1
|
MacGuigan DJ, Mount GG, Watkins-Colwell GJ, Near TJ, Lambert MR. Genomic Data Clarify Aquarana Systematics and Reveal Isolation-by-Distance Dominates Phylogeography of the Wide-Ranging Frog Rana clamitans. ICHTHYOLOGY & HERPETOLOGY 2022. [DOI: 10.1643/h2021129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel J. MacGuigan
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260;
| | | | - Gregory J. Watkins-Colwell
- Division of Vertebrate Zoology, Peabody Museum of Natural History, Yale University, New Haven, Connecticut 06511; (GJWC) gregory.
| | - Thomas J. Near
- Division of Vertebrate Zoology, Peabody Museum of Natural History, Yale University, New Haven, Connecticut 06511; (GJWC) gregory.
| | - Max R. Lambert
- Science Division, Habitat Program, Washington Department of Fish & Wildlife, Olympia, Washington 98501;
| |
Collapse
|
2
|
Velo-Antón G, Lourenço A, Galán P, Nicieza A, Tarroso P. Landscape resistance constrains hybridization across contact zones in a reproductively and morphologically polymorphic salamander. Sci Rep 2021; 11:9259. [PMID: 33927228 PMCID: PMC8085075 DOI: 10.1038/s41598-021-88349-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Explicitly accounting for phenotypic differentiation together with environmental heterogeneity is crucial to understand the evolutionary dynamics in hybrid zones. Species showing intra-specific variation in phenotypic traits that meet across environmentally heterogeneous regions constitute excellent natural settings to study the role of phenotypic differentiation and environmental factors in shaping the spatial extent and patterns of admixture in hybrid zones. We studied three environmentally distinct contact zones where morphologically and reproductively divergent subspecies of Salamandra salamandra co-occur: the pueriparous S. s. bernardezi that is mostly parapatric to its three larviparous subspecies neighbours. We used a landscape genetics framework to: (i) characterise the spatial location and extent of each contact zone; (ii) assess patterns of introgression and hybridization between subspecies pairs; and (iii) examine the role of environmental heterogeneity in the evolutionary dynamics of hybrid zones. We found high levels of introgression between parity modes, and between distinct phenotypes, thus demonstrating the evolution to pueriparity alone or morphological differentiation do not lead to reproductive isolation between these highly divergent S. salamandra morphotypes. However, we detected substantial variation in patterns of hybridization across contact zones, being lower in the contact zone located on a topographically complex area. We highlight the importance of accounting for spatial environmental heterogeneity when studying evolutionary dynamics of hybrid zones.
Collapse
Affiliation(s)
- Guillermo Velo-Antón
- grid.5808.50000 0001 1503 7226CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão. R. Padre Armando Quintas, 4485-661 Vairão, Portugal ,grid.6312.60000 0001 2097 6738Universidade de Vigo, Grupo de Ecoloxía Animal, Departamento de Ecoloxía e Bioloxía Animal, Torre Cacti (Lab 97), 36310 Vigo, Spain
| | - André Lourenço
- grid.5808.50000 0001 1503 7226CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão. R. Padre Armando Quintas, 4485-661 Vairão, Portugal ,grid.5808.50000 0001 1503 7226Departamento de Biologia da Faculdade de Ciências, Universidade do Porto. Rua Campo Alegre, 4169-007 Porto, Portugal
| | - Pedro Galán
- grid.8073.c0000 0001 2176 8535Grupo de Investigación en Bioloxía Evolutiva (GIBE), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n, 15071 A Coruña, Spain
| | - Alfredo Nicieza
- grid.10863.3c0000 0001 2164 6351Departamento de Biologıa de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain ,grid.10863.3c0000 0001 2164 6351Unidad Mixta de Investigacion en Biodiversidad (UMIB), CSIC-Universidad de Oviedo-Principado de Asturias, Mieres, Spain
| | - Pedro Tarroso
- grid.5808.50000 0001 1503 7226CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de Vairão. R. Padre Armando Quintas, 4485-661 Vairão, Portugal
| |
Collapse
|
3
|
Kalkvik HM, Stout IJ, Hoffman EA, Parkinson CL. Colonization and divergence: phylogeography and population genetics of the Atlantic coast beach mice. SYST BIODIVERS 2018. [DOI: 10.1080/14772000.2018.1486339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Håkon M. Kalkvik
- Department of Biology, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
