1
|
Tyagi K, Tyagi I, Patidar A, Singha D, Kaczmarczyk-Ziemba A, Banerjee D, Kumar V. Gut microbial composition in developmental stages of gall inducing thrips Gynaikothrips uzeli and associated plant pathogenesis. Saudi J Biol Sci 2022; 29:1439-1446. [PMID: 35280592 PMCID: PMC8913411 DOI: 10.1016/j.sjbs.2021.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 01/04/2023] Open
Abstract
Gut bacteria play a crucial role in the several metabolic activity of the insects. In the present work, effort has been made to decipher the gut microbiota associated with the developmental stages of Gynaikothrips uzeli a gall inducing thrips along with their predicted functional role. Further, an effort has been made to correlate the bacterial communities with plant pathogenesis and thelytoky behaviour of G. uzeli. Findings obtained revealed that genus Arsenophonus dominated the total bacterial diversity and was transmitted vertically through the developmental stages. Further, it was observed that the high abundance of genus Arsenophonus promotes the thelytoky behaviour in G. uzeli and results in the killing of males. Furthermore, strong connecting link between Arsenophonus abundance and gall induction in F. benjamina was observed in the current dataset. G. uzeli being in the category of phloem sucking insect was known for the induction of galls and the current findings for the first time unveiled the facts that high abundance of genus Arsenophonus a well-known plant pathogen may be one of the major reason for inducing galls in F. benjamina. Moreover, PICRUSt2 analysis revealed that predicted functional pathways like biosynthesis of amino acids, and metabolism of carbon, nitrogen, carbohydrates and amino acids (e.g. Arginine, Alanine, Aspartate, Glutamate, Proline, Cysteine, Methionine, Glycine, Threonine, and Serine) were frequently noticed in profiles associated with all the developmental stages of G. uzeli. More to this, the high abundance of Arsenophonus in G. uzeli suggest that representatives of this genus may be resistant and/or tolerant to different antibacterial agents, alkaloids, flavonoids, and glycosides (e.g. quercetin). The correlation of bacterial diversity in pathogenicity can be extrapolated in different pest and vector species of other arthropods.
Collapse
Affiliation(s)
- Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, Kolkata 700053, India
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, Kolkata 700053, India
| | - Abhishek Patidar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, Kolkata 700053, India
| | - Devkant Singha
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, Kolkata 700053, India
| | - Agnieszka Kaczmarczyk-Ziemba
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
- Corresponding authors.
| | - Dhriti Banerjee
- Director, Zoological Survey of India, M-Block, Kolkata 700053, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, Kolkata 700053, India
- Corresponding authors.
| |
Collapse
|
2
|
Zheng Z, Zhao M, Zhang Z, Hu X, Xu Y, Wei C, He H. Lactic Acid Bacteria Are Prevalent in the Infrabuccal Pockets and Crops of Ants That Prefer Aphid Honeydew. Front Microbiol 2022; 12:785016. [PMID: 35126329 PMCID: PMC8814368 DOI: 10.3389/fmicb.2021.785016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 01/04/2023] Open
Abstract
Ants are evolutionarily successful species and occupy diverse trophic and habitat niches on the earth. To fulfill dietary requirements, ants have established commensalism with both sap-feeding insects and bacteria. In this study, we used high-throughput sequencing of the bacterial 16S rRNA gene to characterize the bacterial composition and structure of the digestive tracts in three species of Formica ants and Lasius niger (Linnaeus)—species that predominantly feed on honeydew secreted by aphids. We found that bacterial communities displayed species- and colony-level signatures, and that bacterial communities in the infrabuccal pockets and crops were different from those in the midguts and hindguts. Lactobacillus and Wolbachia were dominant in the infrabuccal pockets and crops of workers, whereas Wolbachia was dominant in the midguts, hindguts and brood (larvae, pupae and cocoons). To learn more about the dominant Lactobacillus in ants, we assessed its prevalence in a wide range of aphid-tending ants using diagnostic PCR. We found that Lactobacillus was more prevalent in Formicinae than in Myrmicinae species. We also isolated four strains of lactic acid bacteria (Lactobacillus sanfranciscensis, Lactobacillus lindneri, Weissella cibaria and Fructobacillus sp.) from the infrabuccal pockets and crops of aphid-tending ants using a culture-dependent method. Two predominant lactic acid bacterial isolates, Lactobacillus sanfranciscensis (La2) and Weissella cibaria (La3), exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew. These findings contribute to further understanding the association between ants, aphids and bacteria, and provide additional information on the function of lactic acid bacteria in ants.
