according to their presumed position in the photoperiod pathway: photoreceptors, circadian clock genes, and downstream targets. An HKA (Hudson, Kreitman and Aquade) test showed a significant excess of diversity at photoreceptor genes, but no departure from neutrality at circadian genes and downstream targets. Departures from neutrality were also tested with Tajima's D and Fay and Wu's H statistics under three demographic scenarios: the standard neutral model, a population expansion model, and a more complex population split model. Only one gene, the circadian clock gene PaPRR3 with a highly positive Tajima's D value, deviates significantly from all tested demographic scenarios. As the PaPRR3 gene harbours multiple non-synonymous variants it appears as an excellent candidate gene for control of photoperiod response in Norway spruce.
Collapse
|
37
|
Castric V, Billiard S, Vekemans X. Trait transitions in explicit ecological and genomic contexts: plant mating systems as case studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:7-36. [PMID: 24277293 DOI: 10.1007/978-94-007-7347-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Plants are astonishingly diverse in how they reproduce sexually, and the study of plant mating systems provides some of the most compelling cases of parallel and independent evolutionary transitions. In this chapter, we review how the massive amount of genomic data being produced is allowing long-standing predictions from ecological and evolutionary theory to be put to test. After a review of theoretical predictions about the importance of considering the genomic architecture of the mating system, we focus on a set of recent discoveries on how the mating system is controlled in a variety of model and non-model species. In parallel, genomic approaches have revealed the complex interaction between the evolution of genes controlling mating systems and genome evolution, both genome-wide and in the mating system control region. In several cases, major transitions in the mating system can be clearly associated with important ecological changes, hence illuminating an important interplay between ecological and genomic approaches. We also list a number of major unsolved questions that remain for the field, and highlight foreseeable conceptual developments that are likely to play a major role in our understanding of how plant mating systems evolve in Nature.
Collapse
Affiliation(s)
- Vincent Castric
- Laboratoire de Génétique et Evolution des Populations Végétales (GEPV), UMR 8198; CNRS, Université Lille 1, Sciences et Technologies, Cité Scientifique, Villeneuve d'Ascq, France,
| | | | | |
Collapse
|
38
|
Vekemans X, Poux C, Goubet PM, Castric V. The evolution of selfing from outcrossing ancestors in Brassicaceae: what have we learned from variation at the S-locus? J Evol Biol 2014; 27:1372-85. [PMID: 24725152 DOI: 10.1111/jeb.12372] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 12/01/2022]
Abstract
Evolutionary transitions between mating systems have occurred repetitively and independently in flowering plants. One of the most spectacular advances of the recent empirical literature in the field was the discovery of the underlying genetic machinery, which provides the opportunity to retrospectively document the scenario of the outcrossing to selfing transitions in a phylogenetic perspective. In this review, we explore the literature describing patterns of polymorphism and molecular evolution of the locus controlling self-incompatibility (S-locus) in selfing species of the Brassicaceae family in order to document the transition from outcrossing to selfing, a retrospective approach that we describe as the 'mating system genes approach'. The data point to strikingly contrasted scenarios of transition from outcrossing to selfing. We also perform original analyses of the fully sequenced genomes of four species showing self-compatibility, to compare the orthologous S-locus region with that of functional S-locus haplotypes. Phylogenetic analyses suggest that all species we investigated evolved independently towards loss of self-incompatibility, and in most cases almost intact sequences of either of the two S-locus genes suggest that these transitions occurred relatively recently. The S-locus region in Aethionema arabicum, representing the most basal lineage of Brassicaceae, showed unusual patterns so that our analysis could not determine whether self-incompatibility was lost secondarily, or evolved in the core Brassicaceae after the split with this basal lineage. Although the approach we detail can only be used when mating system genes have been identified in a clade, we suggest that its integration with phylogenetic and population genetic approaches should help determine the main routes of this predominant mating system shift in plants.