| | - I. Jack Stout
- Department of Biology, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
| | - Eric A. Hoffman
- Department of Biology, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
| | - Christopher L. Parkinson
- Department of Biology, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
| |
Collapse
|
4
|
Tougard C, Justy F, Guinand B, Douzery EJP, Berrebi P. Salmo macrostigma (Teleostei, Salmonidae): Nothing more than a brown trout (S. trutta) lineage? JOURNAL OF FISH BIOLOGY 2018; 93:302-310. [PMID: 29992566 DOI: 10.1111/jfb.13751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
We examined specimens of the macrostigma trout Salmo macrostigma, which refers to big black spots on the flanks, to assess whether it is an example of taxonomic inflation within the brown trout Salmo trutta complex. Using new specimens, publicly available data and a mitogenomic protocol to amplify the control and cytochrome b regions of the mitochondrial genome from degraded museum samples, including one syntype specimen, the present study shows that the macrostigma trout is not a valid species. Our results suggest the occurrence of a distinct evolutionary lineage of S. trutta in North Africa and Sicily. The name of the North African lineage is proposed for this lineage, which was found to be sister to the Atlantic lineage of brown trout, S. trutta.
Collapse
Affiliation(s)
| | - Fabienne Justy
- ISEM, CNRS, Université de Montpellier, IRD, EPHE, Montpellier, France
| | - Bruno Guinand
- ISEM, CNRS, Université de Montpellier, IRD, EPHE, Montpellier, France
| | | | - Patrick Berrebi
- ISEM, CNRS, Université de Montpellier, IRD, EPHE, Montpellier, France
| |
Collapse
|
5
|
Barrow LN, Lemmon AR, Lemmon EM. Targeted Sampling and Target Capture: Assessing Phylogeographic Concordance with Genome-wide Data. Syst Biol 2018; 67:979-996. [DOI: 10.1093/sysbio/syy021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 03/15/2018] [Indexed: 01/09/2023] Open
Affiliation(s)
- Lisa N Barrow
- Department of Biology, Museum of Southwestern Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
- Department of Biological Science, Florida State University, 319 Stadium Drive, PO Box 3064295, Tallahassee, FL 32306-4295, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL 32306-4120, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, PO Box 3064295, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
6
|
Flores-Rentería L, Rymer PD, Riegler M. Unpacking boxes: Integration of molecular, morphological and ecological approaches reveals extensive patterns of reticulate evolution in box eucalypts. Mol Phylogenet Evol 2017; 108:70-87. [DOI: 10.1016/j.ympev.2017.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/26/2022]
|
7
|
Thormann I, Reeves P, Reilley A, Engels JMM, Lohwasser U, Börner A, Pillen K, Richards CM. Geography of Genetic Structure in Barley Wild Relative Hordeum vulgare subsp. spontaneum in Jordan. PLoS One 2016; 11:e0160745. [PMID: 27513459 PMCID: PMC4981475 DOI: 10.1371/journal.pone.0160745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/25/2016] [Indexed: 12/02/2022] Open
Abstract
Informed collecting, conservation, monitoring and utilization of genetic diversity requires knowledge of the distribution and structure of the variation occurring in a species. Hordeum vulgare subsp. spontaneum (K. Koch) Thell., a primary wild relative of barley, is an important source of genetic diversity for barley improvement and co-occurs with the domesticate within the center of origin. We studied the current distribution of genetic diversity and population structure in H. vulgare subsp. spontaneum in Jordan and investigated whether it is correlated with either spatial or climatic variation inferred from publically available climate layers commonly used in conservation and ecogeographical studies. The genetic structure of 32 populations collected in 2012 was analyzed with 37 SSRs. Three distinct genetic clusters were identified. Populations were characterized by admixture and high allelic richness, and genetic diversity was concentrated in the northern part of the study area. Genetic structure, spatial location and climate were not correlated. This may point out a limitation in using large scale climatic data layers to predict genetic diversity, especially as it is applied to regional genetic resources collections in H. vulgare subsp. spontaneum.