Collapse
Affiliation(s)
- Zhou Zheng
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
| | - Mengqin Zhao
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
| | - Zhijun Zhang
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
| | - Xin Hu
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
| | - Yang Xu
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management, College of Plant Protection, Northwest A&F University, Yangling, China
- *Correspondence: Cong Wei,
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
- Hong He,
| |
Collapse
|
3
|
Bacterial Composition and Diversity of the Digestive Tract of Odontomachus monticola Emery and Ectomomyrmex javanus Mayr. INSECTS 2021; 12:insects12020176. [PMID: 33671250 PMCID: PMC7922086 DOI: 10.3390/insects12020176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary Bacteria are considered to be one of the compelling participants in ant dietary differentiation. The digestive tract of ants is characterized by a developed crop, an elaborate proventriculus, and an infrabuccal pocket, which is a special filtrating structure in the mouthparts, adapting to their special trophallaxis behavior. Ponerine ants are true predators and a primitive ant group; notably, their gut bacterial communities get less attention than herbivorous ants. In this study, we investigated the composition and diversity of bacterial communities in the digestive tract and the infrabuccal pockets of two widely distributed ponerine species (Odontomachus monticola Emery and Ectomomyrmex javanus Mayr) in northwestern China using high-throughput sequencing of the bacterial 16S rRNA gene. The results revealed that, not only do the gut bacterial communities display significant interspecies differences, but they also possess apparent intercolony characteristics. Within each colony, the bacterial communities were highly similar between each gut section (crops, midguts, and hindguts) of workers, but significantly different from their infrabuccal pockets, which were similar to bacterial communities in larvae of O. monticola. The relationship of the bacterial communities among the infrabuccal pockets, gut sections and larvae provide meaningful information to understand the social life and feeding behavior of ants. Abstract Ponerine ants are generalist predators feeding on a variety of small arthropods, annelids, and isopods; however, knowledge of their bacterial communities is rather limited. This study investigated the bacterial composition and diversity in the digestive tract (different gut sections and the infrabuccal pockets (IBPs)) of two ponerine ant species (Odontomachus monticola Emery and Ectomomyrmex javanus Mayr) distributed in northwestern China using high-throughput sequencing. We found that several dominant bacteria that exist in other predatory ants were also detected in these two ponerine ant species, including Wolbachia, Mesoplasma, and Spiroplasma. Bacterial communities of these two ant species were differed significantly from each other, and significant differences were also observed across their colonies, showing distinctive inter-colony characteristics. Moreover, bacterial communities between the gut sections (crops, midguts, and hindguts) of workers were highly similar within colony, but they were clearly different from those in IBPs. Further, bacterial communities in the larvae of O. monticola were similar to those in the IBPs of workers, but significantly different from those in gut sections. We presume that the bacterial composition and diversity in ponerine ants are related to their social behavior and feeding habits, and bacterial communities in the IBPs may play a potential role in their social life.