Collapse
Affiliation(s)
- X Vekemans
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université Lille 1, Villeneuve d'Ascq Cedex, France
| | | | | | | |
Collapse
|
39
|
Wang J, Källman T, Liu J, Guo Q, Wu Y, Lin K, Lascoux M. Speciation of two desert poplar species triggered by Pleistocene climatic oscillations. Heredity (Edinb) 2014; 112:156-64. [PMID: 24065180 PMCID: PMC3907101 DOI: 10.1038/hdy.2013.87] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 07/07/2013] [Accepted: 07/29/2013] [Indexed: 11/09/2022] Open
Abstract
Despite the evidence that the Pleistocene climatic fluctuations have seriously affected the distribution of intraspecific diversity, less is known on its impact on interspecific divergence. In this study, we aimed to test the hypothesis that the divergence of two desert poplar species Populus euphratica Oliv. and P. pruinosa Schrenk. occurred during the Pleistocene. We sequenced 11 nuclear loci in 60 individuals from the two species to estimate the divergence time between them and to test whether gene flow occurred after species separation. Divergence time between the two species was estimated to be 0.66-1.37 million years ago (Ma), a time at which glaciation was at its maximum in China and deserts developed widely in central Asia. Isolation-with-Migration model also indicated that the two species had diverged in the presence of gene flow. We also detected evidence of selection at GO in P. euphratica and to a lesser extent at PhyB2. Together, these results underscore the importance of Pleistocene climate oscillations in triggering plant speciation as a result of habitats divergence.
Collapse
Affiliation(s)
- J Wang
- State Key Laboratory of Grassland Ecosystem,
College of Life Science, Lanzhou University, Lanzhou,
China
| | - T Källman
- Department of Ecology and Genetics,
Evolutionary Biology Centre, Uppsala University, Uppsala,
Sweden
| | - J Liu
- State Key Laboratory of Grassland Ecosystem,
College of Life Science, Lanzhou University, Lanzhou,
China
| | - Q Guo
- State Key Laboratory of Grassland Ecosystem,
College of Life Science, Lanzhou University, Lanzhou,
China
| | - Y Wu
- State Key Laboratory of Grassland Ecosystem,
College of Life Science, Lanzhou University, Lanzhou,
China
| | - K Lin
- Laboratory of Evolutionary Genomics, CAS-MPG
Partner Institute for Computational Biology, Chinese Academy of Sciences,
Shanghai, China
- Graduate School of the Chinese Academy of
Sciences, Beijing, China
| | - M Lascoux
- Department of Ecology and Genetics,
Evolutionary Biology Centre, Uppsala University, Uppsala,
Sweden
- Laboratory of Evolutionary Genomics, CAS-MPG
Partner Institute for Computational Biology, Chinese Academy of Sciences,
Shanghai, China
| |
Collapse
|
40
|
Genomic identification of founding haplotypes reveals the history of the selfing species Capsella rubella. PLoS Genet 2013; 9:e1003754. [PMID: 24068948 PMCID: PMC3772084 DOI: 10.1371/journal.pgen.1003754] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 07/11/2013] [Indexed: 12/12/2022] Open
Abstract
The shift from outcrossing to self-fertilization is among the most common evolutionary transitions in flowering plants. Until recently, however, a genome-wide view of this transition has been obscured by both a dearth of appropriate data and the lack of appropriate population genomic methods to interpret such data. Here, we present a novel population genomic analysis detailing the origin of the selfing species, Capsella rubella, which recently split from its outcrossing sister, Capsella grandiflora. Due to the recency of the split, much of the variation within C. rubella is also found within C. grandiflora. We can therefore identify genomic regions where two C. rubella individuals have inherited the same or different segments of ancestral diversity (i.e. founding haplotypes) present in C. rubella's founder(s). Based on this analysis, we show that C. rubella was founded by multiple individuals drawn from a diverse ancestral population closely related to extant C. grandiflora, that drift and selection have rapidly homogenized most of this ancestral variation since C. rubella's founding, and that little novel variation has accumulated within this time. Despite the extensive loss of ancestral variation, the approximately 25% of the genome for which two C. rubella individuals have inherited different founding haplotypes makes up roughly 90% of the genetic variation between them. To extend these findings, we develop a coalescent model that utilizes the inferred frequency of founding haplotypes and variation within founding haplotypes to estimate that C. rubella was founded by a potentially large number of individuals between 50 and 100 kya, and has subsequently experienced a twenty-fold reduction in its effective population size. As population genomic data from an increasing number of outcrossing/selfing pairs are generated, analyses like the one developed here will facilitate a fine-scaled view of the evolutionary and demographic impact of the transition to self-fertilization. While many plants require pollen from another individual to set seed, in some species self-pollination is the norm. This evolutionary shift from outcrossing to self-fertilization is among the most common transitions in flowering plants. Here, we use dense genome sequence data to identify where in the genome two individuals have inherited the same or different segments of ancestral diversity present in the founders of the selfing species, Capsella rubella to obtain a genome-wide view of this transition. This identification of founding haplotypes allows us to partition mutations into those that occurred before and after C. rubella separated from its outcrossing progenitor, C. grandiflora. With this partitioning, we estimate that C. rubella split from C. grandiflora between 50 and 100 kya. In this relatively short time frame, an extreme reduction in C. rubella's population size is associated with a massive loss of genetic variation and an increase in the relative proportion of putatively deleterious polymorphisms.