Collapse
Affiliation(s)
| | - Patrick Reeves
- National Center for Genetic Resources Preservation, United States Department of Agriculture-Agricultural Research Service, Fort Collins, Colorado, United States of America
| | - Ann Reilley
- National Center for Genetic Resources Preservation, United States Department of Agriculture-Agricultural Research Service, Fort Collins, Colorado, United States of America
| | | | - Ulrike Lohwasser
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Klaus Pillen
- Plant Breeding, Institute for Agricultural and Nutritional Science, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Christopher M. Richards
- National Center for Genetic Resources Preservation, United States Department of Agriculture-Agricultural Research Service, Fort Collins, Colorado, United States of America
| |
Collapse
|
8
|
Satler JD, Zellmer AJ, Carstens BC. Biogeographic barriers drive co-diversification within associated eukaryotes of the Sarracenia alata pitcher plant system. PeerJ 2016; 4:e1576. [PMID: 26788436 PMCID: PMC4715430 DOI: 10.7717/peerj.1576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/16/2015] [Indexed: 12/29/2022] Open
Abstract
Understanding if the members of an ecological community have co-diversified is a central concern of evolutionary biology, as co-diversification suggests prolonged association and possible coevolution. By sampling associated species from an ecosystem, researchers can better understand how abiotic and biotic factors influence diversification in a region. In particular, studies of co-distributed species that interact ecologically can allow us to disentangle the effect of how historical processes have helped shape community level structure and interactions. Here we investigate the Sarracenia alata pitcher plant system, an ecological community where many species from disparate taxonomic groups live inside the fluid-filled pitcher leaves. Direct sequencing of the eukaryotes present in the pitcher plant fluid enables us to better understand how a host plant can shape and contribute to the genetic structure of its associated inquilines, and to ask whether genetic variation in the taxa are structured in a similar manner to the host plant. We used 454 amplicon-based metagenomics to demonstrate that the pattern of genetic diversity in many, but not all, of the eukaryotic community is similar to that of S. alata, providing evidence that associated eukaryotes share an evolutionary history with the host pitcher plant. Our work provides further evidence that a host plant can influence the evolution of its associated commensals.
Collapse
Affiliation(s)
- Jordan D Satler
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University , Columbus, OH , United States
| | - Amanda J Zellmer
- Department of Biology, Occidental College , Los Angeles, CA , United States
| | - Bryan C Carstens
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University , Columbus, OH , United States
| |
Collapse
|
9
|
Sánchez-García FJ, Galián J, Gallego D. Distribution of Tomicus destruens (Coleoptera: Scolytinae) mitochondrial lineages: phylogeographic insights and niche modelling. ORG DIVERS EVOL 2014. [DOI: 10.1007/s13127-014-0186-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Richter SC, O'Neill EM, Nunziata SO, Rumments A, Gustin ES, Young JE, Crother BI. Cryptic Diversity and Conservation of Gopher Frogs across the Southeastern United States. COPEIA 2014. [DOI: 10.1643/cg-13-040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Flores-Rentería L, Wegier A, Ortega Del Vecchyo D, Ortíz-Medrano A, Piñero D, Whipple AV, Molina-Freaner F, Domínguez CA. Genetic, morphological, geographical and ecological approaches reveal phylogenetic relationships in complex groups, an example of recently diverged pinyon pine species (Subsection Cembroides). Mol Phylogenet Evol 2013; 69:940-9. [PMID: 23831459 DOI: 10.1016/j.ympev.2013.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 04/29/2013] [Accepted: 06/18/2013] [Indexed: 11/24/2022]
Abstract
Elucidating phylogenetic relationships and species boundaries within complex taxonomic groups is challenging for intrinsic and extrinsic (i.e., technical) reasons. Mexican pinyon pines are a complex group whose phylogenetic relationships and species boundaries have been widely studied but poorly resolved, partly due to intrinsic ecological and evolutionary features such as low morphological and genetic differentiation caused by recent divergence, hybridization and introgression. Extrinsic factors such as limited sampling and difficulty in selecting informative molecular markers have also impeded progress. Some of the Mexican pinyon pines are of conservation concern but others may remain unprotected because the species boundaries have not been established. In this study we combined approaches to resolve the phylogenetic relationships in this complex group and to establish