Collapse
|
4
|
Goldman AE, Bonebrake TC, Tsang TPN, Evans TA, Gibson L, Eggleton P, Griffiths HM, Parr CL, Ashton LA. Drought and presence of ants can influence hemiptera in tropical leaf litter. Biotropica 2020. [DOI: 10.1111/btp.12762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anna E. Goldman
- School of Biological Sciences The University of Hong Kong Hong Kong China
| | | | - Toby P. N. Tsang
- School of Biological Sciences The University of Hong Kong Hong Kong China
| | - Theodore A. Evans
- School of Biological Sciences University of Western Australia Perth WA Australia
| | - Luke Gibson
- School of Environmental Science and Engineering Southern University of Science and Technology Shenzhen China
| | - Paul Eggleton
- Department of Life Sciences Natural History Museum London UK
| | | | - Catherine L. Parr
- School of Environmental Sciences University of Liverpool Liverpool UK
| | - Louise A. Ashton
- School of Biological Sciences The University of Hong Kong Hong Kong China
- Department of Life Sciences Natural History Museum London UK
- Environmental Futures Research Institute Griffith University Brisbane QLD Australia
| |
Collapse
|
5
|
Kaczmarczyk-Ziemba A, Zagaja M, Wagner GK, Pietrykowska-Tudruj E, Staniec B. First Insight into Microbiome Profiles of Myrmecophilous Beetles and Their Host, Red Wood Ant Formica polyctena (Hymenoptera: Formicidae)-A Case Study. INSECTS 2020; 11:E134. [PMID: 32092972 PMCID: PMC7073670 DOI: 10.3390/insects11020134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 01/23/2023]
Abstract
Formica polyctena belongs to the red wood ant species group. Its nests provide a stable, food rich, and temperature and humidity controlled environment, utilized by a wide range of species, called myrmecophiles. Here, we used the high-throughput sequencing of the 16S rRNA gene on the Illumina platform for identification of the microbiome profiles of six selected myrmecophilous beetles (Dendrophilus pygmaeus, Leptacinus formicetorum, Monotoma angusticollis, Myrmechixenus subterraneus, Ptenidium formicetorum and Thiasophila angulata) and their host F. polyctena. Analyzed bacterial communities consisted of a total of 23 phyla, among which Proteobacteria, Actinobacteria, and Firmicutes were the most abundant. Two known endosymbionts-Wolbachia and Rickettsia-were found in the analyzed microbiome profiles and Wolbachia was dominant in bacterial communities associated with F. polyctena, M. subterraneus, L. formicetorum and P. formicetorum (>90% of reads). In turn, M. angusticollis was co-infected with both Wolbachia and Rickettsia, while in the microbiome of T. angulata, the dominance of Rickettsia has been observed. The relationships among the microbiome profiles were complex, and no relative abundance pattern common to all myrmecophilous beetles tested was observed. However, some subtle, species-specific patterns have been observed for bacterial communities associated with D. pygmaeus, M. angusticollis, and T. angulata.
Collapse
Affiliation(s)
- Agnieszka Kaczmarczyk-Ziemba
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
| | - Grzegorz K. Wagner
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (G.K.W.); (E.P.-T.); (B.S.)
| | - Ewa Pietrykowska-Tudruj
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (G.K.W.); (E.P.-T.); (B.S.)
| | - Bernard Staniec
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (G.K.W.); (E.P.-T.); (B.S.)
| |
Collapse
|
6
|
Zhang Z, Jiao S, Li X, Li M. Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets. Sci Rep 2018; 8:15634. [PMID: 30353073 PMCID: PMC6199299 DOI: 10.1038/s41598-018-34127-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/03/2018] [Indexed: 11/17/2022] Open
Abstract
Agrilus mali (Coleoptera: Buprestidae) is an invasive wood borer pest that has caused considerable damage to the Xinjiang wild fruit forest. In this study, we investigated the bacterial and fungal intestinal microbial communities of A. mali during different developmental stages, including larvae, pupae and newly eclosed adults or fed different diets (leaves of Malus halliana and Malus pumila) using Illumina MiSeq high-throughput sequencing technology. The results showed that microbial alpha diversity first increased and then decreased during the developmental stages, with the most dominant bacteria and fungi exhibiting the dynamic patterns "Decrease", "Increase" and "Fluctuation". With respect to the different diets, the bacterial communities were similar between the newly eclosed adults and adults fed M. pumila leaves, while the structure of the fungal communities showed great differences between newly eclosed adults and adults fed different diets. Through a co-correlation network analysis, we observed complex microbial interactions among bacterial and fungal taxa that were associated with potential diverse functions and intricate biological processes in the intestinal microbiota of A. mali. Overall, the results of this study demonstrated that the invasive insect A. mali harbours diverse, dynamic, and presumably multifunctional microbial communities, an understanding of which could improve our ability to develop more effective management approaches to control A. mali.