Collapse
|
41
|
The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat Genet 2013; 45:831-5. [PMID: 23749190 DOI: 10.1038/ng.2669] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/16/2013] [Indexed: 12/16/2022]
Abstract
The shift from outcrossing to selfing is common in flowering plants, but the genomic consequences and the speed at which they emerge remain poorly understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self compatible <200,000 years ago. We report a C. rubella reference genome sequence and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor Capsella grandiflora. We found a clear shift in the expression of genes associated with flowering phenotypes, similar to that seen in Arabidopsis, in which self fertilization evolved about 1 million years ago. Comparisons of the two Capsella species showed evidence of rapid genome-wide relaxation of purifying selection in C. rubella without a concomitant change in transposable element abundance. Overall we document that the transition to selfing may be typified by parallel shifts in gene expression, along with a measurable reduction of purifying selection.
Collapse
|
42
|
Okada M, Hanson BD, Hembree KJ, Peng Y, Shrestha A, Stewart CN, Wright SD, Jasieniuk M. Evolution and spread of glyphosate resistance in Conyza canadensis in California. Evol Appl 2013; 6:761-777. [PMID: 29387164 PMCID: PMC5779124 DOI: 10.1111/eva.12061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/28/2013] [Indexed: 02/05/2023] Open
Abstract
Recent increases in glyphosate use in perennial crops of California, USA, are hypothesized to have led to an increase in selection and evolution of resistance to the herbicide in Conyza canadensis populations. To gain insight into the evolutionary origins and spread of resistance and to inform glyphosate resistance management strategies, we investigated the geographical distribution of glyphosate resistance in C. canadensis across and surrounding the Central Valley, its spatial relationship to groundwater protection areas (GWPA), and the genetic diversity and population structure and history using microsatellite markers. Frequencies of resistant individuals in 42 sampled populations were positively correlated with the size of GWPA within counties. Analyses of population genetic structure also supported spread of resistance in these areas. Bayesian clustering and approximate Bayesian computation (ABC) analyses revealed multiple independent origins of resistance within the Central Valley. Based on parameter estimation in the ABC analyses, resistant genotypes underwent expansion after glyphosate use began in agriculture, but many years before it was detected. Thus, diversity in weed control practices prior to herbicide regulation in GWPA probably kept resistance frequencies low. Regionally coordinated efforts to reduce seed dispersal and selection pressure are needed to manage glyphosate resistance in C. canadensis.
Collapse
Affiliation(s)
- Miki Okada
- Department of Plant Sciences Mail Stop 4 University of California, Davis Davis CA USA
| | - Bradley D Hanson
- Department of Plant Sciences Mail Stop 4 University of California, Davis Davis CA USA
| | - Kurt J Hembree
- University of California Cooperative Extension Fresno County Fresno CA USA
| | - Yanhui Peng
- Department of Plant Sciences University of Tennessee Knoxville TN USA
| | - Anil Shrestha
- Department of Plant Science California State University, Fresno Fresno CA USA
| | | | - Steven D Wright
- University of California Cooperative Extension Tulare and Kings Counties Tulare CA USA
| | - Marie Jasieniuk
- Department of Plant Sciences Mail Stop 4 University of California, Davis Davis CA USA
| |
Collapse
|
43
|
Gonzales AM, Fang Z, Durbin ML, Meyer KKT, Clegg MT, Morrell PL. Nucleotide sequence diversity of floral pigment genes in Mexican populations of Ipomoea purpurea (morning glory) accord with a neutral model of evolution. ACTA ACUST UNITED AC 2012; 103:863-72. [PMID: 23091224 DOI: 10.1093/jhered/ess059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The common morning glory (Ipomoea purpurea) is an annual vine native to Central and Southern Mexico. The genetics of flower color polymorphisms and interactions with the biotic environment have been extensively studied in I. purpurea and in its sister species I. nil. In this study, we examine nucleotide sequence polymorphism in 11 loci, 9 of which are known to participate in a pathway that produces floral pigments. A sample of 30 I. purpurea accessions from the native range of Central and Southern Mexico comprise the data, along with one accession from each of the two sister species I. alba and I. nil. We observe moderate levels of nucleotide sequence polymorphism of ~1%. The ratio of recombination to mutation parameter estimates (ρ/θ) of ~2.5 appears consistent with a mixed-mating system. Ipomoea resequencing data from these genic regions are noteworthy in providing a good fit to the standard neutral model of molecular evolution. The derived silent site frequency spectrum is very close to that predicted by coalescent simulations of a drift-mutation process, and Tajima's D values are not significantly different from expectations under neutrality.