species boundaries in four recently diverged taxa: P. discolor, P. johannis, P. culminicola and P. cembroides. We performed phylogenetic analyses using the chloroplast markers matK and psbA-trnH as well as complete and partial chloroplast genomes of species of Subsection Cembroides. Additionally, we performed a phylogeographic analysis combining genetic data (18 chloroplast markers), morphological data and geographical data to define species boundaries in four recently diverged taxa. Ecological divergence was supported by differences in climate among localities for distinct genetic lineages. Whereas the phylogenetic analysis inferred with matK and psbA-trnH was unable to resolve the relationships in this complex group, we obtained a resolved phylogeny with the use of the chloroplast genomes. The resolved phylogeny was concordant with a haplotype network obtained using chloroplast markers. In species with potential for recent divergence, hybridization or introgression, nonhierarchical network-based approaches are probably more appropriate to protect against misclassification due to incomplete lineage sorting. The boundaries among genetic lineages were delimited by the inclusion of morphological, geographical and ecological data in the haplotype network. These multiple lines of evidence help to assign species boundaries in this complex group. P. johannis, P. discolor, P. culminicola and P. cembroides are different species based on their genetic, morphological and ecological niche differences. We suggest a reevaluation of the conservation status of these species considering the information generated in this study.
Collapse
Affiliation(s)
- Lluvia Flores-Rentería
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Coyoacán, DF 04510, Mexico; Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lawson LP. Diversification in a biodiversity hot spot: landscape correlates of phylogeographic patterns in the African spotted reed frog. Mol Ecol 2013; 22:1947-60. [DOI: 10.1111/mec.12229] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 12/05/2012] [Accepted: 12/20/2012] [Indexed: 12/25/2022]
Affiliation(s)
- Lucinda P. Lawson
- Committee on Evolutionary Biology; University of Chicago; Chicago IL 60637 USA
- Zoology Department; Field Museum of Natural History; Chicago IL 60605 USA
| |
Collapse
|
13
|
JACKSON NATHAND, AUSTIN CHRISTOPHERC. Inferring the evolutionary history of divergence despite gene flow in a lizard species, Scincella lateralis (Scincidae), composed of cryptic lineages. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01929.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Newman CE, Feinberg JA, Rissler LJ, Burger J, Shaffer HB. A new species of leopard frog (Anura: Ranidae) from the urban northeastern US. Mol Phylogenet Evol 2012; 63:445-55. [PMID: 22321689 PMCID: PMC4135705 DOI: 10.1016/j.ympev.2012.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/20/2012] [Accepted: 01/22/2012] [Indexed: 11/22/2022]
Abstract
Past confusion about leopard frog (genus Rana) species composition in the Tri-State area of the US that includes New York (NY), New Jersey (NJ), and Connecticut (CT) has hindered conservation and management efforts, especially where populations are declining or imperiled. We use nuclear and mitochondrial genetic data to clarify the identification and distribution of leopard frog species in this region. We focus on four problematic frog populations of uncertain species affiliation in northern NJ, southeastern mainland NY, and Staten Island to test the following hypotheses: (1) they are conspecific with Rana sphenocephala or R. pipiens, (2) they are hybrids between R. sphenocephala and R. pipiens, or (3) they represent one or more previously undescribed cryptic taxa. Bayesian phylogenetic and cluster analyses revealed that the four unknown populations collectively form a novel genetic lineage, which represents a previously undescribed cryptic leopard frog species, Rana sp. nov. Statistical support for R. sp. nov. was strong in both the Bayesian (pp=1.0) and maximum-likelihood (bootstrap=99) phylogenetic analyses as well as the Structure cluster analyses. While our data support recognition of R. sp. nov. as a novel species, we recommend further study including fine-scaled sampling and ecological, behavioral, call, and morphological analyses before it is formally described.
Collapse
Affiliation(s)
- Catherine E. Newman
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Jeremy A. Feinberg
- Graduate Program in Ecology & Evolution, Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - Leslie J. Rissler
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Joanna Burger
- Graduate Program in Ecology & Evolution, Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - H. Bradley Shaffer
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
- Center for Population Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|