Collapse
Affiliation(s)
- Zhengqing Zhang
- Laboratory of Forestry Pests Biological Control, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuo Jiao
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiaohui Li
- Laboratory of Forestry Pests Biological Control, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Menglou Li
- Laboratory of Forestry Pests Biological Control, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Kaczmarczyk A, Kucharczyk H, Kucharczyk M, Kapusta P, Sell J, Zielińska S. First insight into microbiome profile of fungivorous thrips Hoplothrips carpathicus (Insecta: Thysanoptera) at different developmental stages: molecular evidence of Wolbachia endosymbiosis. Sci Rep 2018; 8:14376. [PMID: 30258200 PMCID: PMC6158184 DOI: 10.1038/s41598-018-32747-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/12/2018] [Indexed: 12/26/2022] Open
Abstract
Insects' exoskeleton, gut, hemocoel, and cells are colonized by various microorganisms that often play important roles in their host life. Moreover, insects are frequently infected by vertically transmitted symbionts that can manipulate their reproduction. The aims of this study were the characterization of bacterial communities of four developmental stages of the fungivorous species Hoplothrips carpathicus (Thysanoptera: Phlaeothripidae), verification of the presence of Wolbachia, in silico prediction of metabolic potentials of the microorganisms, and sequencing its mitochondrial COI barcode. Taxonomy-based analysis indicated that the bacterial community of H. carpathicus contained 21 bacterial phyla. The most abundant phyla were Proteobacteria, Actinobacteria, Bacterioidetes and Firmicutes, and the most abundant classes were Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Betaproteobacteria, with different proportions in the total share. For pupa and imago (adult) the most abundant genus was Wolbachia, which comprised 69.95% and 56.11% of total bacterial population respectively. Moreover, similarity analysis of bacterial communities showed that changes in microbiome composition are congruent with the successive stages of H. carpathicus development. PICRUSt analysis predicted that each bacterial community should be rich in genes involved in membrane transport, amino acid metabolism, carbohydrate metabolism, replication and repair processes.
Collapse
Affiliation(s)
- Agnieszka Kaczmarczyk
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Halina Kucharczyk
- Department of Zoology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Marek Kucharczyk
- Department of Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Przemysław Kapusta
- Center for Medical Genomics - OMICRON, Jagiellonian University Medical College, Kopernika 7c, 31-034, Kraków, Poland
| | - Jerzy Sell
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Sylwia Zielińska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
- Phage Consultants, Partyzantow 10/18, 80-254, Gdansk, Poland
| |
Collapse
|
8
|
Cascading effects on bacterial communities: cattle grazing causes a shift in the microbiome of a herbivorous caterpillar. ISME JOURNAL 2018; 12:1952-1963. [PMID: 29695861 DOI: 10.1038/s41396-018-0102-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 01/22/2023]
Abstract
Large mammalian herbivores greatly influence the functioning of grassland ecosystems. Through plant consumption, excreta, and trampling, they modify biodiversity, nutrient cycling, and soil properties. Grazing mammals can also alter soil and rhizosphere bacterial communities, but their effect on the microbiome of other animals in the habitat (i.e., insects) is unknown. Using an experimental field approach and Illumina MiSeq 16S rRNA gene sequencing, we analyzed the influence of cattle grazing on the microbial community of spring webworm caterpillars, Ocnogyna loewii. Our experimental setup included replicated grazed and non-grazed paddocks from which caterpillars were collected twice (first-second and fourth-fifth instar). The caterpillars' microbiome is composed mostly of Proteobacteria and Firmicutes, and contains a potential symbiont from the genus Carnobacterium (55% of reads). We found that grazing significantly altered the microbiome composition of late instar caterpillars, probably through changes in diet (plant) composition and availability. Furthermore, the microbiome composition of early instar caterpillars significantly differed from late instar caterpillars in 221 OTUs (58 genera). Pseudomonas and Acinetobacter were dominant in early instars, while Carnobacterium and Acinetobacter were dominant in late instars. This study provides new ecological perspectives on the cascading effects mammalian herbivores may have on the microbiome of other animals in their shared habitat.