Collapse
Affiliation(s)
- Ana M Gonzales
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
44
|
Gos G, Slotte T, Wright SI. Signatures of balancing selection are maintained at disease resistance loci following mating system evolution and a population bottleneck in the genus Capsella. BMC Evol Biol 2012; 12:152. [PMID: 22909344 PMCID: PMC3502572 DOI: 10.1186/1471-2148-12-152] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/15/2012] [Indexed: 01/15/2023] Open
Abstract
Background Population bottlenecks can lead to a loss of variation at disease resistance loci, which could have important consequences for the ability of populations to adapt to pathogen pressure. Alternatively, current or past balancing selection could maintain high diversity, creating a strong heterogeneity in the retention of polymorphism across the genome of bottlenecked populations. We sequenced part of the LRR region of 9 NBS-LRR disease resistance genes in the outcrossing Capsella grandiflora and the recently derived, bottlenecked selfing species Capsella rubella, and compared levels and patterns of nucleotide diversity and divergence with genome-wide reference loci. Results In strong contrast with reference loci, average diversity at resistance loci was comparable between C. rubella and C. grandiflora, primarily due to two loci with highly elevated diversity indicative of past or present balancing selection. Average between-species differentiation was also reduced at the set of R-genes compared with reference loci, which is consistent with the maintenance of ancestral polymorphism. Conclusions Historical or ongoing balancing selection on plant disease resistance genes is a likely contributor to the retention of ancestral polymorphism in some regions of the bottlenecked Capella rubella genome.
Collapse
Affiliation(s)
- Gesseca Gos
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | | | | |
Collapse
|
45
|
Impact of sampling schemes on demographic inference: an empirical study in two species with different mating systems and demographic histories. G3-GENES GENOMES GENETICS 2012; 2:803-14. [PMID: 22870403 PMCID: PMC3385986 DOI: 10.1534/g3.112.002410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/10/2012] [Indexed: 12/12/2022]
Abstract
Most species have at least some level of genetic structure. Recent simulation studies have shown that it is important to consider population structure when sampling individuals to infer past population history. The relevance of the results of these computer simulations for empirical studies, however, remains unclear. In the present study, we use DNA sequence datasets collected from two closely related species with very different histories, the selfing species Capsella rubella and its outcrossing relative C. grandiflora, to assess the impact of different sampling strategies on summary statistics and the inference of historical demography. Sampling strategy did not strongly influence the mean values of Tajima's D in either species, but it had some impact on the variance. The general conclusions about demographic history were comparable across sampling schemes even when resampled data were analyzed with approximate Bayesian computation (ABC). We used simulations to explore the effects of sampling scheme under different demographic models. We conclude that when sequences from modest numbers of loci (<60) are analyzed, the sampling strategy is generally of limited importance. The same is true under intermediate or high levels of gene flow (4Nm > 2-10) in models in which global expansion is combined with either local expansion or hierarchical population structure. Although we observe a less severe effect of sampling than predicted under some earlier simulation models, our results should not be seen as an encouragement to neglect this issue. In general, a good coverage of the natural range, both within and between populations, will be needed to obtain a reliable reconstruction of a species's demographic history, and in fact, the effect of sampling scheme on polymorphism patterns may itself provide important information about demographic history.