Collapse
|
9
|
Schuelke T, Pereira TJ, Hardy SM, Bik HM. Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats. Mol Ecol 2018; 27:1930-1951. [DOI: 10.1111/mec.14539] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Taruna Schuelke
- Department of Nematology; University of California, Riverside; Riverside CA USA
| | - Tiago José Pereira
- Department of Nematology; University of California, Riverside; Riverside CA USA
| | - Sarah M. Hardy
- School of Fisheries and Ocean Sciences; University of Alaska; Fairbanks AK USA
| | - Holly M. Bik
- Department of Nematology; University of California, Riverside; Riverside CA USA
| |
Collapse
|
10
|
Keiser CN, Wright CM, Pruitt JN. Increased bacterial load can reduce or negate the effects of keystone individuals on group collective behaviour. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Kieft TL, Simmons KA. Allometry of animal-microbe interactions and global census of animal-associated microbes. Proc Biol Sci 2016; 282:rspb.2015.0702. [PMID: 26108631 DOI: 10.1098/rspb.2015.0702] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Animals live in close association with microorganisms, mostly prokaryotes, living in or on them as commensals, mutualists or parasites, and profoundly affecting host fitness. Most animal-microbe studies focus on microbial community structure; for this project, allometry (scaling of animal attributes with animal size) was applied to animal-microbe relationships across a range of species spanning 12 orders of magnitude in animal mass, from nematodes to whales. Microbial abundances per individual animal were gleaned from published literature and also microscopically counted in three species. Abundance of prokaryotes/individual versus animal mass scales as a nearly linear power function (exponent = 1.07, R(2) = 0.94). Combining this power function with allometry of animal abundance indicates that macrofauna have an outsized share of animal-associated microorganisms. The total number of animal-associated prokaryotes in Earth's land animals was calculated to be 1.3-1.4 × 10(25) cells and the total of marine animal-associated microbes was calculated to be 8.6-9.0 × 10(24) cells. Animal-associated microbes thus total 2.1-2.3 × 10(25) of the approximately 10(30) prokaryotes on the Earth. Microbes associated with humans comprise 3.3-3.5% of Earth's animal-associated microbes, and domestic animals harbour 14-20% of all animal-associated microbes, adding a new dimension to the scale of human impact on the biosphere. This novel allometric power function may reflect underlying mechanisms involving the transfer of energy and materials between microorganisms and their animal hosts. Microbial diversity indices of animal gut communities and gut microbial species richness for 60 mammals did not indicate significant scaling relationships with animal body mass; however, further research in this area is warranted.
Collapse
Affiliation(s)
- Thomas L Kieft
- Department of Biology, New Mexico Tech, Socorro, NM 87801, USA
| | - Karen A Simmons
- Department of Biology, New Mexico Tech, Socorro, NM 87801, USA
| |
Collapse
|
12
|
Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 2014; 80:5254-64. [PMID: 24928884 DOI: 10.1128/aem.01226-14] [Citation(s) in RCA: 461] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insects are the most abundant animals on Earth, and the microbiota within their guts play important roles by engaging in beneficial and pathological interactions with these hosts. In this study, we comprehensively characterized insect-associated gut bacteria of 305 individuals belonging to 218 species in 21 taxonomic orders, using 454 pyrosequencing of 16S rRNA genes. In total, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% distance level from all samples, with an average of 84.3 (± 97.7) OTUs per sample. The insect gut microbiota were dominated by Proteobacteria (62.1% of the total reads, including 14.1% Wolbachia sequences) and Firmicutes (20.7%). Significant differences were found in the relative abundances of anaerobes in insects and were classified according to the criteria of host environmental habitat, diet, developmental stage, and phylogeny. Gut bacterial diversity was significantly higher in omnivorous insects than in stenophagous (carnivorous and herbivorous) insects. This insect-order-spanning investigation of the gut microbiota provides insights into the relationships between insects and their gut bacterial communities.