Collapse
|
46
|
Global population genetic structure of Caenorhabditis remanei reveals incipient speciation. Genetics 2012; 191:1257-69. [PMID: 22649079 DOI: 10.1534/genetics.112.140418] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mating system transitions dramatically alter the evolutionary trajectories of genomes that can be revealed by contrasts of species with disparate modes of reproduction. For such transitions in Caenorhabditis nematodes, some major causes of genome variation in selfing species have been discerned. And yet, we have only limited understanding of species-wide population genetic processes for their outcrossing relatives, which represent the reproductive state of the progenitors of selfing species. Multilocus-multipopulation sequence polymorphism data provide a powerful means to uncover the historical demography and evolutionary processes that shape genomes. Here we survey nucleotide polymorphism across the X chromosome for three populations of the outcrossing nematode Caenorhabditis remanei and demonstrate its divergence from a fourth population describing a closely related new species from China, C. sp. 23. We find high genetic variation globally and within each local population sample. Despite geographic barriers and moderate genetic differentiation between Europe and North America, considerable gene flow connects C. remanei populations. We discovered C. sp. 23 while investigating C. remanei, observing strong genetic differentiation characteristic of reproductive isolation that was confirmed by substantial F2 hybrid breakdown in interspecific crosses. That C. sp. 23 represents a distinct biological species provides a cautionary example of how standard practice can fail for mating tests of species identity in this group. This species pair permits full application of divergence population genetic methods to obligately outcrossing species of Caenorhabditis and also presents a new focus for interrogation of the genetics and evolution of speciation with the Caenorhabditis model system.
Collapse
|
47
|
De Mita S, Siol M. EggLib: processing, analysis and simulation tools for population genetics and genomics. BMC Genet 2012; 13:27. [PMID: 22494792 PMCID: PMC3350404 DOI: 10.1186/1471-2156-13-27] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 04/11/2012] [Indexed: 12/20/2022] Open
Abstract
Background With the considerable growth of available nucleotide sequence data over the last decade, integrated and flexible analytical tools have become a necessity. In particular, in the field of population genetics, there is a strong need for automated and reliable procedures to conduct repeatable and rapid polymorphism analyses, coalescent simulations, data manipulation and estimation of demographic parameters under a variety of scenarios. Results In this context, we present EggLib (Evolutionary Genetics and Genomics Library), a flexible and powerful C++/Python software package providing efficient and easy to use computational tools for sequence data management and extensive population genetic analyses on nucleotide sequence data. EggLib is a multifaceted project involving several integrated modules: an underlying computationally efficient C++ library (which can be used independently in pure C++ applications); two C++ programs; a Python package providing, among other features, a high level Python interface to the C++ library; and the egglib script which provides direct access to pre-programmed Python applications. Conclusions EggLib has been designed aiming to be both efficient and easy to use. A wide array of methods are implemented, including file format conversion, sequence alignment edition, coalescent simulations, neutrality tests and estimation of demographic parameters by Approximate Bayesian Computation (ABC). Classes implementing different demographic scenarios for ABC analyses can easily be developed by the user and included to the package. EggLib source code is distributed freely under the GNU General Public License (GPL) from its website http://egglib.sourceforge.net/ where a full documentation and a manual can also be found and downloaded.
Collapse
Affiliation(s)
- Stéphane De Mita
- Institut de Recherche pour le Développement (IRD), UMR Diversité, Adaptation et Développement des Plantes (DIADE), Montpellier, France.
| | | |
Collapse
|
48
|
Slotte T, Hazzouri KM, Stern D, Andolfatto P, Wright SI. Genetic architecture and adaptive significance of the selfing syndrome in Capsella. Evolution 2012; 66:1360-74. [PMID: 22519777 DOI: 10.1111/j.1558-5646.2011.01540.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The transition from outcrossing to predominant self-fertilization is one of the most common evolutionary transitions in flowering plants. This shift is often accompanied by a suite of changes in floral and reproductive characters termed the selfing syndrome. Here, we characterize the genetic architecture and evolutionary forces underlying evolution of the selfing syndrome in Capsella rubella following its recent divergence from the outcrossing ancestor C. grandiflora. We conduct genotyping by multiplexed shotgun sequencing and map floral and reproductive traits in a large (N= 550) F2 population. Our results suggest that in contrast to previous studies of the selfing syndrome, changes at a few loci, some with major effects, have shaped the evolution of the selfing syndrome in Capsella. The directionality of QTL effects, as well as population genetic patterns of polymorphism and divergence at 318 loci, is consistent with a history of directional selection on the selfing syndrome. Our study is an important step toward characterizing the genetic basis and evolutionary forces underlying the evolution of the selfing syndrome in a genetically accessible model system.
Collapse
Affiliation(s)
- Tanja Slotte
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyv. 18D, SE-752 36 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
49
|
St. Onge KR, Foxe JP, Li J, Li H, Holm K, Corcoran P, Slotte T, Lascoux M, Wright SI. Coalescent-Based Analysis Distinguishes between Allo- and Autopolyploid Origin in Shepherd's Purse (Capsella bursa-pastoris). Mol Biol Evol 2012; 29:1721-33. [DOI: 10.1093/molbev/mss024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
50
|
|