Collapse
|
13
|
In vivo Pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis. PLoS One 2014; 9:e85948. [PMID: 24475063 PMCID: PMC3903505 DOI: 10.1371/journal.pone.0085948] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/04/2013] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is of crucial importance for the host with considerable metabolic activity. Although great efforts have been made toward characterizing microbial diversity, measuring components' metabolic activity surprisingly hasn't kept pace. Here we combined pyrosequencing of amplified 16S rRNA genes with in vivo stable isotope probing (Pyro-SIP) to unmask metabolically active bacteria in the gut of cotton leafworm (Spodoptera littoralis), a polyphagous insect herbivore that consumes large amounts of plant material in a short time, liberating abundant glucose in the alimentary canal as a most important carbon and energy source for both host and active gut bacteria. With (13)C glucose as the trophic link, Pyro-SIP revealed that a relatively simple but distinctive gut microbiota co-developed with the host, both metabolic activity and composition shifting throughout larval stages. Pantoea, Citrobacter and Clostridium were particularly active in early-instar, likely the core functional populations linked to nutritional upgrading. Enterococcus was the single predominant genus in the community, and it was essentially stable and metabolically active in the larval lifespan. Based on that Enterococci formed biofilm-like layers on the gut epithelium and that the isolated strains showed antimicrobial properties, Enterococcus may be able to establish a colonization resistance effect in the gut against potentially harmful microbes from outside. Not only does this establish the first in-depth inventory of the gut microbiota of a model organism from the mostly phytophagous Lepidoptera, but this pilot study shows that Pyro-SIP can rapidly gain insight into the gut microbiota's metabolic activity with high resolution and high precision.
Collapse
|
14
|
Ratzka C, Gross R, Feldhaar H. Gene expression analysis of the endosymbiont-bearing midgut tissue during ontogeny of the carpenter ant Camponotus floridanus. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:611-623. [PMID: 23570961 DOI: 10.1016/j.jinsphys.2013.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 06/02/2023]
Abstract
Insects have frequently evolved mutualistic relationships with extracellular and/or intracellular bacterial endosymbionts. Infection with endosymbionts seems to affect several cellular functions of the host such as immune pathways, oxidative stress regulation and autophagy. Our current knowledge about specific host factors leading to endosymbiont tolerance and/or control is still scarce and is based on very few associations between insect hosts and bacteria only. Camponotus floridanus ants harbour the obligate intracellular bacterium Blochmannia floridanus within specialized midgut cells called bacteriocytes. The number of Blochmannia endosymbionts within the midgut tissue increases strongly during host development and reaches a maximum at the late pupal stage, where the entire midgut is transformed into a symbiotic organ. After eclosion of workers the number of Blochmannia strongly decreases again. We chose 15 candidate genes from C. floridanus likely to be involved in host-symbiont interactions based on their significant homology to previously investigated symbiosis-relevant genes from other insects. We determined the expression of these genes in the endosymbiont-bearing midgut tissue in comparison to the residual body tissue at different developmental stages of C. floridanus in order to reveal changes in gene expression correlating with changes in endosymbiont number per host. Strikingly, two pattern recognition receptors (amidase PGRP-LB and PGRP-SC2) were highly expressed in the midgut tissue at the pupal stage, potentially down-modulating the IMD pathway to enable endosymbiont tolerance. Moreover, we investigated the immune gene expression in response to bacterial challenge at the pupal stage. Results showed that the midgut tissue differs in expression pattern in contrast to the residual body. Our results support a key role for amidase PGRPs, especially PGRP-LB, in regulation of the immune response towards endosymbionts in C. floridanus and suggest an involvement of the lysosomal system in control of Blochmannia endosymbionts.
Collapse
Affiliation(s)
- Carolin Ratzka
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, Germany.
| | | | | |
Collapse
|